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The following numerical tehniques have been proposed for the solution of FDEs.
Among many available methods to solve FDES, we may mention the reproduing
kernel schemes [5, 19], the homotopy analysis method [27], the operational matrix
approaches [17, 32], the wavelet based techniqes [24, 30, 33], the numerial inverse
Laplace tranform method [22], the spectral based collocation methods [7, 10–15],
the LDG method [8, 9], to name a few.

For the model problem (1.1)-(1.2), according to the best of our knowledge, the
following approximative and numerical procedures have been proposed. These in-
clude the reproducing kernel method (RKM) [19], the Haar wavelet method [24],
the improved RKM [5], the shifted Jacobi operational matrix metod [17], and the
Legendre wavelet approach [33]. In this study, we aimed at developing an approxi-
mation technique based on the generalized Bessel collocation approach, which was
previously considered in [14]. The Bessel polynomials was first systemically intro-
duced in [18]. However, most of the important subsequent developments on the
subject of the Bessel polynomials and the generalized Bessel polynomials, which
were published until early 1980s, can be found in [2–4, 20, 25, 26, 28, 29, 34]. The
main characteristic of the considered methodology is that the governing FBVPs
and the corresponding nonlocal boundary conditions can be easily handled. Thus,
the present technique in not only easy to implement approach, but capable of giving
a more accurate results than the available aforementioned numerical model results.

The outline of this paper is structured as follows. In the next section 2, some
preliminary facts about fractional calculus and relevant properties are introduced.
Next, the definitions of Bessel polynomials of fractional order are given. Section 3 is
devoted to the presentation of the proposed collocation scheme applied to nonlocal
FBVPs. In Section 4, we perform some experiments to illustrate the high accuracy
and efficiency of the generalized Bessel collocation technique. Finally, Section 5
provides a conclusion.

2. Some basic preliminaries

We first state some definitions and fundamental facts of fractional calculus. Next,
some basic definitions of generalized Bessel polynomials and theorems, which are
useful for our subsequent sections have been introduced, see also [21], [16].

2.1. Fractional calculus.

Definition 2.1. Let us assume that h(t) is n-times continuously differentiable. The

Liouville-Caputo fractional derivative D(σ)
t of h(t) of order σ > 0 is

(2.1) D(σ)
t h(t) =

{
In−σh(n)(t) if n− 1 < σ < n,

h(n)(t), if σ = n, n ∈ N,

where

Iσh(t) =
1

Γ(σ)

∫ t

0
h(s)(t− s)σ−1 ds, t > 0.

The following properties of the operator D(σ)
t will be used below:

D(σ)
t (C) = 0 (C is a constant),(2.2)
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D(σ)
t xβ =


Γ(β + 1)

Γ(β + 1− σ)
xβ−σ, for β ∈ N0 and β ≥ ⌈σ⌉, or β /∈ N0 and β > ⌊σ⌋,

0, for β ∈ N0 and β < ⌈σ⌉.

(2.3)

2.2. Generalized Bessel functions. The Bessel polynomials naturally found in
the study of classical wave equation when dealing in spherial coordinate [18] and are
closely related to the Bessel functions of order equal to half integer, see also [6, 14]
and references therein. These polynomials are obtained recursively as

Bk+1(z) = Bk−1(z) + (2k + 1)zBk(z), k = 1, 2, . . . ,

where B0(z) = 1 and B1(z) = z + 1. One can easily check that all coefficients
of these polynomials are positive. With the help of change of variable t = zα,
α > 0, the fractional version of the polynomials are defined. Let us denote them by
Bα
k (t) = Bk(z). This conversion was first introduced in [14]. In the explicit form,

each Bα
k (t) of degree (kα) is expressed as

(2.4) Bα
k (t) =

k∑
j=0

bk,j t
αj , bk,j =

(j + k)!

(k − j)!

1

j!

(
t

2

)j

, j = 0, 1, . . . , k.

It can be shown that the set of fractional polynomial functions {Bα
0 ,B

α
1 , . . .} forms

an orthogonal system on unit circle C with respect to the weight function, wα(t) =
tα−1 exp(−2/tα); i.e.

1

2πi

∫
C
wα(t)B

α
k (t) B

α
k′(t)dt =

2(−1)k+1 δkk′

α(2k + 1)
.

Here, δkk′ denotes the Kronecker delta function.

2.2.1. Bessel function approximation. Let assume that a square integrable function
u(t) in (0, 1) is given. We may expand u(t) by a linear combination of fractional
Bessel polynomials as

u(t) =
∞∑
j=0

αj B
α
j (t),

being αj , j = 0, 1, . . . the unknown coefficients can be found by the aid of orthog-
onality properties of these Bessel polynomials. Practically, the first (J + 1)-terms
Bessel polynomials are considered to obtain an approximate solution of model prob-
lem (1.1) as follows

(2.5) uJ,α(t) =
J∑

j=0

αj B
α
j (t), 0 ≤ t ≤ 1,

where the unknown coefficients αj , j = 0, 1, . . . , J have to be computed. The vector
of Bessel polynomials Bα

j (t), j = 0, 1, . . . , J can be represented as

(2.6) BBBα(t) = TTT α(t)DDD.

Here, BBBα(t) = [Bα
0 (t) Bα

1 (t) . . . Bα
J (t)] and

TTT α(t) =
[
1 tα t2α . . . tJα

]
.
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Moreover, the matrix DDD can be expressed as

DDD =



1 1 1 1 . . . 1 1
0 b1,1 b2,1 b3,1 . . . bJ−1,1 bJ,1
0 0 b2,2 b3,2 . . . bJ−1,2 bJ,2
...

...
. . .

. . .
. . .

...
...

0 0 0 . . . 0 bJ−1,J−1 bJ,J−1

0 0 0 . . . 0 0 bJ,J


(J+1)×(J+1)

.

Next, by defining the vector of unknown AAAJ = [α0 α1 . . . αJ ]
t and utilizing

the relation (2.6) we may rewrite (2.5) in the matrix representation form as

(2.7) uJ,α(t) = BBBα(t)AAAJ = TTT α(t)DDDAAAJ ,

We finally state a result about the generalized Bessel polynomials by consider-
ing their convergence properties. Let us by Vα

J we denote the space spanned by
{Bα

0 (t),B
α
1 (t), . . . ,B

α
J−1(t)}. The next theorem shows the exponential convergent of

the approximation solution uJ,α(t) ∈ Vα
J to u(t) when the number of basis function

J will be increasd, see [14].

Theorem 2.2. Suppose that for j = 0, 1, . . . , J we have D(jα)
t u(t) ∈ C[0, 1]. If

uJ−1,α = BBBα(t)AAAJ−1 denote the best approximation to u ∈ Vα
J , then an upper bound

of the error is obtained as

∥u(t)− uJ−1,α(t)∥wα
≤ 1√

(2J + 1)α

exp(−1)Mα

Γ(Jα+ 1)
,

being Mα ≥ |D(Jα)
t u(t)|, t ∈ [0, 1].

3. Generalized Bessel collocation approach

Let us denote by uJ,α(x) the (J + 1)-terms generalized Bessel polynomials series
as an approximation to the solution u(t) of the linear BVPs (1.1) on [0, 1]. In the
vectorized representation form, we may write

(3.1) u(t) ≈ uJ,α(t) = TTT α(t)DDDAAAJ .

To proceed, the following collocation points are utilized

(3.2) ts = s/J, s = 0, 1, . . . , J.

We place the foregoing collocation points into (3.1) to obtain the following system
of matrix equations

uJ,α(ts) = TTT α(ts)DDDAAAJ , s = 0, 1, . . . , J.

In a compact form, we may represent the preceding equations as

(3.3) UUU = TTT DDDAAAJ , UUU =


uJ,α(t0)
uJ,α(t1)

...
uJ,α(tJ)

 , TTT =


TTT α(t0)
TTT α(t1)

...
TTT α(tJ)

 .
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According to (3.1) and using the properties (2.2) and (2.3), the fractional deriv-
ative of order σ will be determined

(3.4) D(σ)
t uJ,α(t) = TTT (σ)

α (t)DDDAAAJ ,

where

TTT (σ)
α (t) :=

(
D(σ)

t TTT α(t)
)
= [0 D(σ)

t tα . . . D(σ)
t tαJ ].

Similarly, we replace the collocation points (3.2) into (3.4) to obtain the matrix
representation

(3.5) UUU (σ) = TTT (σ)DDDAAAJ , UUU (σ) =


D(σ)

t uJ,α(t0)

D(σ)
t uJ,α(t1)

...

D(σ)
t uJ,α(tJ)

 , TTT (σ) =


TTT (σ)

α (t0)

TTT (σ)
α (t1)
...

TTT (σ)
α (tJ)

 .

Next aim is to establish a connection between uJ,α(t) and its first derivative

in (3.1). Accordingly, we need to compute d
dtTTT α(t). To this end, we use the prop-

erties (2.2)-(2.3) with σ = 1. For illustration, we pick J = 8 and α = 1/4 to
have

TTT 1
4
(t) =

[
1 t1/4 t1/2 t3/4 t t5/4 t3/2 t7/4 t2

]
.

An straightforward differentiation with respect to t yields

d

dt
TTT 1

4
(t) =

[
0 0 0 0 1

5

4
t1/4

3

2
t1/2

7

4
t3/4 2t

]
.

Hence, it suffices to define

TTT (1)
α (t) :=

d

dt
TTT α(t),

and applying the differentiation to the relation (3.1) to get

(3.6)
d

dt
uJ,α(t) = TTT (1)

α (t)DDDAAAJ .

If one substitutes the collocation points (3.2) into (3.6), we get the following matrix
expression

(3.7) UUU (1) = TTT (1)DDDAAAJ , UUU (1) =


u′J,α(t0)

u′J,α(t1)
...

u′J,α(tJ)

 , TTT (1) =


TTT (1)

α (t0)

TTT (1)
α (t1)
...

TTT (1)
α (tJ)

 .

We now are able to compute the generalized Bessel solutions of (1.1). In this
respect, we insert the collocation points into the fractional BVPs (1.1) to get the
equations

D(σ)
t u(ts) + a(ts)u

′(ts) + b(ts)u(ts) = f(ts), s = 0, 1, . . . , J.

Expressing the preceding equations in the matrix representation form, we have

(3.8) UUU (σ) +AAAUUU (1) +BBBUUU = FFF.
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Here, the matrices AAA, BBB, as well as the right-hand side vector FFF have the following
representations

AAA =


a(t0) 0 . . . 0
0 a(t1) . . . 0
...

...
. . .

...
0 0 . . . a(tJ)

 , BBB =


b(t0) 0 . . . 0
0 b(t1) . . . 0
...

...
. . .

...
0 0 . . . b(tJ)

 , FFF =


f(t0)
f(t1)
...

f(tJ)

 .

By using the relations (3.3), (3.5), and (3.7) and putting them into (3.8), the fol-
lowing fundamental matrix equation will be obtained

(3.9) XXXAAAJ = FFF, or, [XXX;FFF ],

where

XXX :=
(
TTT (σ) +AAATTT (1) +BBBTTT

)
DDD.

Evidently, the relation (3.9) is a linear matrix equation to be solved for the vector
of unknowns AAAJ as the Bessel coefficients.

It remains to be considered the boundary conditions (1.2) into the former matrix
equation. For the first condition u(0) = u0, by approaching t → 0 in (3.1) we arrive
at the following matrix representation

X̂XX0AAAJ = u0, X̂XX0 := TTT α(0)DDD = [1 1 . . . 1].

Analogously, for the end condition u(1) =
∑ℓ

j=1 cj u(ζj) we obtain the matrix ex-
pression

X̂XX1AAAJ = 0, X̂XX1 :=

TTT α(1)−
ℓ∑

j=1

cjTTT α(ζj)

 DDD = [x̂1,0 x̂1,1 . . . x̂1,J ].

In consequence, we substitute the first row as well as the last row of the augmented

matrix [XXX;FFF ] by the row matrices [X̂XX0;u0] and [X̂XX1; 0]. Finally, we arrive at the
following modified augmented system

(3.10)
[
X̂XX; F̂FF

]
=



1 1 1 1 . . . 1 ; u0
x1,0 x1,1 x1,2 x1,3 . . . x1,J ; f(t1)
x2,0 x2,1 x2,2 x2,3 . . . x2,J ; f(t2)
...

...
...

. . .
...

... ;
...

xJ−1,0 xJ−1,1 wJ−1,2 wJ−1,3 . . . wJ−1,J ; f(tJ−1)
x̂1,0 x̂1,1 x̂1,2 x̂1,3 . . . x̂1,J ; 0


.

Therefore, the generalized Bessel coefficients in (3.1) will be determined via solving
this linear system of equations. For this purpose, any classical linear solver can be
used.

4. Illustrative Examples

Let us describe the efficiency of the presented generalized Bessel collocation ap-
proach. To this end, some numerical examples are given and comparisons are made
with the results of other existing methods. MATLAB R2017a has been used for
numerical simulations in this work.
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Example 4.1. As the first example, we consider the nonlocal fractional boundary
value problem [5,17,19,33]

D(1.3)
t u(t) + cos(t)u′(t) + 2u(t) = f(t), 0 ≤ t ≤ 1,

with boundary conditions u0 = 0 and u(1) = u(18) + 2u(12) +
31
49u(

7
8). The function

f(t) is given such that the exact solution of this BVPs is u(t) = t2.

To find an approximate solution in the form uJ,α(t) =
∑J

j=0 αjB
α
j (t), we take

J = 2 and α = 1. We need to compute the unknown coefficients α0, α1, and α2.

The used collocation points are
{
x0 = 0, x1 = 1

2 , x3 = 1
}
. Applying the proposed

approach with σ = 1.3, the corresponding vectors and matrices in the fundamental
matrix equation (3.10) are obtained as

DDD =

1 1 1
0 1 3
0 0 3

 ,TTT (1.3) =

0 0 0
0 0 1401/1034
0 0 1609/731

 ,TTT (1) =

0 1 0
0 1 1
0 1 2

 ,

FFF =

 0
2227/815
8081/1530

 ,AAA =

1 0 0
0 1699/1936 0
0 0 429/794

 ,BBB =

2 0 0
0 2 0
0 0 2

 ,

TTT =

1 1 0
1 1/2 1/4
1 1 1

 ,
[
X̂XX; F̂FF

]
=

 1 1 1 ; 0
2 2439/629 2612/165 ; 2227

815
−129/49 −649/190 −915/196 ; 0

 .

Once we solve the linear system
[
X̂XX; F̂FF

]
, the unknown coefficients matrix will be

found as

AAA = [2/3 − 1 1/3]t.

Hence, we get the approximate solution as

u2,1(t) =
[
1 1 + t 3t2 + 3t+ 1

]
AAA = t2,

which is evidently the true exact solution. The numerical solutions and the absolute
errors

eJ,α(t) := |u(t)− uJ,α(t)|,
at some points t ∈ (0, 1) are reported in Table 1. Note that this example was solved
by a reproducing kernel method (RKM) [5], the improved RKM (IKRM) [19], the
shited Jacobi operational matrices method (SJOMM) [17], and the Legendre wavelet
method (LWM) [33]. Comparisons of absolute errors between our results and these
approximation schemes are further shown in Table 1. It can be clearly seen that
our approach with less computational efforts is considerably more accurate than the
RKM, IRKM, SJOMM, and LWM.

Example 4.2. In this test example, let us consider the nonlocal fractional boundary
value problem [5]

D(1.6)
t u(t) + sinh(t)u(t) = f(t), 0 ≤ t ≤ 1,
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Table 1. Comparison of numerical solutions and absolute errors in
Example 4.1 for σ = 1.3, α = 1, and J = 2 for various t ∈ [0, 1].

where f(t) = Γ(3)
Γ(1.4) t

0.4 + Γ(4)
Γ(2.4) t

1.4 + sinh(t)(t2 + t3). In this case, the boundary

conditions are

u(0) = 0, u(1) = u

(
1

10

)
+ u

(
1

2

)
+

538

513
u

(
9

10

)
.

One can easily checked the exact solution of this model problem is u(t) = t3 + t2.

For this example we take J = 3, which is sufficient to get the desired approxima-
tion. Using α = 1, the approximate solution obtained via Bessel collocation method
on 0 ≤ t ≤ 1 is as follows

u3,1(t) = 1.0 t3 + 1.0 t2 − 7.648870818× 10−17 t+ 4.230993657× 10−109.

The graphs of the preceding approximation along with the exact solutions are plot-
ted in Fig. (1). In addition, the corresponding absolute errors are also shown in this
figure for 0 ≤ t ≤ 1. The numerical results obtained by using the Bessel collocation

Figure 1. Comparison of approximated and exact solutions using
Bessel functions (left) and the corresponding absolute errors (right)
for Example 4.2 with σ = 1.6, α = 1, and J = 3.

scheme at some points t ∈ [0, 1] for Example (4.2) are presented in Table 2. The
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corresponding absolute errors are also reported in Table 2. Additionally, we em-
phasize that numerical approximated solutions for this model problem using RKM
were proposed in [5] with achieved absolute errors larger than 1 × 10−6, see Fig. 2
in this paper. In Table 2, we further present the numerical solutions and absolute
errors for = 2, 3 evaluated at some points t ∈ [0, 1]. For J = 2, the approximate
solution obtained via Bessel collocation method is

u2,1(t) = 2.090573501 t2 − 0.4208122144 t.

Table 2. Comparison of numerical solutions and absolute errors in
Example 4.2 for σ = 1.6, α = 1, and J = 2, 3 for various t ∈ [0, 1].

Example 4.3. Let us consider the following boundary value problem with three
ponits boundary conditions [19,24]

D(1.5)
t u(t) +

exp(−3π)√
π

u(t) = f(t), 0 ≤ t ≤ 1,

with the right-hand side

f(t) =

√
t√
π

(
128

7
t3 − 74

5
t+

33

10

)
+

exp(−3π)

40
√
π

(
40t5 − 74t3 + 33t2

)
,

and also with boundary conditions

u(0) = 0, u(1) +
625

596
u(

2

5
) = 0.

It can be verified that the exact solutions is u(t) = t5 − 37
20 t

3 + 33
40 t

2.

In the third test case, we set J = 5 as the number of basis functions. The pa-
rameter α = 1 is also sufficient to get the desired approximation. The approximate
solution u5,1(t) of this model problem using Bessel basis functions in the interval
0 ≤ t ≤ 1 is obtained as follows:

u5,1(t) = 1.0 t5 − 5.393237855× 10−15 t4 − 1.85 t3 + 0.825 t2
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+ 3.122109065× 10−16 t,

which coincide with the true exact solution up to machine epsilon. Graphical rep-
resentations of the above approximated solution and its related absolute error func-
tion are visualized in Fig. 2. To validate our results, we also plot the exact solution,
which represented by a thick line. Clearly, our obtained approximated solution is
very close to the exact one.

Figure 2. Comparison of approximated and exact solutions using
Bessel functions (left) and the corresponding absolute errors (right)
for Example 4.3 with σ = 3/2, α = 1, and J = 5.

In Table 3, we report the numerical results as well as the absolute errors corre-
spond to J = 5 obtained by the Bessel collocation procedure using σ = 3/2 and
α = 1 at some points t ∈ [0, 1]. A comparison in this table is also made with the
IRKM [19] and the Haar wavelet method (HWM) from [24]. As one can see from
Table 3 that the results obtained by our proposed scheme are superior in terms of
accuracy compared to the IRKM and HWM.

Example 4.4. We consider an example with nonlocal intergral boundary conditions

D(σ)
t u(t) + sinh(t)u′(t) + 2u(t) = 2t sinh(t) + 2t2 +

Γ(3)

Γ(3− σ)
t2−σ, 0 ≤ t ≤ 1,

with boundary conditions

u(
1

2
) = 6

∫ 1
2

0
u(s)ds, u(1) = 4

∫ 1

0
su(s)ds.

One can check that the exact solutions is given by u(t) = t2 for any 1 < σ ≤ 2.
This model problem with σ = 1.3 was considered in [19].

As for the previously solved test problems, we also consider α = 1 here. For
σ = 1.3 and using J = 2, we use the Bessel collocation to obtain the approximate
solution u2,1(t). In this case, we get for 0 ≤ t ≤ 1

u2,1(t) = 1.0 t2 + 6.661338148× 10−17 t− 2.220446049× 10−17.

As mentioned, this problem was previously solved via IRKM [19]. Referring to Fig. 1
in [19], the achieved absolute errors are larger than 1 × 10−8. The same results for
other values of σ will be obtained, which are similar up to machine epsilon. The
effect of using different values of fractional orders σ = 1.1, 1.3, 1.5, 1.7, and σ = 1.9
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Table 3. Comparison of numerical solutions and absolute errors in
Example 4.3 for σ = 1.5, α = 1, and J = 5 for various t ∈ [0, 1].

are depicted in Fig. 3. From Fig. 3 one infers that the same accuracies are achieved
when using different σ in the range [0, 1]. The numerical solutions as well as the

Figure 3. The absolute errors e2,1(t) for Example 4.4 using J =
5, α = 1 for different σ = 1.1, 1.3, 1.5, 1.7, and σ = 1.9.

corresponding absolute errors for J = 2 and for σ = 1.3, σ = 1.7 at some points
t ∈ [0, 1] are tabulated in Table 3.

In the last experiment, we show that how using the fractional version of Bessel
polynomials gains us. In this respect, we construct an nonlocal BVPs which has a
fractional solution.
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Table 4. Comparison of numerical solutions and absolute errors in
Example 4.4 for σ = 1.3, 1.7, and α = 1, and J = 2, 3 for various
t ∈ [0, 1].

Example 4.5. We finally consider the following nonlocal BVPs

D(σ)
t u(t)− 2

5
t u′(t) + u(t) =

Γ(7/2)

Γ(7/2− σ)
t5/2−σ, 0 ≤ t ≤ 1.

The boundary conditions are

u(0) = 0 u(1) = u(
1

4
) +

31
√
3

27
u(

3

4
).

For any 1 < σ ≤ 2, it can be shown that the exact solution is u(t) = t
5
2 .

To start, we fix J = 5 and use two values of α = 1 and α = 1/2. By using these
values, we will investigate the difference between fractional and non-fractional Bessel
basis functions. By setting σ = 3/2, the approximate solutions u5,1(t) and u5, 1

2
(t)

obtained via (3.10) of the model (1.1) in the interval [0, 1] are as follows

u5,1(t) = 0.13817464199996248423 t5 − 0.48410906426886896909 t4

+ 1.0583665387779764119 t3 + 0.29168521645037729056 t2

− 0.0049927313066897211141 t+ 2.6612249000050941999× 10−109,

and

u5, 1
2
(t) = 5.2534708506020563582× 10−105 t+ 1.70999667174727× 10−105 t2

− 3.4157353836545× 10−105 t1/2 − 5.790825382411× 10−107 t3/2 + 1.0 t5/2.

Clearly, utilizing the generalized Bessel basis functions yields to a considerable more
accurate solution compared to the case α = 1. This fact can be further confirmed in
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the next two Fig. 4 and Fig. 5, in which we plot these approximations with the cor-
responding absolute errors e5,α(t) for α = 1, 1/2. Moreover, the numerical solutions
for α = 1, 1/2 at some points t ∈ [0, 1] are shown in Table 5. The corresponding
exact solutions as well as the absolute errors are also reported in Table 5.

Figure 4. The approximated Bessel series solutions u5,α(t) for Ex-
ample 4.5 using σ = 3/2 for two different α = 1 and α = 1/2.

Figure 5. Comparison of absolute errors using α = 1 (left) and
α = 1/2 (right) for Example 4.5 with σ = 1/2 and J = 5.

On the other hand, with lower number of basis functions is also possible to get
a comparable accuracy as for J = 5 and α = 1/2. For example, when using J = 3
and α = 5/6, the following approximative solution is obtained

u3, 5
6
(t) = 1.0 t5/2 + 8.5159196800163014398× 10−108 t5/3

+ 1.703183936003260288× 10−108 t5/6,

or even with a lower J = 2 and α = 5/4, we have the following approximation

u2, 5
4
(t) = 1.0 t5/2 + 6.8127357440130411519× 10−108 t5/4.

As one see that both latter approximate solutions are in excellent alignment with
the exact solution.
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Table 5. Comparison of numerical solutions and absolute errors in
Example 4.5 for σ = 3/2 and different α = 1, 1/2,, and J = 5 for
various t ∈ [0, 1].

5. Conclusions

An accurate approximation algorithm based on generalized Bessel functions was
developed for the solution of fractional-order differential equation under nonlocal
boundary conditions. Utilizing the (fractional) Bessel functions with together the
collocation points, the underlying differential equations is reduced into an alge-
braic system of linear equations. Illustrative examples were given to demonstrate
the efficiency and accuracy of the proposed method and a comparison between
the method and other existing schemes has been performed. Moreover, the per-
formance of fractional and non-fractional basis functions has been assessed. From
Figures and Tables, one can conclude that the present approximative technique is
not only straightforward in implementation but also accurate and powerful tool for
obtaining the approximate solutions of nonlocal FBVPs compared to the numerical
results of other existing well-known numerical methods. The method can be easily
extended to the solutions of higher-order nonlocal FBVPs and systems appearing
in the modelling of many problems in science and engineering fields.
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