PROPERTIES OF BILATERAL MOCK THETA FUNCTIONS OF GENERAL ORDER

MOHAMMAD AHMAD
Dedicated to Prof H M Srivastava on his 80th birthday Anniversary

Abstract

Bilateral mock theta functions were obtained and studied in [22]. We express them in terms of Lerch's transcendental function $f(x, \xi ; q, p)$. We also express some bilateral mock theta functions as sum of other mock theta functions. We generalize these functions and show that these generalizations are F_{q} functions. We give an integral representation for these generalized functions.

1. Introduction

The mock theta functions were first introduced by Ramanujan [17] in his last letter to G. H. Hardy in January 1920. He provided a list of seventeen mock theta functions and labelled them as of third, fifth and seventh order without mentioning the reason for his labelling. Watson [28] added to this set three more third order mock theta functions.

His general definition of a mock theta function is a function $f(q)$ defined by a q-series convergent when $|q|<1$ which satisfies the following two conditions.
(1) For every root ξ of unity, there exists a theta function ${ }^{1} \theta_{\xi}(q)$ such that the difference between $f(q)$ and $\theta_{\xi}(q)$ is bounded as $q \rightarrow \xi$ radially.
(2) There is no single theta function which works for all ξ i.e. for every theta function $\theta_{\xi}(q)$ there is some root of unity ξ for which $f(q)$ minus the theta function $\theta_{\xi}(q)$ is unbounded as $q \rightarrow \xi$ radially.
Andrews and Hickerson [6] announced the existence of eleven more identities given in the 'Lost' note book of Ramanujan involving seven new functions which they labelled as mock theta functions of order six. Y. S. Choi [8] has discovered four functions which he called the mock theta function of order ten. B. Gordon and R. J. McIntosh [12] have announced the existence of eight mock theta functions of order eight and R. J. McIntosh [15] has announced the existence of three mock theta functions of order two.

Hikami [9], [10] has introduced a mock theta function of order two, another of order four and two of order eight. Very recently Andrews [5] while studying q orthogonal polynomials found four new mock theta functions and Bringmann et al [7] have also found two more new mock theta functions but they did not mention the order of their mock theta functions.

[^0]Watson [29] has defined four bilateral series, which he has called the 'Complete' or Bilateral forms for four of the ten mock theta functions of order five. Further he has expressed them in terms of the transcendental function $f(x, \xi ; q, p)$ studied by M. Lerch [14]. S. D. Prasad [16] in 1970 has defined the 'Complete' or 'Bilateral' forms of the five generalized third order mock theta functions. The 'Complete' sixth order mock theta functions were studied by A. Gupta [13]. Bhaskar Srivastava [23-26] have studied bilateral mock theta functions of order five, eight, two and new mock theta functions by Andrews [5] and Bringmann et al [7].

Truesdell [27] calls the functions which satisfy the equation $\frac{\partial}{\partial z} F(z, \alpha)=F(z, \alpha+$ $1)$ as F-functions. He has tried to unify the study of these F-functions. The function which satisfy the q-analogue of the equation $D_{q, z} F(z, \alpha)=F(z, \alpha+1)$ where $z D_{q, z} F(z, \alpha)=F(z, \alpha)-F(z q, \alpha)$ are called F_{q}-functions.

Shukla and Ahmad [18] to [22] and M Ahmad [1] to [3] have obtained and studied bilateral mock theta functions of differen orders.

The following eight bilateral mock theta functions of general order were studied in [22]

$$
\begin{gather*}
f_{0, c_{r}}(q)=\sum_{-\infty}^{\infty}(-1)^{r n} \frac{q^{\frac{r\left(n^{2}-n\right)}{2}} q^{n}}{(-q ; q)_{n}} \tag{1.1}\\
f_{1, c_{r}}(q)=\sum_{-\infty}^{\infty}(-1)^{r n} \frac{q^{\frac{r\left(n^{2}-n\right)}{2}} q^{2 n}}{(-q ; q)_{n}} \tag{1.2}\\
F_{0, c_{r}}\left(q^{2}\right)=\sum_{-\infty}^{\infty}(-1)^{r n} \frac{q^{r\left(n^{2}-n\right)} q^{2 n}}{\left(q ; q^{2}\right)_{n}} \tag{1.3}\\
F_{1, c_{r}}\left(q^{4}\right)=\sum_{-\infty}^{\infty}(-1)^{r n} \frac{q^{r\left(2 n^{2}-2 n\right)} q^{8 n}}{\left(q^{6} ; q^{4}\right)_{n}} \tag{1.4}\\
\Psi_{0, c_{r}}(q)=\sum_{-\infty}^{\infty}(-1)^{r n} q^{(r-1)} \frac{n^{2}+3 n}{2}(-q ; q)_{n} \tag{1.5}\\
\Phi_{1, c_{r}}\left(q^{2}\right)=\sum_{-\infty}^{\infty}(-1)^{r n} q^{(r-1)\left(n^{2}+2 n\right)}\left(-q ; q^{2}\right)_{n} \tag{1.6}\\
\Phi_{0, c_{r}}\left(q^{2}\right)=\sum_{-\infty}^{\infty}(-1)^{r n} \frac{q^{r n^{2}}}{\left(-q ; q^{2}\right)_{n}} \tag{1.7}\\
\Psi_{1, c_{r}}(q)=\sum_{-\infty}^{\infty}(-1)^{r(n+1)} \frac{q^{\frac{r n(n+1)}{2}}}{2(-q ; q)_{n}} \tag{1.8}
\end{gather*}
$$

The paper is divided as follows: In section 2 we list few important definitions. In section 3 we develop certain identities of these functions by expressing some of them as sums of other mock theta functions. In section 4 we express these functions in terms of the Lerch transcendental function $f(x, \xi ; q, p)$. In section 5 we generalize these functions which are then proved to be F_{q} functions. We further give an integral representation of these functions in section 6 .

2. Notation and Definitions

We use the following q-notation. Suppose q and z are complex numbers and n is an integer. If $n \geq 0$ we define

$$
(z)_{n}=(z ; q)_{n}=\prod_{i=0}^{n-1}\left(1-q^{i} z\right) \text { if } n \leq 0 \text { and }(z)_{-n}=(z ; q)_{-n}=\frac{(-z)^{-n} q^{\frac{n(n+1)}{2}}}{\left(\frac{q}{z} ; q\right)_{n}} \text { and }
$$

more generally $\left(z_{1}, z_{2}, \ldots, z_{r} ; q\right)_{n}=\left(z_{1}\right)_{n}\left(z_{2}\right)_{n} \ldots\left(z_{r}\right)_{n}$.
For $\left|q^{k}\right|<1$ let us define $\left(z ; q^{k}\right)_{n}=(1-z)\left(1-z q^{k}\right) \ldots\left(1-z q^{k(n-1)}\right), n \geq$ $1\left(z ; q^{k}\right)_{0}=1$ and $\left(z ; q^{k}\right)_{\infty}=\lim _{n \rightarrow \infty}\left(z ; q^{k}\right)_{n}=\prod_{i \geq 0}\left(1-q^{k i} z\right)$ and even more generally,

$$
\left(z_{1}, z_{2} \ldots z_{r} ; q^{k}\right)_{\infty}=\left(z_{1} ; q^{k}\right)_{\infty} \ldots\left(z_{r} ; q^{k}\right)_{\infty}
$$

A basic hypergeometric series ${ }_{r+1} \Phi_{r}$ on base q^{k} is defined as

$$
{ }_{r+1} \Phi_{r}\left[\begin{array}{lll}
a_{1}, a_{2} & \ldots & a_{r+1} \tag{2.1}\\
b_{1}, b_{2} & \ldots & b_{r}
\end{array} ; q^{k} ; z\right]=\sum_{n=0}^{\infty} \frac{\left(a_{1}, a_{2}, \ldots, a_{r+1} ; q^{k}\right)_{n} z^{n}}{\left(q^{k} ; q^{k}\right)_{n}\left(b_{1}, b_{2}, \ldots b_{r} ; q^{k}\right)_{n}},(|z|<1)
$$

and a bilateral basic hypergeometric series ${ }_{r} \Psi_{r}$ is defined as

$$
{ }_{r} \Psi_{r}\left[\begin{array}{ccc}
a_{1}, & \ldots & a_{r} \tag{2.2}\\
b_{1}, & \ldots & b_{r}
\end{array} ; q, z\right]=\sum_{n=-\infty}^{\infty} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{n} z^{n}}{\left(b_{1} \ldots b_{r} ; q\right)_{n}},\left(\left|\frac{b_{1} \ldots b_{r}}{a_{1} \ldots a_{r}}\right|<|z|<1\right)
$$

The Lerch transcendental function $f(x, \xi ; q, p)$ is defined by:

$$
\begin{equation*}
f(x, \xi ; q, p)=\sum_{-\infty}^{\infty} \frac{(p q)^{n^{2}}(x \xi)^{-2 n}}{\left(-p \xi^{-2} ; p^{2}\right)_{n}} \tag{2.3}
\end{equation*}
$$

and by

$$
\begin{equation*}
f(x, \xi ; q, p)=\sum_{-\infty}^{\infty}\left(-\xi^{2} p ; p^{2}\right)_{n} q^{n^{2}} x^{2 n} \tag{2.4}
\end{equation*}
$$

3. Certain identities

The following identities between the bilateral mock theta functions given in Equations 1.1,1.2,1.5,1.6,1.7 and the corresponding mock theta functions may be verified by hypergeometric transformations:

$$
\begin{equation*}
f_{0, c_{r}}(q)=f_{0, r}(q)+2(-1)^{r} q^{(r-1)} \Psi_{0, r}(q) \tag{3.1}
\end{equation*}
$$

$$
\begin{gather*}
f_{1, c_{r}}(q)=f_{1, r}(q)+2(-1)^{r} q^{(r-2)} \Phi_{1, r}(q) \sum_{0}^{\infty} q^{\frac{(r-3) n}{2}} \tag{3.2}\\
\Phi_{0, c_{r}}\left(q^{2}\right)=\Phi_{0, r}\left(q^{2}\right)+(-1)^{r} q^{(r-1)} \Phi_{1, r}\left(q^{2}\right) \sum_{0}^{\infty}\left(1+q^{2 n+1}\right) \tag{3.3}
\end{gather*}
$$

Here $f_{0, r}(q), f_{1, r}(q), \Psi_{0, r}(q), \Phi_{0, r}\left(q^{2}\right), \Phi_{1, r}\left(q^{2}\right)$ are the corresponding mock theta functions.

4. Repersentation in terms of Lerch Transcendental Function

The bilateral mock theta functions defined in Section 1 can be expressed in terms of the Lerch transcendant by means of the following lemma.
Lemma 4.1. For $\epsilon= \pm 1$,

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-1)^{r n} \frac{q^{\alpha n^{2}} q^{\beta n}}{\left(\epsilon q^{\gamma} ; q^{\delta}\right)_{n}}=f\left(i^{r}(-\epsilon)^{-1 / 2} q^{\frac{2 \gamma-2 \beta-\delta}{4}},(-\epsilon)^{1 / 2} q^{\frac{\delta-2 \gamma}{4}} ; q^{\frac{2 \alpha-\delta}{2}}, q^{\frac{\delta}{2}}\right) . \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-1)^{r n}\left(-q ; q^{\gamma}\right)_{n} q^{\alpha n^{2}} q^{\beta n}=f\left(i^{r} q^{\frac{\beta}{2}}, q^{\frac{2-\gamma}{4}} ; q^{\alpha}, q^{\frac{\gamma}{2}}\right) \tag{4.2}
\end{equation*}
$$

Proof. The proof follows from direct substitution and use of basic hypergeometric transformations.

As an example we note that
$f_{0, c_{r}}(q)=\sum_{-\infty}^{\infty}(-1)^{r r} \frac{\frac{q^{2}}{2} q^{\left(1-\frac{r}{2}\right) n}}{(-q ; q)_{n}}=f\left(i^{r} q^{(r-1) / 4}, q^{-1 / 4} ; q^{(r-1) / 2}, q^{1 / 2}\right)$ by taking $\alpha=$ $r / 2, \beta=1-r / 2, \epsilon=-1, \gamma=\delta=1$
and $\Psi_{0, c_{r}}(q)=\sum_{-\infty}^{\infty}(-1)^{r n} q^{(r-1)} \frac{n^{2}+3 n}{2}(-q ; q)_{n}=f\left(i^{r} q^{3(r-1) / 4}, q^{1 / 4} ; q^{(r-1) / 2}, q^{1 / 2}\right)$ by taking $\alpha=(r-1) / 2, \beta=3(r-1) / 2, \gamma=1$ in the above lemma. In this way all other bilateral mock theta functions defined by Equations 1.1 to 1.8 can be expressed in terms of the Lerch Transcendental function defined by equations (2.3) and (2.4).

5. Generalization of these bilateral mock theta functions

We generalize the functions given by Equations 1.1 to 1.8 by introducing two parameters α, z. For $\alpha=1, z=0$ these are reduced to the original functions.

$$
\begin{gather*}
f_{0, c_{r}}(z, \alpha ; q)=\frac{1}{(z)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{r n} \frac{(z)_{n} q^{\frac{r n^{2}}{2}+n \alpha-\frac{r n}{2}}}{(-q ; q)_{n}} \tag{5.1}\\
f_{1, c_{r}}(z, \alpha ; q)=\frac{1}{(z)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{r n} \frac{(z)_{n} q^{\frac{r n^{2}}{2}+n \alpha+(1-r / 2) n}}{(-q ; q)_{n}}
\end{gather*}
$$

$$
\begin{equation*}
\Phi_{1, c_{r}}\left(z, \alpha ; q^{2}\right)=\frac{1}{(z)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{r n}(z)_{n} q^{(r-1) n^{2}+n \alpha+(2 r-3) n}\left(-q ; q^{2}\right)_{n} \tag{5.6}
\end{equation*}
$$

$$
\begin{equation*}
\Psi_{0, c_{r}}(z, \alpha ; q)=\frac{1}{(z)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{r n}(z)_{n} q^{(r-1) \frac{n^{2}}{2}+n \alpha+(3 r-5) n / 2}(-q ; q)_{n} \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
\Phi_{0, c_{r}}\left(z, \alpha ; q^{2}\right)=\frac{1}{(z)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{r n} \frac{(z)_{n} q^{r n^{2}+n \alpha-n}}{\left(-q ; q^{2}\right)_{n}} \tag{5.7}
\end{equation*}
$$

$$
\begin{equation*}
\Psi_{1, c_{r}}(z, \alpha ; q)=\frac{1}{(z)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{r(n+1)} \frac{(z)_{n} q^{\frac{r n^{2}}{2}+n \alpha+(r / 2-1) n}}{2(-q ; q)_{n}} \tag{5.8}
\end{equation*}
$$

We now show that these generalized functions are F_{q} functions.
Theorem 5.1. The functions defined by the Equations 5.1-5.8 are F_{q} functions.
Proof. We give the proof only for $f_{0, c_{r}}(z, \alpha ; q)$. The remaining cases are similar. For $f_{0, c_{r}}(z, \alpha ; q)$ note that

$$
\begin{aligned}
z D_{q, z} f_{0, c_{r}}(z, \alpha ; q) & =f_{0, c_{r}}(z, \alpha ; q)-f_{0, c_{r}}(z q, \alpha ; q) \\
& =\frac{1}{(z)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{r n} \frac{(z)_{n} q^{\frac{r n^{2}}{2}+n \alpha-\frac{r n}{2}}}{(-q ; q)_{n}} \\
& -\frac{1}{(z q)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{r n} \frac{(z q)_{n} q^{\frac{r n^{2}}{2}+n \alpha-\frac{r n}{2}}}{(-q ; q)_{n}} \\
& =\frac{1}{(z)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{r n} \frac{(z)_{n} q^{\frac{r n^{2}}{2}+n \alpha-\frac{r n}{2}}}{(-q ; q)_{n}}\left(1-\left(1-z q^{n}\right)\right) \\
& =\frac{z}{(z)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{r n} \frac{(z)_{n} q^{\frac{r n^{2}}{2}+n(\alpha+1)-\frac{r n}{2}}}{(-q ; q)_{n}} \\
& =z f_{0, c_{r}}(z, \alpha+1 ; q)
\end{aligned}
$$

and hence $f_{0, c_{r}}(z, \alpha ; q)$ is a F_{q} function.

6. Integral Repersentation

We now give integral representations of these generalized functions. Jackson (on Page 23 of [11]) defined the q - integral on $(0, \infty)$ by

$$
\int_{0}^{\infty} f(t) d_{q} t=(1-q) \sum_{n=-\infty}^{\infty} f\left(q^{n}\right) q^{n}
$$

Now let $f(t)=t^{x-1}(t q ; q)_{\infty}$ for some fixed x. We have

$$
\begin{aligned}
\int_{0}^{\infty} t^{x-1}(t q ; q)_{\infty} d_{q} t & =(1-q) \sum_{n=-\infty}^{\infty}\left(q^{n+1} ; q\right)_{\infty} q^{n x} \\
& =(1-q) \frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}
\end{aligned}
$$

and so

$$
\begin{equation*}
\frac{1}{\left(q^{x} ; q\right)_{\infty}}=\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{\infty} t^{x-1}(t q ; q)_{\infty} d_{q} t \tag{6.1}
\end{equation*}
$$

We now use Equation 6.1 to give integral representations of the F_{q} functions 5.1 to 5.8. We let $a=q^{\alpha}$ for convenience.

$$
\begin{equation*}
f_{0, c_{r}}\left(q^{z}, \alpha ; q\right)=\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{\infty} t^{z-1}(t q ; q)_{\infty} f_{0, c_{r}}(0, a t ; q) d_{q} t \tag{6.2}
\end{equation*}
$$

$$
\begin{equation*}
f_{1, c_{r}}\left(q^{z}, \alpha ; q\right)=\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{\infty} t^{z-1}(t q ; q)_{\infty} f_{1, c_{r}}(0, a t ; q) d_{q} t \tag{6.3}
\end{equation*}
$$

$\quad F_{0, c_{r}}\left(q^{z}, \alpha ; q^{2}\right)=\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{\infty} t^{z-1}(t q ; q)_{\infty} F_{0, c_{r}}\left(0, a t ; q^{2}\right) d_{q} t$

$$
\begin{equation*}
F_{1, c_{r}}\left(q^{z}, \alpha ; q^{4}\right)=\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{\infty} t^{z-1}(t q ; q)_{\infty} F_{1, c_{r}}\left(0, a t ; q^{4}\right) d_{q} t \tag{6.5}
\end{equation*}
$$

$$
\begin{equation*}
\Psi_{0, c_{r}}\left(q^{z}, \alpha ; q\right)=\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{\infty} t^{z-1}(t q ; q)_{\infty} \Psi_{0, c_{r}}(0, a t ; q) d_{q} t \tag{6.6}
\end{equation*}
$$

$$
\begin{align*}
& \Phi_{1, c_{r}}\left(q^{z}, \alpha ; q^{2}\right)=\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{\infty} t^{z-1}(t q ; q)_{\infty} \Phi_{1, c_{r}}\left(0, a t ; q^{2}\right) d_{q} t \tag{6.7}\\
& \Phi_{0, c_{r}}\left(q^{z}, \alpha ; q^{2}\right)=\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{\infty} t^{z-1}(t q ; q)_{\infty} \Phi_{0, c_{r}}\left(0, a t ; q^{2}\right) d_{q} t \tag{6.8}\\
& \Psi_{1, c_{r}}\left(q^{z}, \alpha ; q\right)=\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{\infty} t^{z-1}(t q ; q)_{\infty} \Psi_{1, c_{r}}(0, a t ; q) d_{q} t \tag{6.9}
\end{align*}
$$

Theorem 6.1. Equations 6.2 to 6.9 hold.

Proof. We prove only 6.2. The remaining cases are similar. We have,

$$
\begin{aligned}
f_{0, c_{r}}\left(q^{z}, \alpha ; q\right) & =\frac{1}{\left(q^{z} ; q\right)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{n} \frac{a^{n}\left(q^{z} ; q\right)_{n} q^{\frac{r n^{2}}{2}-\frac{r n}{2}}}{(-q ; q)_{n}} \\
& =\sum_{-\infty}^{\infty}(-1)^{r n} \frac{a^{n} q^{\frac{r n^{2}}{2}-\frac{r n}{2}}}{(-q ; q)_{n}\left(q^{n+z} ; q\right)_{\infty}} \\
& =\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{r n} \frac{a^{n} q^{\frac{r n^{2}}{2}-\frac{r n}{2}}}{(-q ; q)_{n}} \int_{0}^{\infty} t^{n+z-1}(t q ; q)_{\infty} d_{q} t \\
& =\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{\infty} t^{z-1}(t q ; q)_{\infty} \sum_{-\infty}^{\infty}(-1)^{r n} \frac{(a t)^{n} q^{\frac{r n^{2}}{2}-\frac{r n}{2}}}{(-q ; q)_{n}} d_{q} t \\
& =\frac{(1-q)^{-1}}{(q ; q)_{\infty}} \int_{0}^{\infty} t^{z-1}(t q ; q)_{\infty} f_{0, c_{r}}(0, a t ; q) d_{q} t
\end{aligned}
$$

which completes the proof.
We remark that for $a t=q$ the function $f_{0, c_{r}}(0, a t ; q)$ reduces to the bilateral mock theta function $f_{0, c_{r}}(q)$ defined previously.

Acknowledgement. I gratefully acknowledge the kind support and blessings of Lt General Asit Mistry VM Commandant NDA, Rear Admiral Atul Anand VM Deputy Commandant and Chief Instructor NDA and Prof OP Shukla Principal NDA Khadakwasla Pune.

References

[1] M. Ahmad, On the Behavior of Bilateral Mock Theta Functions-I, Algebra and Analysis: Theory and Application, Narosa Publishing House Pvt Ltd, New Delhi, 2015, pp. 259-273.
[2] M. Ahmad, S. Haq and A. H. Khan, Bilateral mock theta functions and further properties, Electronic J. Math. Anal. Appl. 7 (2019), 216-229.
[3] M Ahmad, S. Haq and A. H. Khan, Properties of some new bilateral mock theta functions and, Electronic J. Math. Anal. Appl. 8 (2020), 293-300.
[4] M Ahmad and Shahab Faruqi, Some bilateral mock theta functions and their lerch representations, The Aligarh Bulletin of Mathematics 34 (2015), 75-92
[5] G. E. Andrews, q-orthogonal polynomials,Roger-Ramanujan identities and mock theta functions, Proc. Steklov Institute of Math. 276 (2012), 21-32.
[6] G. E. Andrews and D. Hickerson, The sixth order mock theta functions, Adv. Maths 89 (1991), 60-105.
[7] K. Bringmann, K. Hikami and J. Lovejoy, On the modularity of the unified WRT invariants of certain Seifert manifolds, Advances in Applied Mathematics 46 (2011), 86-93.
[8] Y. S. Choi, Tenth order mock theta functions in Ramanujan's lost note book, Inventiones Mathematicae 136 (1999), 497-569.
[9] K. Hikami, Mock (false) theta functions as quantum invariants, Regular and Chaotic Dynamics 10 (2005), 509-530.
[10] K. Hikami, Transformation formulae of the 2nd order mock theta function, Lett. Math. Phys. 75 (2006), 93-98.
[11] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed, Cambridge University Press Cambridge (UK), 2004.
[12] B. Gordon \& R. J. McIntosh, Some eight order mock theta functions, J. London Math, Soc. 62 (2000), 321-335.
[13] A. Gupta, On certain Ramanujan's mock theta functions, Proc. Indian Acad. Sci. 103 (1993), 257-267.
[14] M. Lerch, Nova analogie rady theta a nektere zvlastnn hypergeometricke rady Heineovy, Rozpravy 3 (1893), 1-10.
[15] R. J. McIntosh, Second order mock theta functions, Canadian Mathematical Bulletin 50 (2007), 284-290.
[16] S. D. Prasad, Certain extended mock theta functions and generalized basic hypergeometric transformation, Math Scand 27 (1970), 237-244.
[17] S. Ramanujan, Collected Papers, Cambridge University Press, 1927, reprinted by Chelsea New York, 1960.
[18] D. P. Shukla and M. Ahmad, Bilateral mock theta functions of order seven, Math Sci. Res. J. 7 (2003), 8-15.
[19] D. P. Shukla and M. Ahmad, On the behaviour of bilateral mock theta functions of order seven, Math Sci. Res. J. 7 (2003), 16-25.
[20] D. P. Shukla and M. Ahmad, Bilateral mock theta functions of order eleven, Proc. Jang Jeon Math Soc. 6 (2003), 59-64.
[21] D. P. Shukla and M. Ahmad, Bilateral mock theta functions of order thirteen, Proc. Jang Jeon Math Soc. 6 (2003), 167-183.
[22] D. P. Shukla and M. Ahmad, Bilateral mock theta functions of order $2 r+1$ and their behaviour on the unit circle, GANITA 60 (2009), 27-56.
[23] B. Srivastava, Certain bilateral basic hypergeometric transformations and mock theta functions, Hiroshima Maths J. 29 (1999), 19-26.
[24] B. Srivastava, A study of bilateral forms of the mock theta functions of order eight, J. Chungcheon Math Soc. 18 (2005), 117-129.
[25] B. Srivastava, A mock theta function of second order, Int. J. Math. Math. Sci. 2009 (2010), 1-15.
[26] B. Srivastava, A study of bilateral new mock theta functions, American J. Math. Statistics 2 (2012), 64-69.
[27] C. Truesdell, An Essay Toward a Unified Theory of Special Functions, 18 Princeton university press, 1948.
[28] G. N. Watson, The final Problem: An account of the mock theta functions, J. London Math, Soc. 11 (1936), 55-80.
[29] G. N. Watson, The mock theta functions (2), Proc. London Math, Soc. 42 (1937), 274-304.
revised September 112020

Mohammad Ahmad

Department of Mathematics National Defence Academy Pune-411023, India
E-mail address: mahmad_786@rediffmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 33D15, Secondry 11B65.
 Key words and phrases. Mock theta functions, bilateral mock theta.
 ${ }^{1}$ When Ramanujan refers to theta functions, he means sums, products, and quotients of series of the form $\sum_{n \in z} \epsilon^{n} q^{a n^{2}+b n}$ with $a, b \in Q$ and $\epsilon=-1,1$.

