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COMPOSITE IMPLICIT VISCOSITY EXTRAGRADIENT
ALGORITHMS FOR SYSTEMS OF VARIATIONAL
INEQUALITIES WITH FIXED POINT CONSTRAINTS OF
ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

LU-CHUAN CENG

ABSTRACT. In this paper, a composite implicit viscosity extragradient method
based on Korpelevich’s extragradient method, implicit viscosity approximation
method, and Mann’s iteration method is studied and we consider a general system
of variational inequalities and a common fixed point problem of an asymptoti-
cally nonexpansive mapping and countably many nonexpansive mappings in real
Hilbert spaces.

1. INTRODUCTION

In a real Hilbert space (H, || - ||), we denote by (-,-) its inner product. Given a
nonempty closed convex subset C' C H. Let Po be the metric projection from H
onto C. The notations R, — and — are used to stand for the set of all real numbers,
the strong convergence and the weak convergence, respectively. Given a mapping
T :C — C. We denote by Fix(T') the fixed point set of T', i.e., Fix(T) = {u € C:
Tu = u}. Recall that T is called asymptotically nonexpansive if 3{6,} C [0, 00) s.t.
lim,,—yo0 0, = 0 and

(1.1) |T"u —T"v|| < (14 0,)|lu—v|| Yu,ve C,n>1.

In particular, if 6, = 0Vn > 1, then T’ is called nonexpansive. A mapping f : C' — C
is called a contractive map if 36 € [0,1) s.t. ||f(u) — f(v)]| < d||u —v|| Vu,v € C.
An operator A : C — H is called monotone if (Au — Av,u —v) > 0 Yu,v € C. Tt
is called a-strongly monotone if Jo > 0 s.t. (Au — Av,u —v) > allu —v|? Yu,v €
C. Also, it is called S-inverse-strongly monotone (or -cocoercive) if 35 > 0 s.t.
(Au— Av,u—v) > B||Au— Av||? Yu,v € C. It is not hard to find that each inverse-
strongly monotone operator is monotone and Lipschitzian and that each strongly
monotone and Lipschitzian operator is inverse-strongly monotone but the converse
is not true.

Given both nonlinear mappings A1, As : C — H. Consider the following problem
of finding (u*,v*) € C x C s.t.

(1.2)

(A +u* —v*u—u*) >0 Yuedl,
(uoAgu™ +v* —u* ;v —v*) >0 Vo e,
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with constants 1, e > 0, which is called a general system of variational inequalities
(GSVI). It is remarkable that GSVI (1.2) can be transformed into a fixed point
problem in the following way.

Lemma 1.1 ([7]). Given two points u*,v* € C. Then (u*,v*) is a solution of GSVI
(1.2) if and only if x* € GSVI(C, A1, As), where GSVI(C, Ay, As) is the fized point
set of the operator G := Po(I — 1 A1) Po(I — poAsz), and y* = Po(I — paAg)x™*.

The literature on the GSVI is vast and Korpelevich’s extragradient method has
received great attention given by many authors, who improved it in various ways and
applied it for solving the GSVI (1.2) and other optimization problems; see e.g., [1-6,
10,12] and references therein, to name but a few. In the case when A; = As = A and
u* = v*, the GSVI (1.2) reduces to the classical variational inequality problem (VIP)
of finding u* € C s.t. (Au*,v —u*)) >0 Vv € C. In 2018, Cai et al. [2] designed a
viscosity implicit rule for finding a common element of the solution set of GSVI (1.2)
and the fixed point set of an asymptotically nonexpansive mapping T', and proved
that the sequence constructed by the proposed rule converges strongly to a point
in 2 = GSVI(C, A1, A2) N Fix(T'), which solves a certain VIP. Very recently, Ceng
and Wen [8] suggested a hybrid extragradient-like implicit rule for finding a common
solution of the GSVI (1.2) and the CFPP of countably many uniformly Lipschitzian
pseudocontractive mappings {5, }2° ; and an asymptotically nonexpansive mapping
T, i.e., for any given g € C, the sequence {z,} is constructed by

Zn = ﬁnxn + (1 - 571)5712717
an = Po(zn — p2dazy),
1.3
( ) Pn = PC(Qn - NIAIQn)a
Tny1 = Polanf(xn) + (I — anpF)T"p,] Yn >0,

where {a,},{8,} C (0, 1] are such that

[ee)

(1) nh_}ngo ap =0, Zan =00 and Y o7 |anq1 — | < 00;
n=0

(i) nlggo On/an = 0;

o
(iii) 0 < liminf B, <limsup B, < 1 and Z |Bn+1 — Bnl < 005
n—oo

n—oo ’Vl:()
(o)
(iv) > T pp — T"pnl| < oo
n=0

They proved that the sequence {z,} generated by (1.3) converges strongly to a
point z* € 2 = (7., Fix(S,) N GSVI(C, A1, A2) N Fix(T), which also solves the
VIP: ((f — pF)x*,x —x*) <0 Vz € 0.

On the other hand, the implicit midpoint rule has become one of the most effective
numerical methods for solving ordinary differential equations. In 2015, Xu et al. [15]
considered the following viscosity implicit midpoint rule:

(14) Bt = anf () + (1= ) T(0EL

They proved that the sequence {z,} constructed by (1.4) converges strongly to a
point z* € Fix(T), which solves the VIP: ((I — f)z*,z — 2*) > 0 Vz € Fix(T). In

) ¥n>0.
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2018, Yan and Cai [16] suggested a modified viscosity implicit rule for an asymp-
totically nonexpansive mapping 7" with a sequence {6, }:

n,Tn T Tn
where f : C' — C'is a contractive map with constant 6 € [0,1), and {a,}, {Bn}, {1} C
[0, 1] are such that

(i) an + Bn + v =1 and limsup,,_, . a, < 1;
(ii) limy—s00 0n/Bn = 0;

(iii) limp—y00 B = 0 and Y o2 By = 00;

(iv) limy, o0 [T 2y, — TMay|| = 0.

They proved that if lim,, o [|[Zp+1 — Zp|| = 0, then the sequence {x,} constructed
by (1.5) converges strongly to a point z* € Fix(T"), which solves the VIP: (({ —
flz*,x —2*) > 0 Ve € Fix(T).

In this paper, we introduce a composite implicit viscosity extragradient method
for solving the GSVI (1.2) and the CFPP of an asymptotically nonexpansive map-
ping T" and countably many nonexpansive mappings {5, }°°, in a real Hilbert space
H. Here the composite implicit viscosity extragradient method is based on Kor-
pelevich’s extragradient method, implicit viscosity approximation method, Mann’s
iteration method and the W-mappings constructed by {S,,}5°,. Under suitable as-
sumptions imposed on the parameters, we prove some strong convergence theorems
for finding an element z* € 2 = (2, Fix(S,) N GSVI(C, A1, A2) NFix(T). As an
application, we apply our main results to find a common solution of fixed point
problems of nonexpansive mappings, variational inequality problems and general
system of variational inequalities in H.

) Vn >0,

2. PRELIMINARIES

Given a nonempty closed convex subset C' C H and a sequence {z,,} C H. The
notation x,, — x (resp., x, — x) stands for the strong (resp., weak) convergence of
{zn} to z. For each point x € H, we know that there exists a unique nearest point
in C, denoted by Pcz, s.t. ||[x — Pex| < ||z —y|| Yy € C. The operator Pc is called
the metric projection of H onto C.

Lemma 2.1. The following hold:
(i) (y — 2, Poy — Poz) > ||Poy — Poz||* Vy,z € H;
(ii) (y — Poy,z — Pey) <0Vy € H,z € C;
(ii)) fly —2[1*> = ly — Peyl® + Iz = Poy||* Vy € H,z € C;
(iv) lly = 2)* = llyl> = I2l1* = 2(y — 2,2) Vy, 2 € H;
(v) [y +(1=X)2]1 = Alyl?+ (1= N[> =21 =N ly—=2]* Vy, 2 € H, X € [0,1].

The following lemma is an immediate consequence of the inner product in H.
Lemma 2.2. The inequality holds: ||y + z||*> < [ly||* + 2(z,y + 2) Vy,z € H.

Lemma 2.3 ([14]). Let {z,} and {z,} be bounded sequences in a Banach space X
and let {B,} be a sequence in [0,1], satisfying the condition 0 < liminf,, . By <
limsup,,_,o Bn < 1. Suppose that tpt1 = Bnxn + (1 — Bn)zn Vo > 0 and
lim sup,, o0 ([[2n+1 = 2nll = lZn41 — anl]) < 0. Then limp o0 [[2n — 20| = 0.
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Lemma 2.4 ([17]). Let {a,} be a sequence in [0, +00) satisfying an+1 < (1—58p)an+
dn Vn > 0, where {s,} and {0,} lie in R := (—o0,00) s.t. (a) {sp} C (0,1) and
Yol Sn = 00, and (b) limsupnﬁ\oog—z <0 or Y o7 ol0n| < 0o. Then ap — 0 as

n — Q.

Let {Sn}o2, be a countable family of nonexpansive self-mappings on C, and
{A\n}22 be a sequence in [0,1]. For any n > 0, we define a mapping W,, : C — C
as follows:

Un,n—l—l - I7
Un,n = )\nSnUn,n+1 + (1 - )\n)Ia
Un,n—l = )\n—lsn—lUn,n + (1 - )\n—l)Ia

Unk = MeSkUn i1 + (1 = )1,
Uni=MS1Up2+ (1 — )1,

W, = Un,O = /\()S()Un,l + (1 — )\0)[.

Such a mapping W, is nonexpansive and it is called a W-mapping generated by
Sn, ceey Sl, S() and An, ceny )\1, )\0.

Lemma 2.5 ([13]). Let {S,}°2, be a countable family of nonexpansive self-mappings
on C with N0 Fix(S,,) # 0, and {\,}02, be a real sequence such that 0 < A, <
b<1Vn >0. Then the following statements hold:
(i) Wy is nonezpansive and Fix(W,,) = NI’ Fix(S;) ¥n > 0;
(ii) the limit limy, oo Uy, g exists for all x € C' and k > 0;
(ili) the mapping W : C — C defined by Wz := lim,,_yoo Wy = limy, oo Up oz Vo €
C, is a nonexpansive mapping satisfying Fix(W) = N Fix(Sy,) and it is
called the W -mapping generated by Sg, S1,... and Ao, A1, ....

Lemma 2.6 ([11]). Let {S,}22, and {¢n}02y be as in Lemma 2.5. If D is any
bounded subset of C, then the following statements hold:

(1) limy—yo0 SUpgep [|Woz — We|| = 0;

(i) > oZoSuPzep W12 — Waz|| < co.

Lemma 2.7 ([8]). Let the mapping A : C — H be a-inverse-strongly monotone.
Then, for a given X > 0, |[(I—-AA)z—(I-AA)y|]? < ||lz—y||? +A(A—20a)||Az— Ay||%.
In particular, if 0 < A < 2a, then I — MAA is nonexpansive.

The following lemma is an immediate consequence of Lemma 2.7.

Lemma 2.8 ([8]). Let the mappings A1, As : C — H be a-inverse-strongly mono-
tone and B-inverse-strongly monotone, respectively. Let the mapping G : C — C' be
defined as G := Po(I — p1A1)Po(I — pgAz). If 0 < pp < 2a and 0 < pg < 203, then
G : C — C is nonexpansive.

Lemma 2.9 ([9]). Let X be a Banach space which admits a weakly continuous
duality mapping, C be a nonempty closed convex subset of X, and T : C'— C be an
asymptotically nonexpansive mapping with a fized point. Then I — T is demiclosed
at zero, i.e., if the sequence {x,} C C satisfies x, — x € C and (I — T)z, — 0,
then (I — T)x = 0, where I is the identity mapping of X.
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3. MAIN RESULTS

In this section, we always assume that the following conditions hold:

{Sn}22, is a countable family of nonexpansive self-mapping on C, and {\,}°°, C
(0, b] for some b € (0,1).

T : C — C is asymptotically nonexpansive with {6,,} and the mappings A;, Az :
C — H are a-inverse-strongly monotone and S-inverse-strongly monotone, respec-
tively.

f:C — C is a é-contraction with § € [0,1), and W,, : C — C is a W-mapping
in (2.1) generated by Sy, ..., S1, S0 and Ay, ..., A1, Ao.

2 := (o2 Fix(Sn)NGSVI(C, A1, A2)NFix(T') # 0, where GSVI(C, A1, Ay) is the
fixed point set of G := Po(I —pu1 A1) Po(I—pgAs) for 0 < py < 2ccand 0 < pg < 203.

{tn} € (0,1] and {an}, {Bn}, {7} C (0,1) are such that:

(1) Y02y = o0 and limy, o0 oy = 0;
(if) limy 00 22 =0 and ay + By + 70 = 1 Yn > 0;
(iii) 0 < liminf, 0 v, and 0 < liminf,, o ¢, < limsup,, . t, < 1.

Algorithm 3.1. Suppose that the above hypotheses are satisfied. Given an arbi-
trary xg € C. Let {x,} be the sequence generated by

U = Po(Tni1 — p2A2Zni1),
(31) Up = PC(UTL - ,UlAlUn),
Yn = tpTy + (1 - tn)Wnuna
Tnt1 = A f(n) + Bnxn + Ty, Vn > 0.

We are now in a position to state and prove the first main result of this paper.

Theorem 3.2. Let {z,} be constructed by Algorithm 3.1. Assume Tz, —
Tz, — 0. Thenx, > z* € 2 & xp—Tpye1 — 0, where x* € (2 is the unique solu-
tion to the hierarchical variational inequality (HVI): (I — f)x*,x —x*) > 0 Vx € (2.

Proof. First of all, we note that the mapping G : C — (' is defined as G =
Po(I — p1Ar)Po(I — paAsz), where 0 < p17 < 2a and 0 < pg < 2. So, by Lemma
2.8, we know that G is nonexpansive. Meantime, by Lemma 2.5 (i), we know that
W, is nonexpansive. Since 6,, = o(«,,), without loss of generality, we may assume

that 6, < % Vn > 0. For each n > 0 we define the mapping F;, : C' — C as
follows:

Fo(z) = anf(zn) + Bntn + T (they + (1 — t,)W,,Gz) Vx € C.
It is easy to see that for all z,y € C,
[Fn(z) = Fn()ll = Yl T" (tnzn + (1 — t) Wy Ga) — T (tnzn + (1 — 1) W Gy)||
<A (14 0p)||(thxn + (1 — tn)W,Gx) — (tnxy + (1 — t,) W, Gy) ||
=Y (14 0,)(1 —t,)||W,,Gx — W,Gy||
< Yn(L+0n)(1 —tn)]lz —y.
(1-d)an

Since Y (14-0,) (1 —tn) = Y (1 —=t0) +0nVn(1—tn) < Y +0n < Pt 5" < 1—P,
by the Banach Contraction Principle, we deduce the existence and uniqueness of a
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fixed point x,,41 € C for the operator F,, i.e.,
(3.2) Tnt1 = W f(xn) + Bnxn + WT" (tnzn + (1 — ty) Wi Gapyq).

This ensures that the sequence {z,} generated by (3.1) is well defined.
It is now clear that the necessity of the theorem is true. In fact, if x, — z* € (2,
then we have
[2nt1 = Znll < [l27 = zpgall + |27 — 20| = 0 (0 — o0).

In order to prove the sufficiency of the theorem, we suppose x, — xnp4+1 — 0 and
divide the proof of the sufficiency into several steps.

Step 1. We claim the boundedness of {z,}. In fact, take an arbitrary p € (2.
Then Tp = p, Gp =p and W,p = p Vn > 0. Choose a constant M > 0 sufficiently
large such that max{||zo — p||, 135/ (») — pl|} < M. We proceed by induction to
show that ||z, — p|| < M Vn > 0. Assume ||z, — p|| < M for some n > 0. We show
that ||zp+1 — pl| < M. From (3.1) it follows that

[#n1 = pll < an(llf(zn) = FW)I+11f(P) = pIl) + Bullzn — pll
+ (1 + 6n) X
X thl‘n + (1 - tn)WnG$n+1 - p”
S [O‘né + ﬁn + '771(1 + en)tn] Hl‘n - p”
+ (L4 0n) (1 = tn) |01 — pll + ol f(p) — pll,
which immediately yields

Olnfs + ﬁn + 711(1 + 6)n)tn

lzns1 = pll < =— T C— |zn = p|
A @
<l gl
b o %jz;(i 5331 1 2 15w)

2
< max{|lzn — pll, 7—51£(p) — pll}
<M

(it is remarkable that 6, < % = apd + By < an + By — Wb =
a’ff;rf (’llig’;()l(ﬁ’;n)gn < 1). Thus, {z,} is bounded, and so are the sequences {uy }, {vn },

{yn b AGzn }, AWnun b, {T"yn }-

Step 2. We claim z,, — Gz, — 0. In fact, we write ¢ := Po(p — p24ap).
Then p = Po(q — p1A19) = Gp. Note that v, = Po(rp41 — p2lazny1) and u, =
Po(vp, — p1Arvy). Hence uy, = Gxptq. By Lemma 2.7 we have

lon = all” < llzns1 = plI* = p2(28 — p2) || A2zn i1 — Asplf?,
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and [[u, — p||? < |lvn — q||? — p1 (20 — p1)||A1vn, — A1q||>. Combining the last two
inequalities, we obtain

[un = plI* < l[€ns1 = plI* — p2(28 — p2) | Ass1 — Aapl|®
(3.3) — 11 (20 — 1) [| Arvn — Asgl®.
Also, using (3.1) and Lemma 2.1 (v), we get

lyn — p”2 = tnl|Tn _pH2 + (1 = tn) [Whun — p||2 —tn(L—tn)|lzn — I/VnunH2
< tnllzn _pH2 + (1 —tn) |lun _pH2 —tn(L—tn)||lzn — WnunH2

Hence, using Lemma 2.2 we deduce from (3.1) and the convexity of the function
h(t) = t? Vt € R that

|znt1 = pl* < llan(f(@n) = f(P) + Balan —p) +(T"yn — )|
+ 20 (f(p) = P Tny1 — p)
< andllzn = pll + Bullzn = pll + (1 + 62) lyn — pl]?
+ 20 (f () = P Tnt1 — p)
(3.4) < andllzn = pl* + Buallen — pl* + va (1 + 60)llyn — pI?
+ 200 (f(P) = P Tnt1 — p)
< (@b + B + a1+ On)t) |20 — p|®
(1 +0,)[(1 = ta)l[un — p||®
— (1 —tn)[|zn — WnunHQ] + 2an(f(p) — P, Tnt1 — P)-
Substituting (3.3) for (3.4), we obtain
|Zn+1 —pH2 < (and + Bn + (1 + On)tn) |20 — p”2
+ (1 +0){(1 = ta) |21 — p?
— 12(26 — p2)l| A2 1 — Agpl® — 1 (20 — ) || Arvy — Arg|)?]
—tn(1 —tn)[|zn — WnunHQ} + 2an(f(p) = P, Tnt1 — D),
which immediately leads to
(@nd + B+ (L + bn)tn) [ 2041 — pl|?
<A =yl +600)(1 —tn))[zn+ _pHZ
(3.5) < (6 + B + (14 00)tn) |20 — D> = (1 + 0,) (1 — ta)
x {p2(28 — p2) | Ao — Aop||? + 1 (20 = )| Aron — Arg|®
+tllen — Woun |12} + 200 £ () = pllll@nt1 — pll

(it is remarkable that 6, < %

1_'77L(1+97L)(1_tn) :
limsup,, , tn < 1, we may assume, without loss of generality, that {v,} C [c,1)

and {t,} C [c,d] for some ¢,d € (0,1). So it follows from (3.5) that
c(1+ 0n) (1 — d)[2(28 — p2)[| A2n 11 — Aapl|®
+ 1 (20 — )| Aron, — Aag|)? + ¢l|zn — Waug|1?)

= apd + B < an + Bn — Ynbn =

Since 0 < liminf, ;7 and 0 < liminf, ,t, <
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< YL+ 0,) (1 — tn) [12(28 — p2) || Agwns1 — Aopl?
+ p1 (2o — pa) || Arvp — AIQ||2 + tol|zn — Wnun||2]
< (llzn = pll + lzn1 = pIDllen — Tnga || + 200l f(p) — pllllZn+1 — plI-

Since ay, =+ 0, 0, = 0, T, —xpr1 — 0, 0 < 1 < 20, 0 < pg < 208, from the
boundedness of {z,} we infer that

lim HAQCCn_H - Ang = 0, lim ||A1Un - Aqu =0
n—oo n—oo
(3.6) and lim ||z, — Wyu,| = 0.
n—oo

On the other hand, from Lemma 2.1 (i) and (iv), we have
ltm = PI? < l[om — gl12 = [[o — tn +p — qll? + 2021]| Arvm — Argll[jun — p]I
Similarly, we obtain
on = al2 < st — Bl — |@ns1 — tn +q — plI? + 2012 Asns1 — Asplom — all
Combining the last two inequalities, we obtain
[un = pI* < l[&ni1 = plI* = 2041 = vn + @ = D> = llvn — un +p — q|f?
+ 2p || Avvn — Argl|lun — pll 4 2p2]| Azzn1 — Aspl|[[vn — qll.
Substituting (3.7) for (3.4), we get
[2ns1 = DI < (@nd + B + 3 (1 + 60 )tn) |20 — p|?
+ (1 +605) (1 = tn)|[us — sz
+ 200 [ £ (p) = pllllzn+1 — pll
< (@nd + B + (1 + On)tn) |20 — p|I°
+ (14 00) (1 = to)[[lzntr — pl
~Nznt1 = v +a = pl* = lvn —un +p —ql?
+ 21| Arvn — Arqll[|un — pl|
+ 2p2]| Agwn i1 — Aspl|llvn — qll]
+ 20m [ £ (p) = pllllznsa — pll,
which immediately leads to
(nd + B + (1 + 0p)tn) |21 — p”2
< (1= 7L+ 6)(1 =) |21 — pl°
< (and + Bn + (1 + O0n)ts)||lzn — PH2 — V(14 6,)(1 — 1) x
X {l|zn+1 = vn + ¢ = pl> + [[on — un +p — gl
— 2 || Arvn — Axq|l|un — pl|
— 2p2|| Agzn 1 — Aoplllvn — qll} + 20l (p) — pPllllZn41 — pll
< (and + Bn + (1 + 0n)ty)||lzn — pH2 — V(14 0,)(1 —tn)x
X (1 = vn +q = plI* + [lon —un +p = q|’]
+2(1 4 6n) [l Arvn — Argllflun — p

(3.7)
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+ s Asass — Aspllllvn — gl + 20| £(p) = pll|ns1 — Dl
So it follows that
c(1+0,)(1 = d)[[[en+1 = vn +q = pl* + llvn = un +p — q||’]
< V(14 00)(1 = ty)[[|Tnt1 —vn +q — p||2 + [lon — up +p — Q||2]
< (lzn = pll + ll2nt1 = pIDllen = 2ngall +2(1 4 6n) [ | Avon — Argllllun — pll
+ p2l|Aown g1 — Aopllllon — qll]l + 2001 f () — pllllzn1 — pll-

Since o, — 0, 6, — 0 and x,, — xp+1 — 0, from (3.6) and the boundedness of
{zn}, {un}, {vn} we obtain that lim,, . || Zn+1 —vn+q¢—pl| = 0, limy, 00 ||V, — upn +

p — q|| = 0. Consequently,
(3 8) ”xn+1 - G$n+1|| :ngn+1 - un” S ||xn+1 — Up + q —pH
. + o —tn+p—q| 20 (n— ).

Step 3. We claim z, — Tz, — 0 and z,, — Wz, — 0. In fact, we observe from
(3.2) that
[Zn+1 = T (tnan + (1 — tn) WnGapgr )|
< apllf(zn) = T"(tnan + (1 — tn)WnGani1)|| + Bullzn — Tn |
+ Bulltner — T (tnan + (1 — ) Wi Gt ||
This implies that

(1= Bu)llznsr — T"(tnzn + (1 — tn) WnGrpy)||
< apl|f(zn) = T"(tnwn + (1 = t0)WonGrnp1) || + Bullzn — Tpaa |l

Since x,, — Tpt+1 — 0, a, — 0 and liminf,, oo (1 — B,,) = liminf,, o (ay + ) > 0,
we get [|[Tpt1 — T (tnxn + (1 — tn)Whuy)|| — 0 (n — o0), which together with
(3.6), implies that as n — oo,

[z = T"2n|| < |lzn — Tnga || + |21 = T (nzn + (1 — o) Whu, )|
+ 17" (tpxn + (1 — tn)Wouy — T 2y ||

< lzn = pgal| + [[zn1 = T (Enzn + (1 — 1) W) ||
+ (14 60,)(1 —tp)||Whuy — zp|| — 0.

(3.9)

Note that
|2n — Tan| < | T2, — T || + (2 4+ 00) || Tz — 20|

So, using (3.9) and the assumption 7" "'z, — T"x, — 0, we have

(3.10) |z — Tan| =0 (n— 00).

In addition, using Lemma 2.6 (i), we have

(3.11) WGz, — W, Gy || < sup [|[Wz — Wypz|| -0 (n— o0).
zeD

for the bounded subset D := {Gx, : n > 0} C C. Thus, using the assumption
Ty, — Tpt1 — 0, from (3.6), (3.8) and (3.11) we deduce that as n — oo,

[Wan —an| < ||zn — Gonl| + [WGzn — WanGapl| + [[2n — 2n |

(3.12) [ Wit — 2| — 0.
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Step 4. We claim limsup,, , . (z* — f(z*),2* — z,,) < 0, where x* = Pq f(z*).
In fact, there exists a subsequence {z,, } C {z,} such that

limsup(z* — f(z*),2* — x,) = lim (2" — f(z¥), 2" — zp,).
n—00 k—o0

By the boundedness of {z,} we know that there exists a subsequence of {z,}
converging weakly to & € C. We may assume, without loss of generality, that
Zp, — &. Using Lemma 2.9, we conclude from (3.8), (3.10) and (3.12) that & €
Fix(G) = GSVI(C, A1, A2), ¢ € Fix(T) and & € Fix(W) = Ni2 Fix(S,) (due to
Lemma 2.5 (iii)). Therefore, & € 2 := (2, Fix(S,) N GSVI(C, A1, A2) N Fix(T).
This together with the property of the metric projection implies that

(3.13)
lim sup(a* — f (@), 2" —n) = lim (@* — ("), 2" —n,) = (" = f(a"), 2" =) <0.

Step 5. We claim z,, — z*, where z* = P, f(«*). In fact, putting p = z*, we
obtain from (3.4) that

an(l - 5) - 'Ynen

R R (s L
20, . . i
T+ A g ) T T — )
(3.14) A 2
=i 2(1 — Y (14 6n)(1 — tn))]”“ — 2l
+ Oén(l — (5) 4 <f(x>k) . x*,anrl . I‘*>

21— (T +0u)(1 =) 10
(it is remarkable that 6, < (173)% = apd + B < an + Bn — Mmbn =

bt a0l < 1) Since and + Bn +n(1+0n)tn > (@nd+ B+ (14 0n))tn =

. n(1=6
(I — an(l — 0) 4+ Ybp)tn, we get lim, o 2(1_771021&9”)21_%)) <
i, oo sa i gge, = 0, which implies that Jnp > 1 st

an(1-90)
Eremem e

Yol gy = 00. So it follows that » 7 pIgl

n=0

n(1-=0) n(1=9)
7 fnzny C (0,1). Note that 55— > 50 g
_%Cz*f_(i_lez(;%l_tn)) = oo. Therefore, using
(3.13) and Lemma 2.4, we conclude from (3.14) that |z, — z*|| — 0 as n — oo.

This completes the proof. O

and

Theorem 3.3. Let {x,} be constructed by Algorithm 3.1. Assume additionally that

oo x x
(1) > lant1 —an| <00, Y |Bas1 — Bn| <00 and ) [tpy1 — tn] < o0;
n=0 n=0

n=0

o0
(ii) > supgep [Tz — Tz|| < oo for any bounded subset D of C.
n=0

Then x, — x* € 2, which is the unique solution to the HVI: (I — f)x*, x — z*) >
0 Vzx € £2.
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Proof. In terms of Theorem 3.2, we only need to show lim, o [[p+1 — 2n] = 0.
From (3.1) we get

[yn = Yn—1ll < tnllzn — zp—all + (1 = ) [WnGans1 — Wi1 Gy ||
+ [tn — tn-1l[|[Tn-1 — Wi1Gy||
(3.15) <tollzn — zp—all + (1 = o) (|20 — 24|
+ IWn Gz — Wiy—1Gxy|)
+ |tn — tn—1]|l|Tn—1 — Wn—1Gxy||.
Also, it follows from (3.2) that
[Zn+1 — znll = [|Bn(zn — 2p—1) + (B — Bn—1)(@n—1 — T"yn-1)
+ (an — an—1)(f(@n-1) = T"Yn-1)
+ an(f(@n) = f(@n—1)) + W(T"Yn — T"yn-1)
+ Y1 (T o1 = T yna) |
< (Bn 4 and + (1 + 0n)tn)|| 20 — Tn—1]|
+ (L4 0n)(1 = tn)|2n41 — @l + {lan — an—1]
+ 1B = Bn—1| + [t — tn—1| + [WnGap — W1 Gy
T Y1 = Tty |} M,
where

sup{|lzn—1—=T"yn-1, | f (@n-1) = T"yn-1ll, 1+0,) (L + ||zy—1 — Wn_1Gap|)} < My
n>1

for some M7y > 0. This implies that

an(l — 6) - ’Yn‘gn
1 =71+ 0,) (1 —t,
+ {’an - an—1| + |Bn - ﬁn—1|
+ |tn — tn-1| + |WnGxp — Wi—1 Gy ||

M,
(14 6,)(1 —t,)

Znt1 —znll <1

)]Hxn — Tp—1]|

+ | T"Yn—1 — Tnilyn—lu} 1
an(1—19)
ST = (L1 )0 =ty 17 — Tl
+ {’an - an—1| + |Bn - ﬁn—l|
+ |tn — tn-1| + |WnGap — W1 Gy ||
My
(14 6,)(1 —t,)

(3.16)
<n-

Ty = T [}

(it is remarkable that 6, < (1_3)0‘” = ad + B < ap + Bp — Wb =
aﬁ:fﬁfez()l(ie?zgn < 1). Since and + Bn +yn(1+0n)tn > (nd + B +Yn(1+65))c =
(1 — an(l = 8) + mbn)c, we get limsup, 1_%(1%711)(1_%) <

] M, _ M
llmsupn_ﬂ)o (1_an(1—(s)+7n9n)c Toer

erality, that = %i)( < My ¥n > 0. So it follows from (3.16) that for all

Thus, we may assume, without loss of gen-

1—t,)
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n >0,
an(1—9)
_ <1 = o
(3.17) + {lom — an—1| + |Bn = Bn—1

+ [t — tnoi| + || Wn Gy, — Wy_1Gap ||
+ 1T yp—1 — T Lyp1]|} Mo.

Putting D = {Gz,}52 o U {yn}o2,, we know that D is a bounded subset of C.
Hence, by Lemma 2.6 (ii) we have that > >, ||[W,Gx, — W,_1Gz,| <
Yoy supxeDHan — Who1z|]] < oo. Note that the condition (ii) ensures
S Tt — T Yy 1] < 55, suppep [T — T2 < co. Also, by the
condition (i) we get

o0
Zﬂan - O‘nfl‘ + |/8n - 5n71| + ‘tn - tnfly
(3.18) —
+ [|WnGxp — W1 G| + | T yp—1 — T”_lyn_lﬂ}MQ < 00.
Since 1 — (14 0,)(1 —tn) > and + Bn + (1 4+ 0x)tn > (1 — an(l —0) + nbn)c,

. an(1-9 . an (1-9) o . . .
we get lim,, oo ST (L0 (=60 < limy, o0 ST—an (=0 7m0 = 0, which implies
an(1-0) 0 an(1-90)
that Ing > 1 s.t. {2(1 — o T }n_n0 C (0,1). Note that ST (L (6] =

n(1-9) n(1—6
ﬁgﬁ and ) 7 o, = oo. So it follows that » 5T %Czp(re )21 oy = o©
Therefore, using (3.18) and Lemma 2.4, we conclude from (3. 17) that ||xp+1—xn|| —

0 as n — oo. This completes the proof.
Theorem 3.4. Let {x,} be constructed by Algorithm 3.1. Assume additionally that

(i) Hmsup,,_ oo Yn < 1, iMy o0 |Bna1 — Bnl = 0 and limy, o0 [tns1 — tn]| = 0;
(ii) limy,—yo0 SUpgep [Tz — T™2|| = 0 for any bounded subset D of C.
Then x, — x* € (2, which is the unique solution to the HVI: ((I — f)x*,x — z*) >
0 Vx € £2.

Proof. By Theorem 3.2, we only need to show that lim, ,« ||Zn+1 — 2| = 0. In
fact, set z, := % V¥n > 0. Then we have
Ap41 Qi1 «
Zn+l — Fn = %g“(f(xn—kl — f(zn)) + (1 _ng T ] _nﬁ )f (@)
n n n
On+t1 n+1 n Ap+1 On n
_ Gl T, — - T
el i e
+ (Tn+lyn+1 —T"yn)
«
= (@1 — ()
1-— Bn+1

On+1 On n
2 L )~ T700)

Qn+1
+ 1= 5 DT e = T
n

= 1 e = )
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Ap41 (679 n
+ — Tp) =T
(6%
+ (1= =) (T s = T"yr1)
1- ﬁn-ﬁ-l
Qpt1

+ (1 )(Tnyn—i-l - Tnyn)~

1= Bun
It follows from (3.15) and (3.16) that

dan 1

1- Bn-i-l
+ sup||T" e — Tz ||
z€D

On+t1 o7

n
— M
_ﬁn-i-l 1_ﬁn’ !

et — zall < Ins1 = all + |

Opg1
1= Bnt1
+ (1 = tng) lznt2 — T
+ [[Whs1Gonp1 = WnGanga || + [tngr — ta| M1}

41— (1 + 0p){tniallzngs — znl|

_ (I =d)ans
S (1 1- Bn+1
+ |an+1(1 - Bn) — an(l - Bn+1)|
(n+1 + Ynr1)(@n +Tn)

+ sup || T" e — Tz
zeD

+ (1 + 9”){(|an+1 - an| + |ﬁn+1 - 5n| + |tn+1 - 75n|
+ Sup||Wis 12 — Woar| + supl| T — T |) My
zeD xeD

+ en)HwnH - an

My

+ sugHWnH:c — Whz|| + [the1 — tn| M1}
T€

a + o
< (1 + en)Hxn-&-l - 1'n” + %

+ (1 + 6,) My 4 1)sup || T2 — T"x||
xeD

My

+ (1 + en)(an-i-l + a, + |/Bn+1 - 5n| + |tn+l - 75n|
+ sup||Wp+12 — Wyz||) M3,
zeD

where 1 + M7 + My < Ms for some M3 > 0. This ensures that
Qpt1 + ap
2
4+ (1 + 6,) My + 1)sup||T" 2 — Tz ||
zeD

2n+1 = 2nll = lTnt1 — 2l < OnllTnsr — znll + M,

+ (1 + Qn)(anJrl + apn + ’ﬁnJrl - Bn| + ‘thrl - tn‘

+ sup||Wpi1x — Whz||) Ms.
xeD

Using Lemma 2.6 (ii) and conditions (i), (ii), we deduce from o, — 0, 6, — 0
and the boundedness of {z,} that limsup,,_, . (||zn+1 — 20l = [|Zn+1 — 2n|]) < 0. By
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Lemma 2.3, we have lim,,_, ||z, — 2| = 0. So we obtain lim,, o ||Zp+1 — Zn|| = 0.
This completes the proof. O
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