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in the domain bounded in the half-plane x > 0, the properties of the Gaussian
hypergeometric function F (a, b; c; z) were used [8, 9, 13,20].

An exposition of the results on the potential theory for this two-dimensional
singular elliptic equation together with references to the original literature are to be
found in the monograph by Smirnov [21], which is the standard work on the subject.
This work also contains an extensive bibliography of all relevant papers up to 1966;
the list of references given in the present work is largely supplementary to Smirnov’s
bibliography. Various interesting problems associated with the two-dimensional
singular elliptic equations were studied by many authors (see [1,2,10,11,14,16,25]).

The recent work [23] is devoted to the construction of a potential theory for a
multidimensional elliptic equation with one singular coefficient

m∑
k=1

uxkxk
+

2α

x1
ux1 = 0, 0 < 2α < 1, m ≥ 2

in the domain bounded in the half-space x1 > 0 and with the help of this theory
the solution of the Holmgren problem is obtained in a convenient form for further
research.

Relatively few works are devoted to the potential theory for an elliptic equation
with two and more singular coefficients. In the works [3, 22] the authors studied
only some properties of the double-layer potential for the generalized bi-axially
symmetric elliptic equation

(1.1) E(u) ≡ uxx + uyy +
2α

x
ux +

2β

y
uy = 0, 0 < 2α, 2β < 1.

In the present work, using some properties of Appell hypergeometric function F2,
we shall give the potential theory for equation (1.1). We also apply this theory to
the finding of the regular solution of the Holmgren problem for equation (1.1) in
the domain, which is bounded in the first quarter R2+

2 := {(x, y) : x > 0, y > 0} of
the xOy-plane.

2. Appell hypergeometric function F2

Below we give some formulae for Appell hypergeometric function in two variables,
which will be used in the next sections.

The Appell hypergeometric function in two variables has a form [7, eq.5.7(7)]

(2.1)

F2 (a; b1, b2; c1, c2;x, y) = F2

[
a, b1, b2;
c1, c2;

x, y

]
=

∞∑
m,n=0

(a)m+n(b1)m(b2)n
m!n!(c1)m(c2)n

xmyn

[c1, c2 ̸= 0,−1,−2, ...; |x|+ |y| < 1] .

Here (λ)k is the Pochhammer’s symbol for which an equality (λ)k+l = (λ)k(a+ k)l
is true [7, eq.1.21(5)].

We give some elementary relations for F2 necessary in this study:
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∂m+n

∂xm∂yn
F2 (a; b1, b2;c1, c2;x, y) =

(a)m+n(b1)m(b2)n
m!n!(c1)m(c2)n

× F2 (a+m+ n; b1 +m, b2 + n;c1 +m, c2 + n;x, y) ,

b1
c1
xF2 (a+ 1; b1 + 1, b2; c1 + 1, c2;x, y)

+
b2
c2
yF2 (a+ 1; b1, b2 + 1; c1, c2 + 1;x, y)

= F2 (a+ 1; b1, b2; c1, c2;x, y)− F2 (a; b1, b2; c1, c2;x, y) ,

(2.2)

F2(a, b1, b2; c1, c2;x, y) = (1− x− y)−a

×F2

(
a, c1 − b1, c2 − b2; c1, c2;

x

x+ y − 1
,

y

x+ y − 1

)
.

For a given Appell hypergeometric function F2, it is useful to find a decomposi-
tion formula which would express the double hypergeometric function in terms of
products of several simpler hypergeometric functions involving fewer variables. The
following expansion formula [5]

(2.3)
F2 (a; b1, b2;c1, c2;x, y) =

∞∑
k=0

(a)k(b1)k(b2)k
k!(c1)k(c2)k

xkyk

× F (a+ k, b1 + k;c1 + k;x)F (a+ k, b2 + k;c2 + k;y) .

is valid. Here F (a, b; c; z) is a famous Gaussian hypergeometric function [7, eq.2.1(2)]
:

(2.4) F (a, b; c; z) =
∞∑
k=0

(a)k(b)k
k!(c)k

zk, c ̸= 0,−1,−2, ...; |z| < 1.

Note that each point of the line x + y = 1(x > 0, y > 0) can be a point of the
logarithmic singularity of the function F2.

Lemma 2.1 ([6]). If x and y are positive and α > 0, β > 0, then

(2.5) F2 (α+ β, α, β; 2α, 2β;x, y) ∼ − Γ(2α)Γ(2β)

Γ(α)Γ(β)Γ(α+ β)

ln(1− x− y)

xαyβ

as x+ y → 1− 0.
Let c1 > b1, c2 > b2 and a+ b1 + b2 = c1 + c2. If x > 0 and y > 0, then

(2.6) F2 (a, b1, b2; c1, c2;x, y) ∼ − Γ(c1)Γ(c2)

Γ(a)Γ(b1)Γ(b2)

ln(1− x− y)

xc1−b1yc2−b2

as x+ y → 1− 0.
If c1 + c2 < a+ b1 + b2, then

(2.7)
F2 (a, b1, b2; c1, c2;x, y) ∼

Γ(c1)Γ(c2)Γ(a+ b1 + b2 − c1 − c2)

Γ(a)Γ(b1)Γ(b2)

× xb1−c1yb2−c2(1− x− y)c1+c2−a−b1−b2 .
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In addition, the fundamental solutions of the equation (1.1) are expressed in
terms of the Appell hypergeometric function F2, one of which has the form [6,12]:

(2.8) q (x, y; ξ, η) = κr−2α−2βF2 (α+ β, α, β; 2α, 2β;σ1, σ2) ,

where

σ1 = 1− r21
r2
, σ2 = 1− r22

r2
; r2 = (x− ξ)2 + (y − η)2 ,

r21 = (x+ ξ)2 + (y − η)2 , r22 = (x− ξ)2 + (y + η)2 ,

κ =
22α+2β

4π

Γ(α)Γ(β)Γ(α+ β)

Γ(2α)Γ(2β)
.

The function q (x, y; ξ, η) satisfies the equation (1.1), and by virtue of the formula
(2.5), it has a logarithmic singularity at r → 0 (x > 0, y > 0) and, therefore, the
function q (x, y; ξ, η) is a fundamental solution to the equation (1.1).

The fundamental solution given by (2.8) possesses the following potentially useful
property:

(2.9)

(
x2α

∂q (x, y; ξ, η)

∂x

)∣∣∣∣
x=0

=

(
y2β

∂q (x, y; ξ, η)

∂y

)∣∣∣∣
y=0

= 0.

3. Green’s formula

We consider the following identity:

(3.1)

x2αy2β [uE(v)− vE(u)]

= y2β
∂

∂x

[
x2α

(
u
∂v

∂x
− v

∂u

∂x

)]
+ x2α

∂

∂y

[
y2β

(
u
∂v

∂y
− v

∂u

∂y

)]
.

Integrating both sides of this identity in a domain D, which is located and
bounded in the quarter-plane x > 0, y > 0, and using the Gauss-Ostrogradsky
formula, we obtain

(3.2)

∫ ∫
D
x2αy2β [uE(v)− vE(u)] dxdy

=

∫
γ
x2αy2β

[
−
(
u
∂v

∂y
− v

∂u

∂y

)
dx+

(
u
∂v

∂x
− v

∂u

∂x

)
dy

]
,

where γ is a contour of D.
The Green’s formula (3.2) is derived under the following assumptions: (a) The

functions u(x, y) and v(x, y) , and their first-order derivatives, are continuous in the
closed domain D; (b) The second-order partial derivatives are continuous inside the
domain D.

The integrals over D, consisting of E(u) and E(v), have a meaning. If E(u) and
E(v) are not continuous up to S, then they are improper integrals obtained as limits
on any sequence of domains Dn contained inside D when these domains Dn tend to
D, so that any point in this Dn will be inside of D, starting with some number n.

If u and v are solutions of equation (1.1), then we find from formula (3.2) that

(3.3)

∫
γ

(
uAα,β

n [v]− vAα,β
n [u]

)
ds = 0,
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where Aα,β
n [ ] is the conormal derivative with respect to (x, y):

Aα,β
n [ ] ≡ x2αy2β

(
dy

ds

∂

∂x
− dx

ds

∂

∂y

)
.

Here
dy

ds
= cos(n, x),

dx

ds
= − cos(n, y), n is the outer normal to the curve γ.

Assuming that v ≡ 1 in (3.2) and replacing u by u2, we obtain

(3.4)

∫
D
x2αy2β

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dxdy =

∫
γ
uAα,β

n [u]ds,

where u (x, y) is the solution of equation (1.1).
The special case of (3.3) when v ≡ 1 reduces to the following form:

(3.5)

∫
γ
Aα,β

n [u]ds = 0.

We note from (3.5) that the integral of the conormal derivative of the solution of
equation (1.1) along the boundary γ of the domain is equal to zero.

4. A double-layer potential

Let D be a domain bounded by two segments [0, a] of the axes x and y, and a
curve Γ with the ends at the points A(a, 0) and B(0, a) lying in the quarter-plane
x > 0, y > 0.

Let the parametric equation of the curve Γ be x = x(s), y = y(s), where s is the
length of the arc measured from the point A. With respect to the curve Γ, we will
assume that:

(i) the functions x(s) and y(s) have the continuous derivatives x′(s) and y′(s) on
the segment [0, l], which do not vanish simultaneously; the derivatives x′′(s) and
y′′(s) satisfy the Holder condition on [0, l], where l is the length of the curve Γ;

(ii) in a neighborhoods of the points A and B on the curve Γ the following
conditions are satisfied

(4.1)

∣∣∣∣dxds
∣∣∣∣ ≤ C1y(s),

∣∣∣∣dyds
∣∣∣∣ ≤ C2x(s),

respectively.
The coordinates of a variable point on the curve Γ will be denoted by (ξ, η).
We now consider the following integral:

(4.2) w(x, y) =

∫ l

0
µ (s)Aα,β

ν [q (ξ, η;x, y)] ds,

where the density µ(s) ∈ C
(
Γ
)
, q (ξ, η;x, y) is given by (2.8), ν is outer normal to

the curve Γ and Aα,β
ν [ ] is the conormal derivative with respect to (ξ, η):

Aα,β
ν [ ] = ξ2αη2β

[
cos(ν, ξ) · ∂[ ]

∂ξ
+ cos(ν, η) · ∂[ ]

∂η

]
.

We call the integral (4.2) a double-layer potential with density µ (s). When µ(s) =
1, we denote the double-layer potential (4.2) by w1(x, y).

We now investigate some properties of the double-layer potential w1 (x, y).
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Lemma 4.1. The following formula holds true:

w1(x, y) =


−1, (x, y) ∈ D \

{
Γ ∪ {O}

}
−1

2
, (x, y) ∈ Γ ∪ {O} ,
0, (x, y) /∈ D,

where O is a origin of the coordinate system.

Lemma 4.1 was proved in [22].

Lemma 4.2. If (x, y) ∈ Γ, then the following inequality holds true:

(4.3)
∣∣∣Aα,β

ν [q (ξ, η;x, y)]
∣∣∣ ≤ B1

r2α1 r2β2

(
ln
r1r2
r12r

+ 1

)
.

where B1 is a constant.

Proof. The estimate (4.3) follows from the formula

(4.4)

Aα,β
ν [q (ξ, η;x, y)]

= −(α+ β)κ
1

r2α+2β
F2

[
1 + α+ β, α, β;
2α, 2β;

σ1, σ2

]
Aα,β

ν

[
ln r2

]
− 2(α+ β)κ

xξ2αη2β

r2+2α+2β
F2

[
1 + α+ β, 1 + α, β;
1 + 2α, 2β;

σ1, σ2

]
dη(s)

ds

+ 2(α+ β)κ
yξ2αη2β

r2+2α+2β
F2

[
1 + α+ β, α, 1 + β;
2α, 1 + 2β;

σ1, σ2

]
dξ(s)

ds
.

and lemma 2.1. □

Lemma 4.3. If a curve Γ satisfies the conditions (i) and (ii), then the following
inequality holds true: ∫ l

0

∣∣∣Aα,β
ν [q (ξ, η;x, y)]

∣∣∣ ds ≤ B2

xαyβ
,

where B2 is a constant.

Proof. We begin our proof of Lemma 4.3 by transforming the right-hand side of
equality (4.4). Using the formula (2.2), we obtain

(4.5) Aα,β
ν [q (ξ, η;x, y)] = P0(s;x, y) + P1(s;x, y) + P2(s;x, y),

where

P0(s;x, y) = −(α+ β)κr2

r2+2α+2β
12

F2

[
1 + α+ β, α, β;
2α, 2β;

σ̄1, σ̄2

]
Aα,β

ν

[
ln r2

]
,

P1(s;x, y) = 2(α+ β)κ
yξ2αη2β

r2+2α+2β
12

F2

[
1 + α+ β, α, β;
2α, 1 + 2β;

σ̄1, σ̄2

]
dξ(s)

ds
,

P2(s;x, y) = −2(α+ β)κ
xξ2αη2β

r2+2α+2β
12

F2

[
1 + α+ β, α, β;
1 + 2α, 2β;

σ̄1, σ̄2

]
dη(s)

ds
,



APPELL HYPERGEOMETRIC FUNCTION AND THE POTENTIAL THEORY 63

σ̄1 =
4xξ

r212
, σ̄2 =

4yη

r212
, r212 = (x+ ξ)2 + (y + η)2, 0 ≤ σ̄1 + σ̄1 ≤ 1.

By virtue of (2.7), we have

(4.6)

∫ l

0
|P0(s;x, y)| ds ≤ C2

∫ l

0

r2

r2+2α+2β
12

(
xξ

r212

)−α( yη

r212

)−β

×
(
r2

r212

)−1

ξ2αη2β
∣∣∣∣ ∂∂ν

(
ln

1

r

)∣∣∣∣ ds
≤ C2

xαyβ

∫ l

0
ξαηβ

∣∣∣∣ ∂∂ν
(
ln

1

r

)∣∣∣∣ ds ≤ C3

xαyβ

∫ l

0

|cosϑ|
r

ds,

where ϑ is an angle between r and the outer normal ν to the curve Γ.
From the theory of the logarithmic potential we have

(4.7)

∫ l

0

|cosϑ|
r

ds < C4.

Now we will estimate P1(s;x, y) and P2(s;x, y). It is easy to see that

(4.8)

∫ l−εk

εk

|Pk(s;x, y)| ds ≤
Dk

xαyβ
(εk > 0, k = 1, 2) ,

where D1 and D2 are independent of (x, y).

Integrals

∫ εk

0
|Pk(s;x, y)| ds and

∫ l

l−εk

|Pk(s;x, y)| ds are estimated similarly. Let

us estimate the first of them for k = 1. Using the estimate (2.6), taking into account
the first of the conditions (4.1), we get

(4.9)

∫ ε1

0
|P1(s;x, y)| ds ≤

E1

xαyβ

∫ ε1

0
ln

[
r

r12

]
ds ≤ E2

xαyβ
.

Thus, the obtained estimates (4.6) - (4.9) imply the validity of the Lemma 4.3. □

Theorem 4.4. The following limit formulas hold true for a double-layer potential
(4.2):

(4.10) wi(s) = −1

2
µ(s) +

∫ l

0
µ(t)K(s, t)dt,

(4.11) we(s) =
1

2
µ(s) +

∫ l

0
µ(t)K(s, t)dt,

where

K(s, t) = Aα,β
ν [q (ξ(t), η(t);x(s), y(s))] ,

Aα,β
n [w (x, y)]i and A

α,β
n [w (x, y)]e are limiting values of the double-layer potential

(4.2) at the point t ∈ Γ from the inside and the outside, respectively.

Proof. Theorem 4.4 follows from the Lemmas 4.1 and 4.3. □
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5. The simple-layer potential

In this section, we consider the following integral:

(5.1) v (x, y) =

∫ l

0
ρ(t)q(ξ, η;x, y)dt,

where the density ρ(t) ∈ C
(
Γ
)
and q (ξ, η;x, y) is given in (2.8). We call the integral

(5.1) a simple-layer potential with density ρ(t).
The simple-layer potential (5.1) is defined throughout the quarter-plane x >

0, y > 0 and is a continuous function when passing through the curve Γ. Obviously,
a simple-layer potential is a regular solution of equation (1.1) in any domain lying
in the quarter-plane x > 0, y > 0. It is easy to see that, as the point (x, y) tends to
∞ , a simple-layer potential v (x, y) tends to 0. Indeed, we let the point (x, y) be
on the quarter-circle given by CR: x

2 + y2 = R2 (x > 0, y > 0). Then, by virtue of
(2.8), we have

|v (x, y)| ≤
∫ l

0
|ρ (t) ||q (ξ, η;x, y)|dt ≤ PR−2α−2β , (R ≥ R0)

where P is a constant.
We take an arbitrary point N (x(x), y(s)) on the curve Γ and draw a normal at

this point. By considering on this normal any point M(x, y), not lying on the curve
Γ, we find the conormal derivative of the simple-layer potential (5.1):

(5.2) Aα,β
n [v (x, y)] =

∫ l

0
ρ(t)Aαβ

n [q (ξ, η;x, y)] dt,

where

Aα,β
n [ ] = x2αy2β

(
cos(n, x) · ∂

∂x
+ cos(n, y) · ∂

∂y

)
.

The integral in (5.2) exists also in the case when the point M(x, y) coincides with
the point N , which we mentioned above.

Theorem 5.1. The following limit formulas hold true for a simple-layer potential
(5.1):

(5.3) Aα,β
n [v (x, y)]i =

1

2
ρ(s) +

∫ l

0
ρ(t)K(t, s)dt,

(5.4) Aα,β
n [v (x, y)]e = −1

2
ρ(s) +

∫ l

0
ρ(t)K(t, s)dt,

where

K(t, s) = Aα,β
n [q (ξ(t), η(t);x(s), y(s))] ,

Aα,β
n [v (x, y)]i and Aα,β

n [v (x, y)]e are limiting values of the normal derivative of
simple-layer potential (5.1) at the point t ∈ Γ from the inside and the outside,
respectively.
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Making use of these formulas, the jump in the normal derivative of the simple-
layer potential follows immediately:

(5.5) Aα,β
n [v (x, y)]i −Aαβ

n [v (x, y)]e = ρ(x, y).

For future researches on the subject of the present investigation, it will be useful
to note that when the point (x, y) tends to ∞, the following inequality∣∣∣Aα,β

n [v (x, y)]
∣∣∣ ≤ QR−2α−2β−1, (R ≥ R0),

is valid, Q is a constant.
In exactly the same way as in the derivation of (3.4), it is not difficult to show

that Green’s formulas are applicable to the simple-layer potential (5.1) as follows:

(5.6)

∫ ∫
D
x2αy2β

[(
∂v

∂x

)2

+

(
∂v

∂y

)2
]
dxdy =

∫
Γ
vAα,β

n [v]i ds.

(5.7)

∫ ∫
D′
x2αy2β

[(
∂v

∂x

)2

+

(
∂v

∂y

)2
]
dxdy = −

∫
Γ
vAα,β

n [v]e ds.

Hereinafter D′ = R2+
2 \ D̄ is the unbounded domain at x > 0, y > 0.

6. Integral Equations For Denseness

Formulas (4.10), (4.11), (5.3) and (5.4) can be written as the following integral
equations for densities:

(6.1) µ(s)− λ

∫ l

0
K(s, t)µ(t)dt = f(s),

(6.2) ρ(s)− λ

∫ l

0
K(t, s)ρ(t)dt = g(s),

where
λ = 2, f(s) = −2wi(s), g(s) = −2Aα,β

n [v]e ,

λ = −2, f(s) = 2we(s), g(s) = 2Aα,β
n [v]i .

Equations (6.1) and (6.2) are mutually conjugated and, by Lemma 4.2, Fredholm
theory is applicable to them. We show that λ = 2 is not an eigenvalue of the kernel
K (s, t). This assertion is equivalent to the fact that the homogeneous integral
equation

(6.3) ρ(s)− 2

∫ l

0
K(t, s)ρ(t)dt = 0,

has no non-trivial solutions.
Let ρ̃ (t) be a continuous non-trivial solution of the equation (6.3). The simple-

layer potential with density ρ̃ (t) gives us a function ṽ (x, y) , which is a solution
of the equation (1.1) in the domains D and D′. By virtue of the equation (6.3),
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the limiting values of the normal derivative of Aα,β
n [ṽ]e are zero. The formula

(5.7) is applicable to the simple-layer potential ṽ(x, y), from which it follows that
ṽ(x, y) = const in domain D′. At infinity, a simple layer potential is zero, and
consequently ṽ(x, y) ≡ 0 in D′, and also on the curve Γ. Applying now (5.6), we

find that ṽ(x, y) ≡ 0 is valid also inside the domain D. But then Aα,β
n [ṽ]i = 0,

and by virtue of formula (5.5) we obtain ρ̃ (t) ≡ 0. Thus, clearly, the homogeneous
equation (6.3) has only the trivial solution; consequently, λ = 2 is not an eigenvalue
of the kernel K (s; t).

7. The Uniqueness of the Solution of Holmgren’s Problem

We apply the obtained results of potential theory to the solving the boundary
value problem for the equation (1.1) in the domain D.

We consider the Holmgren problem for equation (1.1) in the domain D defined
in Section 4. We assume that the curve Γ satisfies conditions (i) and (ii) in Section
4.

Holmgren problem. Find a regular solution u(x, y) of equation (1.1) in the
domain D that is continuous in the closed domain D and satisfies the following
boundary conditions:

(7.1) u|Γ = φ(s) (0 ≤ s ≤ l),

(7.2) lim
x→0

x2α
∂u(x, y)

∂x
= ν1(y), lim

y→0
y2β

∂u(x, y)

∂y
= ν2(x) (0 < x, y < a),

where φ(s) ∈ C[0, l], ν1(y) ∈ C(0, a) and ν2(x) ∈ C(0, a) are given continuous
functions, and the function ν1(y) can tend to ∞ of order less 1−2α+2β and 1−2α
as y → 0 and y → a; the function ν2(x) can tend to ∞ of order less 1 + 2α − 2β
and 1− 2β as x→ 0 and x→ a, respectively.

The uniqueness of the solution. Consider the domain Dε,δ1,δ2 ⊂ D, bounded
by the curve Γε, parallel to the curve Γ, and line segments x = δ1 > ε and y = δ2 > ε.

Integrating both sides of the identity (3.1) along the domain Dε and using the
Ostrogradsky formula, we obtain∫ ∫

Dε,δ1,δ2

x2αy2β [uE(v)− vE(u)] dxdy

=

∫
Sε,δ1,δ2

(
uAα,β

n [v]− vAα,β
n [u]

)
dSε,δ1,δ2 ,

where Sε,δ1,δ2 is a contour of the domain Dε,δ1,δ2 .
One can easily check that the following equality holds:∫ ∫

Dε,δ1,δ2

x2αy2βuE(u)dxdy =

∫ ∫
Dε,δ1,δ2

x2αy2β
[
u2x + u2y

]
dxdy

−
∫ ∫

Dε,δ1,δ2

[
y2β

∂

∂x

(
x2αuux

)
+ x2α

∂

∂y

(
y2βuuy

)]
dxdy.
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Application of the Gauss-Ostrogradsky formula to this equality after δ1 → 0,
δ2 → 0 and ε→ 0 yields

(7.3)

∫ ∫
D
x2αy2β

[
u2x + u2y

]
dxdy =

∫ a

0
y2βu(0, y)ν1(y)dy

+

∫ a

0
x2αu(x, 0)ν2(x)dx−

∫
Γ
φ(s)Aα,β

n [u]ds.

If we consider the homogeneous Holmgren problem, then we find from (7.3) that∫ ∫
D
x2αy2β

[
u2x + u2y

]
dxdy = 0.

Hence, it follows that u(x, y) = 0 in D.
Therefore, the following uniqueness theorem holds true.

Theorem 7.1. If the Holmgren problem has a regular solution, then it is unique.

8. Green’s Function Revisited

To solve this problem, we use the Green’s function method. First, we construct
the Green’s function for solving the Holmgren problem for an equation in a domain
which is bounded by an arbitrary curve and two mutually perpendicular line seg-
ments. We then show that, in view of the Green’s function, the solution of the
Holmgren problem in a quadrant takes a simpler form as described below.

Definition 8.1. We refer to G(x, y;x0, y0) as Green’s function of the Holmgren
problem, if it satisfies following conditions:

1) The function G(x, y;x0, y0) is a regular solution of equation (1.1) in the domain
D, expect at the point (x0, y0), which is any fixed point of D.

2) The function G(x, y;x0, y0) satisfies the boundary conditions given by

(8.1) G(x, y;x0, y0)|Γ = 0, x2α
∂G

∂x

∣∣∣∣
x=0

= 0, y2β
∂G

∂y

∣∣∣∣
y=0

= 0.

3) The function G(x, y;x0, y0) can be represented as follows:

(8.2) G(x, y;x0, y0) = q(x, y;x0, y0) + v(x, y;x0, y0)

where q (x, y;x0, y0) is a fundamental solution of the equation (1.1), defined in the
domain D, and the function v(x, y;x0, y0) is a regular solution of the equation (1.1)
in the domain D.

The construction of the Green’s function G(x, y;x0, y0) reduces to finding its
regular part v(x, y;x0, y0) which, by virtue of (2.9), (8.1) and (8.2), must satisfy the
following boundary conditions:

(8.3) v(x, y;x0, y0)|Γ = −q(x, y;x0, y0)|Γ ,

x2α
∂v(x, y;x0, y0)

∂x

∣∣∣∣
x=0

= 0, y2β
∂v(x, y;x0, y0)

∂y

∣∣∣∣
y=0

= 0.



68 T.ERGASHEV AND A.HASANOV

We now look for the function v(x, y;x0, y0) in the form of a double-layer potential
given by

(8.4) v (x, y;x0, y0) =

∫ l

0
µ (t;x0, y0)A

α,β
ν [q (ξ, η;x, y)]dt.

By taking into account the equality (4.10) and the boundary condition (8.3), we
obtain the integral equation for the density µ (t;x0, y0) as follows:

(8.5) µ (s;x0, y0)− 2

∫ l

0
K(s, t)µ (t;x0, y0) dt = 2q (x(s), y(s);x0, y0) .

The right-hand side of (8.5) is a continuous function of s (the point (x0, y0) lies
inside D). In Section 6, it was proved that λ = 2 is not an eigenvalue of the kernel
K(s, t) and, consequently, the Equation (8.5) is solvable and its continuous solution
can be written in the following form:

(8.6) µ (s;x0, y0) = 2q (x(s), y(s);x0, y0) + 4

∫ l

0
R(s, t; 2)q (ξ, η;x0, y0) dt,

where R(s, t; 2) is the resolvent of kernel K(s, t), (x(s), y(s)) ∈ Γ. Thus, upon
substituting from (8.6) into (8.4), we obtain

v (x, y;x0, y0) = 2

∫ l

0
q (ξ, η;x0, y0)A

α,β
ν [q (ξ, η;x, y)]dt

+ 4

∫ l

0

∫ l

0
Aα,β

ν [q(ξ, η;x, y)]R0(t, s; 2)q (x(s), y(s);x0, y0) dtds.

We now define the function g(x, y) as follows:

(8.7) g(x, y) =

{
v(x, y;x0, y0), (x, y) ∈ D,
−q(x, y;x0, y0), (x, y) ∈ D′.

The function g(x, y) is a regular solution of equation (1.1) both inside the domain
D and inside D′ and equal to zero at infinity. Because the point (x0, y0) lies inside
D, therefore, in D′, the function g(x, y) has derivatives of any order in all variables
that are continuous up to Γ. We can consider g(x, y) in D′ as a solution of Equation
(1.1) satisfying the boundary conditions given by

(8.8) Aα,β
n [g(x, y)]

∣∣∣
Γ
= −Aα,β

n [q(x(s), y(s);x0, y0)] ,

x2α
∂g(x, y)

∂x

∣∣∣∣
x=0

= 0, y2β
∂g(x, y)

∂y

∣∣∣∣
y=0

= 0.

We represent this solution in the form of a simple-layer potential as follows:

(8.9) g(x, y) =

∫ l

0
ρ(t;x0, y0)q(ξ, η;x, y)dt, (x, y) ∈ D′

with an unknown density ρ(t;x0, y0).
Using the formula (5.3), by virtue of condition (8.8), we obtain the following

integral equation for the density ρ(s;x0, y0):

(8.10) ρ(s;x0, y0)− 2

∫ l

0
K(t, s)ρ(t;x0, y0)dt = 2Aα,β

n [q(x(s), y(s);x0, y0)] .
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Equation (8.10) is conjugated with the equation (8.5). Its right-hand side is
a continuous function of s. Thus, clearly, the equation (8.10) has the following
continuous solution:

(8.11)

ρ(s;x0, y0) = 2Aα,β
n [q(x(s), y(s);x0, y0)]

+ 4

∫ l

0
R(t, s; 2)Aα,β

ν [q(ξ, η;x0, y0)] dt.

The values of a simple-layer potential g(x, y) on the curve Γ are equal to
−q(x, y;x0, y0), that is, just as the functions v(x, y;x0, y0) and on the axes x and y
their partial derivatives with respect to y and x multiplied, respectively, by y2β and
x2α are equal to zero. Hence, by virtue of the uniqueness theorem for the Holmgren
problem, it follows that the formula (8.9) for the function g(x, y) defined by (8.7)
holds throughout in the quarter-plane x ≥ 0, y ≥ 0, that is,

(8.12) v(x, y;x0, y0) =

∫ l

0
ρ(t;x0, y0)q(ξ, η;x, y)dt, (x, y) ∈ D.

Thus, the regular part v(x, y;x0, y0) of Green’s function is representable in the
form of a simple-layer potential.

Applying the formula (5.3) to (8.12), we obtain

2Aα,β
n [v (x(s), y(s);x0, y0)]i = ρ(s;x0, y0) + 2

∫ l

0
K(t, s)ρ(t;x0, y0)dt.

But, according to (8.10), we have

2Aα,β
n [q (x(s), y(s);x0, y0)]i = ρ(s;x0, y0)− 2

∫ l

0
K(t, s)ρ(t;x0, y0)dt.

Summing the last two equalities by term-by-term and taking equation (8.2) into
account, we find that

(8.13) Aα,β
n [G (x(s), y(s);x0, y0)] = ρ(s;x0, y0).

Consequently, formula (8.12) can be written in the following form:

v(x, y;x0, y0) =

∫ l

0
Aα,β

ν [G (ξ, η;x0, y0)] q(ξ, η;x, y)dt.

Multiplying both sides of (8.11) by q (x(s), y(s);x, y), integrating by s over the
curve Γ from 0 to l and, by virtue of (8.6) and (8.4), we obtain

v(x0, y0;x, y) =

∫ l

0
ρ(t;x0, y0)q(ξ, η;x, y)dt.

Comparing this last equation with the formula (8.12), we have

(8.14) v(x, y;x0, y0) = v(x0, y0;x, y).

if the points (x, y) and (x0, y0) are inside the domain D.

Lemma 8.2. If points (x, y) and (x0, y0) are inside domain D, then Green’s func-
tion G(x, y;x0, y0) is symmetric about those points.
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The proof of Lemma 8.2 follows from the representation (8.2) of Green’s function
and the equality (8.14).

For a quarter circle D0 bounded by two segments [0, a] of the axes x and y and
a quarter circle given by x2 + y2 = a2 (x ≥ 0, y ≥ 0), the Green’s function of the
Holmgren problem has the following form

(8.15) G0(x, y;x0, y0) = q(x, y;x0, y0)−
( a
R

)2α+2β
q(x, y; x̄0, ȳ0),

where

R2 = x20 + y20, x̄0 =
a2

R2
x0, ȳ0 =

a2

R2
y0.

We now show that the function given by

v0(x, y;x0, y0) = −
( a
R

)2α+2β
q(x, y; x̄0, ȳ0)

can be represented in the following form:

(8.16) v0(x, y;x0, y0) = −
∫ l

0
ρ(s;x, y)v0(x(s), y(s);x0, y0)ds,

where ρ(s;x, y) is a solution of equation (8.12).
Indeed, by letting an arbitrary point (x0, y0) be inside the domain D, we consider

the function given by

u(x, y;x0, y0) = −
∫ l

0
ρ(s;x, y)v0(x(s), y(s);x0, y0)ds.

As a function of (x, y), the function u (x, y;x0, y0) satisfies equation (1.1), because
this equation is satisfied by the function ρ(s;x, y). Substituting the expression (8.11)
for ρ(s;x, y), we obtain

(8.17) u(x, y;x0, y0) = −
∫ l

0
ψ(s;x0, y0)A

α,β
n [q(x(s), y(s);x, y)] ds,

where

ψ(s;x0, y0) = 2v0 (x(s), y(s);x0, y0) + 4

∫ l

0
R(s, t; 2)v0 (ξ, η;x0, y0) dt,

that is, ψ(s;x0, y0) is a solution of the integral equation

(8.18) ψ(s;x0, y0)− 2

∫ l

0
K(s, t)ψ(t;x0, y0)dt = 2v0 (x(s), y(s);x0, y0) .

Applying formula (4.10) to the double-layer potential (8.17), we obtain

ui (x(s), y(s);x0, y0) =
1

2
ψ(s;x0, y0)−

∫ l

0
K(s, t)ψ(t;x0, y0)dt,

whence, by virtue of (8.18) we get

ui (x(s), y(s);x0, y0) = v0 (x(s), y(s);x0, y0) , (x(s), y(s)) ∈ Γ.

It is easy to see that

x2α
∂u (x, y;x0, y0)

∂x

∣∣∣∣
x=0

= 0, x2α
∂v0 (x, y;x0, y0)

∂x

∣∣∣∣
x=0

= 0,
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y2β
∂u (x, y;x0, y0)

∂y

∣∣∣∣
y=0

= 0, y2β
∂v0 (x, y;x0, y0)

∂y

∣∣∣∣
y=0

= 0.

Thus, clearly, the functions u (x, y;x0, y0) and v0 (x, y;x0, y0) satisfy the same
equation (1.1) and the same boundary conditions. Also, by virtue of the uniqueness
of the solution of the Holmgren problem, the equality u (x, y;x0, y0) ≡ v0 (x, y;x0, y0)
is satisfied.

Now, subtracting the expression (8.15) from (8.2), we obtain

H (x, y;x0, y0) = G (x, y;x0, y0)−G0 (x, y;x0, y0) =

= v (x, y;x0, y0)− v0 (x, y;x0, y0)

or, by virtue of (8.12), (8.14), (8.15) and (8.16), we obtain

(8.19) H(x, y;x0, y0) =

∫ l

0
ρ(t;x, y)G0(ξ, η;x0, y0)dt.

9. Solving the Holmgren Problem for Equation (1.1)

Let (x0, y0) be a point inside the domain D. Consider the domain Dε,δ1,δ2 ⊂ D
bounded by the curve Γε, which is parallel to the curve Γ, and the line segments
x = δ1 > ε и y = δ2 > ε.

We choose ε, δ1 and δ2 to be so small that the point (x0, y0) is inside Dε,δ1,δ2 . We
cut out from the domain Dε,δ1,δ2 a circle of small radius ρ with center at the point
(x0, y0), and we denote the remainder part of Dε,δ1,δ2 by Dρ

ε,δ, in which the Green’s

function G(x, y;x0, y0) is a regular solution of equation (1.1).
Let u(x, y) be a regular solution of the equation (1.1) in the domain D that

satisfies the boundary conditions (7.1) and (7.2). Applying the formula (3.3), we
obtain∫

Γε

(
GAα,β

n [u]− uAα,β
n [G]

)
ds+

∫ x1

δ1

x2αy2β
(
u
∂G

∂y
−G

∂u

∂y

)∣∣∣∣
y=δ2

dx

+

∫ y1

δ2

x2αy2β
(
u
∂G

∂x
−G

∂u

∂x

)∣∣∣∣
x=δ1

dy =

∫
Cρ

(
GAα,β

n [u]− uAα,β
n [G]

)
ds,

x1 and y1 are an abscissa and ordinate of the intersection points of the curve Γε

with the straight lines y = δ2 and x = δ1, respectively, and Cρ is a circumference of
the cut circle.

Proceeding to the limit as ρ → 0 and then as ε → 0, δ1 → 0 and δ2 → 0, we
obtain

(9.1)

u (x0, y0) = −
∫ a

0
y2βG (0, y;x0, y0) ν1(y)dy

−
∫ a

0
x2αG (x, 0;x0, y0) ν2(x)dx−

∫ l

0
Aα,β

ν [G (ξ, η;x0, y0)]φ(s)ds

= I1(x0, y0) + I2(x0, y0) + I3(x0, y0).

We show that formula (9.1) gives a solution of the Holmgren problem.
It is easy to see that the first integral I1 (x0, y0) in the formula (9.1) is a solution

of the equation (1.1) and is regular in the domain D, continuous in D.
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We use the following notation:

(9.2)

ϑ(x0, y0) =

∫ a

0
y2βq (0, y;x0, y0) ν1(y)dy

= κ

∫ a

0

y2βF

(
α+ β, β; 2β;− 4yy0

x20 + (y − y0)2

)
[
x20 + (y − y0)2

]α+β
ν1(y)dy.

Here, ϑ(x0, y0) is a continuous function in D. In view of (9.2) and (8) and the
symmetry of the function v(x, y;x0, y0), the integral I1(x0, y0) can be represented
in the following form:

(9.3)

I1 (x0, y0) = −ϑ (x0, y0)− 2

∫ l

0
ϑ (ξ, η)Aα,β

ν [q (ξ, η;x0, y0)]dt−

− 4

∫ l

0

∫ l

0
R (t, s; 2)ϑ (x(s), y(s))Aα,β

ν [q (ξ, η;x0, y0)]dtds.

The last two integrals in the formula (9.3) are double-layer potentials. Taking
into account the formula (4.10) and the integral equation for the resolvent R(s, t; 2)
from formula (9.3), we obtain

I1 (x0, y0)|Γ = 0,

It is easy to see that

lim
x0→0

x2α0
∂I1 (x0, y0)

∂x0
= ν1 (y0) (0 < y0 < a).

In fact, by virtue of (8.12) and the symmetry of the function v (x, y;x0, y0), the
above integral can also be written in the following form:

I1(x0, y0) =−
∫ a

0
ν1(y)q(0, y;x0, y0)dy

−
∫ a

0
ν1(y)dy

∫ l

0
ρ(t; 0, y)q(ξ, η;x0, y0)dt.

Following the work [21], it is easy to show that

lim
x0→0

x2α0

∫ a

0
ν1(y)q(0, y;x0, y0)dy = −ν1 (y0) (0 < y0 < a)

and

lim
x0→0

x2α0

∫ a

0
ν1(y)dy

∫ l

0
ρ(t; 0, y)q(ξ, η;x0, y0)dt (0 < y0 < a),

because

x2α0
∂q

∂x0
= 0

when x0 = 0, 0 < y0 < a.
By virtue of the last from the conditions (8.1), we have

lim
y0→0

y2β0
∂I1 (x0, y0)

∂y0
= 0 (0 < x0 < a).
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Similarly, we get

I2(x0, y0)|Γ = 0; lim
x0→0

x2α0
∂I2(x0, y0)

∂x0
= 0, lim

y0→0
y2β0

∂I2(x0, y0)

∂y0
= ν2 (x0) .

We consider the third integral I3(x0, y0) in the formula (9.1), which, by virtue of
(8.13) and (8.11), can be written in the following form:

I3(x0, y0) = −
∫ l

0
φ(s)ρ(s;x0, y0)ds = −

∫ l

0
θ(t)Aα,β

ν [q(ξ, η;x0, y0)] dt,

where

θ(t) = 2φ(t) + 4

∫ l

0
R(t, s; 2)φ(s)ds,

that is, the function θ(s) is a solution of the integral equation

(9.4) θ(s)− 2

∫ l

0
K(s, t)θ(t)dt = 2φ(s).

Because θ(s) is a continuous function, I3(x0, y0) is a solution of Equation (1.1),
regular in the domain D, that is continuous in D, which, by virtue of (4.10) and
(9.4), satisfies following condition:

I3 (x0, y0)|Γ = φ(s).

It is now easy to see that

lim
x0→0

x2α0
∂I3 (x0, y0)

∂x0
= 0 (0 < y0 < a),

lim
y0→0

y2β0
∂I3 (x0, y0)

∂y0
= 0 (0 < x0 < a).

By using formulas (8.19) and (8.15), solution (9.1) of the Holmgren problem given
by (7.1) and (7.2) for Equation (1.1) can be written in the following form:

(9.5)

u (x0, y0) =

−
∫ a

0
ν1(y)y

2β [G0 (0, y;x0, y0) +H (0, y;x0, y0)] dy

−
∫ a

0
ν2(x)x

2α [G0 (x, 0;x0, y0) +H (x, 0;x0, y0)] dx

−
∫ l

0
φ(s)

{
Aα,β

ν [G0 (ξ, η;x0, y0)] +Aα,β
ν [H (ξ, η;x0, y0)]

}
ds,

where

H (x, y;x0, y0) =

∫ l

0
ρ (t;x0, y0)G0 (ξ, η;x, y) dt;

ρ and G0 are defined by (8.11) and (8.15), respectively.
We remark that solution (9.5) of the Holmgren problem is more convenient for

further investigations. The resulting explicit integral representation (9.5) plays an
important role in the study of problems for equation of the mixed type (that is,
elliptic-hyperbolic or elliptic-parabolic types): it makes it easy to derive the basic
functional relationship between the traces of the sought solution and of its derivative
on the line of degeneration from the elliptic part of the mixed domain.
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In the case of a quarter circle D0, the function H (x, y;x0, y0) ≡ 0 and solution
(9.5) assumes a simpler form as follows:

(9.6)

u (x0, y0) = −κ
∫ a

0
ν1(y)y

2β

×

[
F
(
α+ β, β; 2β;−4yy0/X

2
1

)
X2α+2β

1

−
F
(
α+ β, β; 2β;−4yy0/Y

2
1

)
Y 2α+2β
1

]
dy

− κ

∫ a

0
ν2(x)x

2α

×

[
F
(
α+ β, α; 2α;−4xx0/X

2
2

)
X2α+2β

2

−
F
(
α+ β, α; 2α;−4xx0/Y

2
2

)
Y 2α+2β
2

]
dx

+ 2(α+ β)κ

∫ l

0
φ(s)ξ2αη2β

× F2

(
1 + α+ β, α, β; 2α, 2β;

r21 − r2

r212
,
r22 − r2

r212

)
R2 − a2

r2+2α+2β
12

ds,

where

r2 = (ξ − x0)
2 + (η − y0)

2 , r212 = (ξ + x0)
2 + (η + y0)

2 , R2 = x20 + y20,

r21 = (ξ + x0)
2 + (η − y0)

2 , r22 = (ξ − x0)
2 + (η + y0)

2 , a2 = ξ2 + η2,

X2
1 = x20 + (y − y0)

2 , Y 2
1 =

(
a− yy0

a

)2
+
y2

a2
x20,

X2
2 = (x− x0)

2 + y20, Y
2
2 =

(
a− xx0

a

)2
+
x2

a2
y20.

Thus, clearly, we obtain the solution of the Holmgren problem for Equation (1.1)
in the quarter of the circle.

10. Concluding Remarks and Observations

In our present investigation of the two dimensional singular elliptic equation
(1.1), we use potential theory results in order to represent boundary value problems
in integral equation form. In fact, in problems with known Green’s functions, an
integral equation formulation leads to powerful numerical approximation schemes.
Thus, by seeking the representation of the solution of the boundary value prob-
lem as a double-layer potential with unknown density, we are eventually led to a
Fredholm equation of the second kind for the explicit determination of the solu-
tion in terms of Appell hypergeometric function. Appell hypergeometric function
F2(a, b1, b2; c1, c2;x, y) possesses easily-accessible numerical algorithms for computa-
tional purposes, can indeed be used to numerically compute the solution presented
here for many different special values of the parameters a, b1, b2, c1 and c2 and of
the arguments x and y.
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Numerical applications of several suitably specialized versions of the solutions
presented in this paper can be found in solid mechanics, fluid mechanics, elastic dy-
namics, electro-magnetics, and acoustics (see, for details, some of the citations [4,8]
handling special situations which were motivated by such widespread applications).
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