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ON EXISTENCE OF BEST PROXIMITY PAIRS AND A
GENERALIZATION OF NASH EQUILIBRIUM

G SANKARA RAJU KOSURU

ABSTRACT. We consider a constrained m-person game, in which each player has
two strategy spaces and two pay-off functions, namely a manufacturing pay-off
function and a selling pay-off function. In this paper, we give sufficient conditions
for the existence of an equilibrium pair which minimizes the manufacturing pay-
off and maximizes the selling pay-off for each player. To prove the existence of
such an equilibrium, we introduce a notion of relatively upper semi-continuous
mapping and therein prove the existence of a best proximity pair.

1. INTRODUCTION AND PRELIMINARIES

Nash equilibrium is a fundamental notion and one of the most widely used meth-
ods, for predicting the outcome of a strategic interaction in game theory. An n-
person game consists of a set of n players with a strategy set and a payoff (or
utility) function for each player. The payoff functions represent each player’s pref-
erence over action profiles, where an action profile is simply a list of actions, one for
each player. A Nash equilibrium is an event(or an action profile) with the property
that no single player can obtain an optimal payoff by deviating unilaterally from
this profile.

John Nash in his articles ([6, 7]) defined a mixed-strategy Nash equilibrium for
a game with a finite set of actions and therein proved the existence of a (mixed-
strategy) Nash equilibrium for such a game. From this standpoint, we would like
to consider an economical abstract situation, such as, in an m-person game, let us
assume every player has a manufacturing unit with an action/strategy set X; and a
selling unit with an action/strategy set Y;. Two payoff functions (say, manufacturing
profile and selling profile) are associated with each player. Our objective is to find
an equilibrium that optimizes both payoff functions in the economical sense. To
achieve such an equilibrium, we use the theory of best proximity pairs.

Let A and B be two non-empty subsets of a metric space X. Suppose T is a
cyclic map on AUB (i.e., T(A) C Band T(B) C A). A pair (x,Tz) is said to be
best proximity pair of T if d(z,Tx) = dist(4, B) := inf{d(a,b) : a € A,b € B}. In
this article, by introducing a notion of relatively upper semi-continuous mappings,
we prove the existence of best proximity pairs for such multivalued mappings. We
also establish some properties of such a mapping in the setting of a strictly convex
Banach space. Finally we use such best proximity pairs to establish the equilibrium
for the considered abstract economics. We give examples to illustrate our results.
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Now we recall the notion of upper semi-continuous mappings and quote few re-
lated results, which we use in the sequel.

Definition 1.1 ([12]). Let X be a metric space. A multivalued map 7" on X is
said to be upper semi-continuous (usc)if {u € X : T(u) NV # 0} is closed in X for
every closed subset V of X.

A multivalued map T on X is said to have closed graph, if for any sequence {x,}
in X that converges to some z and for each n € N, w,, € T(z,) such that {u,}
converges to u in X, we have u € Tx. The following lemma is a characterization of
upper semicontinuous maps.

Lemma 1.2 ([12]). Let A and B be non-empty subsets of a metric space X . Suppose
B is compact. Then every multivalued map T from A to B is usc if and only if T
has closed graph.

Theorem 1.3 (Fan-Glicksberg fixed point theorem, [12]). Let K be a non-empty,
compact and convex subset of a normed linear space X. Suppose T : K — K is a
closed and convez valued usc mapping. Then T has a fized point.

2. RELATIVELY UPPER SEMI-CONTINUOUS MAPPINGS

Let (X, d) be a metric space and A, B be two non-empty subsets of X. We now fix
notations for the proximal subsets of (A, B), Ay :={x € A: 3y € B with d(z,y) =
dist(A,B)} and By := {y € B : 3 x € A with d(z,y) = dist(A, B)}. Suppose
T is a cyclic multivalued map on A U B, that is for z € A,T(x) C B and for
y € B,T(y) C A. In this section, we introduce a notion called relatively upper
semi-continuous map on A U B and establish basic properties of such a map.

Definition 2.1. Let A, B be two non-empty subsets of a metric space (X,d). A
multivalued cyclic map 7" on AU B is said to be relatively upper semi-continuous
(rusc) if {x, }, {yn} are two sequences in A, B respectively such that x,, — =, y, = y
with d(z,y) = dist(4, B), further if v, € T'(z,), un € T(yn) for all n € N with
Uy — uin A, v, — v in B, then we have

dist(T'(x),u) = dist(A, B) = dist(T'(y), v).

Let A and B be non-empty closed subsets of a metric space. It is to be noted that
if dist(A, B) = 0 and either A or B is compact, then every closed valued rusc map
is upper semi-continuous. To see this, choose any closed subset V' of the compact
set ANB and set U :={u € ANB:T(u)NV # (}. Suppose {z,} is a sequence in
U that converges to  in AN B. Then there exists u, € T(x,) NV, for n € N. As
V' is compact, there exists a sub-sequence {u,, } of {u,}, that converges in V', say
to u. As T is rusc, we have d(T'(z),u) = dist(A, B) and hence u € T'(x). Therefore
zel.

Let (X,]| - ||) be a normed linear space and A, B be closed convex subsets of
X. A projection map onto A, is the map P4 : B — A defined by, for y € B,
Pa(y) :={x € A: ||z —y| = dist(y, A) := inf{[ja — y|| : « € A}. We first show that
the composite map P47 is a convex valued map on Ag.
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Proposition 2.2. Let A, B be two non-empty closed convex subsets of a normed
linear space (X, ||.||). If T is a closed convexr valued rusc mapping on AU B, then
for any z € Ay, PoT(z) is a convex subset of Ag.

Proof. For z € Ay, suppose x,y € PoT(z) and A € [0,1]. Then there are u, v €
T(z) such that x € Ps(u) and y € Pa(v). Hence there exists v’ € A such that
d(u,u') = dist(A, B). Since Tz is convex, we have Au + (1 — \)v € T(z). Now
dist(A, B) < ||z — u|| = dist(A,u) < [|[u' — u|]| = dist(A, B). That is ||z — u| =
dist(A, B). In a similar way, one can prove ||y — v|| = dist(4, B). Now

dist(A, du+ (1 = MNv) <||Ax+ (1 =Ny) — (Au+ (1 —N)v)||
<Az = ull + (1= My — vl
= Mdist(A4, B) + (1 — M\)dist(A4, B)
= dist(4, B) < dist(4, \u + (1 — A\)v).
That is Az 4+ (1 — Ay € Pa(Au+ (1 — A)v) and hence P4oT'(z) is convex. O

A non-empty subset A of a metric space (X,d) is said to be approximatively
compact ([2]) if {z,} is a sequence in A and y € X such that d(x,,y) converg-
ing to dist(y, A), then {z,,} has a convergent subsequence in A. Suppose B is a
compact subset of X. Let {x,} and {y,} be sequences in A and B respectively
with d(zp,yn) — dist(A4,B). As B is compact, there exists y € B, such that
d(xn,y) — dist(A, B). By using approximatively compactness of A, there exists
x € A with d(z,y) = dist(4, B). Thus we have:

Lemma 2.3. Let A, B be two non-empty subsets of a metric space X. Suppose B
is compact and A is approximatively compact. Then Ay, By are non-empty compact
subsets of X.

Also for x € Ap and v € T(z), choose y € By such that d(z,y) = dist(4, B)
and v € T(y). By fixing z,, = x, Yy, = y,u, = u and v, = v, we can conclude
dist(7T'(z),u) = dist(A, B) = dist(T'(y), u). So we have:

Lemma 2.4. Let A, B and X be as in Lemma 2.3. If T is a rusc map on AUB
then T'(x) N By, T(y) N Ag are non-empty, for each x € Ay and y € By.

Thus, if A, B and T are as in Lemma 2.4, then T defined by

AgUBy
T (l‘) — T(.’IJ) N By lf x € Ay,
AoUBg T(.’B) n BO ifz e Bo,
is a well-defined rusc map on Ag U By. Hereafter, without ambiguity we denote,

T OB by T, when we consider the map on Ag U By. Now we prove the following
oUBo

theorem, which will be useful in the sequel.

Theorem 2.5. Let X be a normed linear space and A, B be as in Lemma 2.5. If
T is a closed valued rusc map on AU B, then PAT is upper semi-continuous on Ag.

Proof. Let {x,} be a sequence in Ay that converges to = in Ay. Suppose z, €
P4T(x,,) for each n € N and z, — z. Get y,, in B such that d(z,,y,) = dist(A, B)
and y, — y, for some y € B. Choose u, € T(z,) for all n € N with u, — u.
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Set v, = z, for all n € N. As T is rusc, we have dist(T(z),z) = dist(4,B) =
dist(T'(y),u). Now dist(Ag,Tx) < dist(Tx,z) = dist(A4, B) < dist(Ap,Tx). As
T(z) is compact, there exists a w € T'(x) such that d(z,w) = dist(Ap, z). Hence
z € PoT(x). In view of Lemma 1.2, P4T is upper semi-continuous on Ag. O

We conclude this section by giving a natural example to illustrate the notion of
rusc mappings on a normed linear space.

Proposition 2.6. Let A, B and X be as in Lemma 2.3. Then the projection map
P on Ag U By is rusc, where

| Pp(z) ifze Ay,
P(z) := { Pj(x) ifx e BE.

Proof. Let x € Ap and z € P(x) = Pp(x). Therefore there exists y € By such
that d(z,y) = dist(4, B) and d(z, z) = dist(x, B). Now dist(4, B) < d(z,z) =
dist(z, B) < d(z,y) = dist(A, B). This implies z € By. Hence P(Ap) C Bp. In
a similar fashion one can prove that P(Bp) C Ag. Without loss of generality we
assume Ag = A and By = B. So for any u € A, dist(u, B) = dist(A, B). Suppose
{zn} is a sequence in A and {y,} is a sequence in B such that z, — z, y, —
y with d(z,y) = dist(A4, B). Further assume that u, € Pp(z,), vn € Pa(yn)
for all n € N with w, — u, v, — v. Therefore y € Pp(x), v € P4(y) and
d(up, x,) = dist(xp, B), d(vn,yn) = dist(yn, A). Now, for any n € N, dist(A, B) <
d(up,x,) = dist(x,, B) = dist(A, B). Hence d(uy,x,) = dist(A, B), for all n € N.
In a similar fashion one can have d(v,,y,) = dist(A4, B), for all n € N. Hence
dist(u, Pa(y)) = d(u,z) = dist(A, B). In a similar fashion one can prove that
dist(v, Pg(x)) = dist(A, B). Hence P is rusc. O

3. EXISTENCE OF BEST PROXIMITY PAIRS

Let A and B be two non-empty subsets of a metric space X. We say that (A, B)
is semisharp proximinal pair if for every = € A(respectively in B), there exists
atmost one y in B(respectively in A) such that d(z,y) = dist(A, B). If such a y
exists, we denote this y as 2/. Hereafter we use the above notation, throughout this
manuscript, if it exists. These pairs naturally occur in the case of A and B being
closed convex weakly compact subsets of a uniformly convex Banach space ([8, 12]).
Now we prove that every rusc map commutes with the projection map P, defined
in Proposition 2.6.

Theorem 3.1. Let (A, B) be a non-empty semisharp proximinal pair in a metric
space (X,d). Suppose B is compact and A is approximatively compact. If T is a
rusc map on AU B, then T commutes with P on AgU By, where P is the projection
map on AU B.

Proof. Suppose w € Ay and v € TP(w). As (A, B) is semisharp proximinal pair,
v € T(w'). For a fixed u € T'(w), set x, = w, y, = W', u, = v and v, = v
for all n € N. As T is rusc, we have dist(v,Tw) = dist(A, B). Hence there is
a k € T(w) such that d(k,v) = dist(A, B). Hence v = k and so v/ € T(w).
Therefore v = (V') € PaT(w). As v € TP(w), was chosen arbitrarily, we have
TP(w) C PT(w). This completes the proof. O
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The following example shows that Theorem 3.1 fails to hold if (A, B) is not a
semisharp proximinal pair.

Example 3.2. Let X = (R? |.|x). Set A := {(0,z) € X : 0 < x < 2} and
B:={(1,z) € X : 0 <x < 2}. Define T on AU B by, for (a,z) € AU B,
{Ly):0<y<z,yeQ} ifa=0 andzeQ
(1,1) ifa=0 and z € Q°
T(a,z):=
{(0,y):0<y<z,yecQ} ifa=1 andzeQ
(0,1) ifa=1 and z € Q°.
It is easy to see that, Ag = A, Byp = B and dist(A, B) = 1. We first show that T
is a rusc map. For this choose any two sequences {(0,z,)} € A and {(1,y,)} € B,
that converge to (0,z) and (1,y) respectively with d((0,x), (1,y)) = dist(A, B) = 1.
Then {z,} converges to = and {y,} converges to y and |z —y| < 1. Suppose
(1,up) € T(0,zy) and (0,v,) € T(1,y,) for n € N with
lim (1,u,) = (1,u) and lim (0, v,) = (0,v).
n—oo n—o0

It is to be noted that, if {y, } contains an irrational subsequence, then {v,} contains
a constant sub-sequence {1}. Hence v = 1. In this case we have dist(7'(0, x), (0,v)) =
1 = dist(A, B). Also if z is irrational, then we have 7'(0,z) = (1,1). Therefore
dist(7°(0, x), (0,v)) = ||(1,1) — (0,v)||cc = 1 = dist(A, B). Hence, without loss of
generality we assume that {(0,y,)} is a rational sequence and z is a rational num-
ber. As (0,v,) € T(1,yy), we have 0 < v, <y, forn € Nandso 0 <v <y. It is to
be observed that, if x > y, then (1,v) € T'(0,x). Hence dist(7'(0,z), (0,v)) =1 =
dist(A, B). Also if z <y, choose z =min {0,v —1}. Asjz—y|<land 0<v <y
we have (1,z) € T(0,z). Hence dist(7(0,z), (0,v)) = 1 = dist(A, B). In a similar
fashion one can show that dist(T'(1,y), (1,u)) = 1 = dist(A4, B). Therefore T is a
rusc map. Now for (0,1) € Ay, we have
T700,1)={(l,z):0<z <1, z€Q}.
Hence
PT(0,1) = U P
0<z<1, z€Q
P(1,1)
{(0,2) € A+ (0,2) = (1,1) oo = 1}
{(0,2) : 0 <z <2} =A.
Also PT(0,1) C A, so that PT(0,1) = A.
On the other hand, P(0,1) = {(1,z) : 0 <z <2} = B. Now

TP00,1) = U{T(1,z):0<z<2}

— [U{T(2):0<2 <2 2 QYU |[U{T(L0) 0 e <2 2 e QY

= {(0,1’):0§1‘§2’{L’EQ}U{(O,U}
= {(0,2):0<x <2, xz€Q} #A.
Hence PT(0,1) # TP(0,1).
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The following theorem guarantees the existence of a best proximity pair.

Theorem 3.3. Let A, B and X be as in Theorem 3.1. If T is a closed convex
valued rusc map on AU B, then there exist x in A, y in B such that dist(xz,Tx) =
dist(A, B) = dist(y, Ty) and d(z,y) = dist(A, B).

Proof. By Theorem 2.5, the multivalued map PAoT : A — A is upper semicontinu-
ous. Hence by Theorem 1.3, there exists an element z € A such that x € P4T(z).
Since T'(z) compact, there exists an element u € T'(z) such that x € P4(u). Hence
|z — u|| = dist(A, B). Therefore dist(z, Tx) = dist(A, B). Also by Theorem 3.1, we
get © € T(Pa(x)). By setting y = Pa(z), we have dist(y, T'y) = dist(A4, B). This
completes the proof. O

As a consequence of the above theorem we get the following;:

Corollary 3.4. Let A and B be two non-empty convex subsets of a strictly convex
Banach space X. Suppose B is compact and A is approzimatively compact. If T is
a closed conver valued rusc mapping on AU B, then there exist x in A, y in B such
that dist(z, Tx) = dist(A, B) = dist(y, Ty) and d(z,y) = dist(A, B).

We conclude this section by giving an example to illustrate Theorem 3.3.

Example 3.5. Let A = {(z,4,0) : 0 < z,y < 2} and {(z,y,1) : 0 < z,y < 2} in
the Euclidean space <R3, | - H2> It is easy to see that dist(A, B) = 1. Suppose

f:10,2] = [1,2] be a continuous function such that ¢t < f(¢) for all ¢t € [0, 2]. Define
a cyclic multivalued map on AU B by

{2 =z,0,1):0<a< f(y)} if(z,y,2)€A
T(x,y,2) '—{ (@ re0):0<e< o)) i (s o) cB.

Suppose {ay, = (Tn,Yn,0)} and {B, = (un,vn, 1)} are two sequences that converge
toa = (z,y,0) and 8 = (u,v,1) in A and B respectively with ||(z,y,0)—(u,v,w)| =
1. Then we have

(3.1) r=wuand y=w.

Further assume that, for n € N, {(pn,vn,1)} and {((n, 7n,0)} are two sequences in
T'(cv,) and T'(B;,) respectively, that converge to (p,v,1) and (¢,n,0). Then,

(32) pn:2_l‘n7 Cn:2_una OS’YnSf(yn) aHdOST]nSf(Un)
From (3.1), (3.2) and continuity of f, we have
p=¢=2—zand 0 <v,m < f(y).

Hence (2 — z,n,1) € T(z,y,0). Therefore dist(T(z,y,0),(¢,n,0)) = dist(A, B).
Also as 0 < v < f(y) and y = v, we have (2 — u,v,0) € T(u,v,1). Therefore
dist(T'(u,v, 1), (p,v,1)) = dist(A4, B)). Thus A, B and T satisfy the assumptions of
Theorem 3.3. Also the pair ((1,1,0),(1,1,1)) € A x B satisfies the conclusions of
Theorem 3.3.
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4. GENERALIZATION OF NASH EQUILIBRIUM

Let I = {1,2,...,m} be a set of players. A non-cooperative Nash game of
normal form, (X;;p;)icr is an ordered 2m-tuple (X1, ..., X;n;p1, .., Pm), where the
non-empty set X; is the strategy space and p; : X = [[,c; Xi — R is the payoff
function, for each player ¢ € I. The set X, joint strategy space, is the Cartesian
product of the individual strategy sets X;. An element of X is called a strategy
(see [12, 6, 7, 1, 9, 11]). A strategy z* = (x7,25,...,2),) € X is called a Nash
equilibrium for the game if the following system of inequalities hold:

pi(z*) < pi(x,x%;), forall z; € X;, iel

where (x5, 2% ;) = (27,25, ..., T]_1, T4, T}, ..., Ty, )

In [10], the authors considered an n-person game in which each player has two
strategy sets and then, by using best proximity pair theorems, established an equi-
librium pair for a constrained game. Later many authors proved the existence of
equilibrium pairs in similar lines using best proximity pair theorems for multivaled
mappings [10, 5, 4, 3].

We consider an economical situation, with m players and a manufacturing unit
strategy space X; and a selling unit strategy space Y; associated with it. Also it is
to be assumed that the goods from X; are transformed to Y;, i = 1,2,...,m, in this
case d(z;,y;) is the transportation cost for the i'? player. We denote X = [Licr Xi
and Y = [[;c; Yi. Knowing the manufacturing strategies v_; € X _; := Hie[—{i} X;
and selling strategies y_; € Y_; := [[.c/_ G} Y; of all other players, the i*" player
has to choose his / her manufacturing profile, say x;, and selling profile, say y;. In
this case the pay-off functions for the i** player are defined as follows:

fi : XZ'XY,Z‘—)R,
gi Y;XX_Z—>R

Here f; and g; represent the manufacturing profile and the selling profile of the
ith player, respectively, by knowing both manufacturing and selling profiles of all
the other players. We denote (X,Y, F,G) is the normal form of such an abstract
economy, where F' = (fi, fo,..., fm) and G = (91,92, -, 9m)-

We say that a pair (z*,y*) € X x Y is an equilibrium pair for such an abstract
economy (X,Y, F,G), if for each i =1,2,...,m,

filzi,y%;) = inf fi(ai,yZ,),
a; Xz

gi(yl,z*,) = sup gi(bi,x*;) and
b;€Y;

|27 —yill = dist(X;, V).

The equilibrium is a pair of action profiles with the property that every player
can obtain optimal payoffs (optimal manufacturing cost and profit) with minimum
transportation cost.

Remark 4.1. It is to be observed that, if we assume the manufacturing profile is
less than the selling profile, that is f; < g¢;, forallt = 1,2, ..., m, then an equilibrium
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pair (z*,y*) of the aforementioned economy (X,Y, f, G) turns out to be a natural
generalization of equilibrium:

gi(y;,2%;) — filzl,yZ,) = sup gi(bi,2%;) — fiai,yly), i=1,2,...,m.

(ai,bi)€EX; xXY;

Consider the abstract economy with the normal form (X,Y,F,G). We say
that (F,G) satisfies the property (A) if for any z = (x1,29,...,2m) € X, y =
(Y1,Y2,- -, Ym) € Y with d(z,y) = dist(X,Y) and for (ui,ua,...,un) € X satisfy-
ing

fiuwisy—i) < filai,y—i) for all a; € X;, 1 <i <m,
then there exists (v1,v2,...,vy,) € Y such that
gi(vi,x—;) > gi(bi, ),V b; € Yy and d(u;,v;) = dist(X;,Y;), 1 <i <m.

The Property (A) can be interpreted naturally as, when a player produces a low
cost product, then he/she may get maximum profit by selling the same. Now we
prove the existence of an equilibrium pair.

Theorem 4.2. Let (X,Y, F,G) be a normal form of an abstract economy as defined
above, with (X,Y) a non-empty compact convex semisharp proximinal pair in a
normed linear space H (for example, (X,Y) can be taken to be non-empty closed,
bounded and convez subsets of R™, with respect to Euclidean norm). Suppose f;, g;
are continuous and (F,G) has the property (A). If fi(-,y—;) is convex, g;(-,x_;) is
concave, for all (z,y) € X XY and i € I, then (X,Y, F,G) admits an equilibrium
Dair.

Proof. For fixed x € X and y € Y, define

Ty, (y) = {wi € Xi : fi(wi,y—i) < filas, y—;) for all a; € X;} and

Ty (x) == {vi € Vi : gi(vi,x—y) > gi(bi,x—;) for all b; € Y;}, fori = 1,2,...m.
As fi(-,y—;) and f;(-,x_;) are continuous functions on compact sets, T, (y) and

Ty;(x) are non-empty subsets of X; and Y; respectively, for i = 1,2,...m. Define
Yv: XUY - XUY by

| Ty (x) x Tpy(2) % ... x Ty, (z), ifzeY
V(@)= { T @) x T (2) % o x T (2), iz € X,

It is to be noted that ¢ (n) € Y, for n € X and ¥(¢) € X, for ( € Y. As fi(-,y—;)
is a convex continuous function and g;(-,x_;) is a concave continuous function, we
have that (-) is a closed and convex valued map.

Assertion. 1) is rusc.

Proof of Assertion. Let {2} C X, {y"} C Y be such that 2" — z, y" — y with
d(z,y) = dist(X,Y) and w" € ¢(z™), u™ € P(y") for all n € N with v” — u, w" —
w. That is

wy' € Ty, (2") and uj' € Ty, (y") for i€ {1,2,...,m}, neN.

Hence fi(ul,y";) < fiai,y";), for all a; € X;, i € {1,2,...,m},n € N. Therefore
filui,y—i) < filai,y—i), for all a; € X;, i € I. As (F,G) satisfies the property
(A), there exists v; € Y; such that g;(vi,x—;) > ¢i(bj,x_;), for all b; € Y; and
|lui — vs|| = dist(X;,Y;) for all ¢ € I. Hence v; € Ty, (x) for all i € {1,2,...,m}.
Therefore v = (v1,v2,...,0m) € ¥(z) and ||u — v| = dist(X,Y). Now dist(X,Y) <
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dist(u, ¥(x)) < ||lu—v|| = dist(X,Y"). Hence dist(u,y(z)) = dist(X,Y). In a similar
fashion one can prove that dist(w, ¥ (y)) = dist(X,Y"). This establishes the assertion.
Now by Theorem 3.3, ¢ admits a best proximity pair (z*,y*) in X x Y such that
|z* — y*|| = dist(X,Y). Hence dist(z}, T, (x*)) = dist(X;,Y;) = dist(y}, Ty, (y*))
and ||z} — yf|| = dist(X;,Y;) for all ¢ € I. Since T, (x*) is compact, there exists
2 € Ty, (x*) such that ||z} — 2| = dist(X;,Y;) for all 4 € I. By uniqueness of best
approximation, we have yf = z;, for all i € I. Hence y} € T,,(z*), for all i € I.
Equivalently,

gi(y;,x%) > gi(bj, ™), for all b € V;, i =1,2,...,m.

In a similar fashion one can prove that x; € T, (y*), for all i € I. Equivalently,
filxl,yr,) < filas, y™,),for all a; € X;, i =1,2,...,m.

This completes the proof. O

As a consequence of the above theorem we obtain the following standard Nash
equilibrium.

Corollary 4.3. Let (X,Y,F,G) be a normal form of an abstract economy, as in
Theorem 4.2.
(a) If fi(zisy—i) < gi(yi,x—i) for all x € X, y € Y with d(z,y) = dist(X,Y),
then there exists (x*,y*) € X XY such that
gl(y;kvx*—z) _fl(x;k7y*—7,) - sSup gZ(yZaw—z) _fi(xiay—i>7 1=1,2,...,m.
(z,y)eX XY
[l —yi | =dist(X,,Y:)
(b.) If fi(zi,y—i) = 9i(yi,v—i) for all x € X, y € Y with d(x,y) = dist(X,Y),
then there exists (z*,y*) € X XY such that

fl(w;k’yiz) _gl(ijx*—z) = inf fz(xz,y,z) _gz(yhxfl)v i = 172a7m
(z,y)eX XY

[l —ysl|=dist(X,,Y;)
Proof. (a). If fi(us,v—;) < gi(vi,u—;) forallu € X, v € Y with d(u,v) = dist(X,Y),
then,
(4.1)  giyisz—i) — filzi,y—i) = sup  gi(bi,x—i) — fi(ai,y—i), 1 <i<m.
(ai,bi)EXixY;
Now set A := {(z,y) € XXY : ||lz;—yi|| = dist(X;,Y:), 1 <i < m and satisfies (4.1)}.
We have, by Theorem 4.2, A is a non-empty subset of X x Y. As f;, g; are contin-
uous, for all 7, and A is a closed subset of the compact set of X x Y, there exists
(z*,y*) € X x Y such that for each i =1,2,...,m,
g9i(yi @) — filzi,yl) = sup 9i(yi,x—i) = fi@i, y—i)-
(z,y)eX XY
[l —yi || =dist(X;,Ys)
(b). Employing the same techniques in the case when f;(z;,y—;) > ¢i(yi,x—;) for
all x € X, y € Y with d(z,y) = dist(X,Y), we have («*,y*) € X x Y such that for
eachi=1,2,...,m,
filxl yls) — gi(y;, 22;) = (:c,y)ig)fwy filwiyy—i) — gi(yi, v—i)-
s —yi || =dist (X;,Y)
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Remark 4.4. It is to be observed (in the above proof) that if f;(-,y_;) is not a
convex function, for some y € Y, then ¢ (z) may not be a convex valued map. To
see this, set X1 =Y, =10,1], Xo = _—1 Ys = % and define

1 1-—

fi <x1, 5) = mm{xl,; :1:1)}, for 1 € X4,

1-—

(yh ) _ mindy, ( y1)}’ for 3 € Y1,
2 2

( ,yl) = _Tyl, for y1 € Y1 and
1

(l’l, ) = %, for 1 € X;.

Then it is easy to see that f;, g; are continuous, ¢ = 1,2. But for any y € Y, we
have Ty, (y) = {0,1}. Therefore T4, (-) is not a convex set and hence so is 1. In a
similar fashion, if g;(-,z_;) is not a concave function, for some =z € X, then (")
may not be a convex valued map.

Finally we give an example to illustrate Theorem 4.2, by using the following fact.

Fact 4.5. Let (ay,a2), (b1,b2) € R%. If min{a1,as} < min{by, by} and a1 + ay =
b1 + b, then max{aj,as} > max{by,bs}.
Yy = 4

Example 4.6. Let X; = Y, = [-1,1], X, = Y5 = [0,1], X3 = —3, 5
and X = X7 x Xo x X3, Y = Y] x Y5 x Y3. Let us consider that X and Y are
subsets of the Euclidean space R? (with respect to the Euclidean norm). It is to
be observed that dist(X,Y) = 1. Also, if x = (x1,22,23) € X, vy = (y1,42,y3) € Y
satisfy d(x,y) = dist(X,Y), then 1 = y1, z2 = yo, 23 = —% and y3 = % Define
fi: XixY_; —>Randg;:Y; x X_; —» R (fori=1,2,3) by

fi(ur,vo,v3) = ui(vy +v3),

fao(vi,ug,v3) = max{ug,1 —ug} + vy + vs,
f3(vr,v2,u3) = w1+ v2 +us,

g1(vi,ug,u3) = (1 — vf)(uz + ug),
g2(u1,v2,u3) = min{ve, 1 —ve} + uy + ug,
g3(ur,u2,v3) = ui+ug+ w3,

for all (uj,ug,u3z) € X and (v1,v,v3) € Y. It is easy to see that, f;, g¢; are
continuous. Also for each fixed (z,y) € X x Y, fi(-,y—) : X; — R is convex
and g;(-,x—;) : Y; — R is concave, for i = 1,2,3. Let x = (x1,z9,23) € X and
y = (y1,92,y3) € Y be such that d(x,y) = dist(X,Y). Then,
-1 1

4.2 = et e — — —

(4.2) TI= Y1, T2 =Y, B3 o, Y3 = g

Suppose u = (uy,u2,uz) € X satisfies

fi(ui,y_i) < fi(ai,y_i), for all a; € X; (Z = 1,2,3).
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Elementary numerical calculations show that g1(vi,x_;) > ¢;(b1,2_;) for all by €
Vi, 1 <4 < 3, where v = (v1,v2,v3) = (u1,u2,3). Hence (F,G) satisfies the
property (A), where F' = (f1, fo, f3) and G = (g1, 92, 93). Also, by using basic

numerical calculation, it is easy to see that (z*,y*) = ( (0, %, %1), (0, %, %)) € XxY

is an equilibrium pair for (X,Y, F, G). Also we have

gz(yjﬁx*—z) - fl(x:a y*—z> = sup gl(yza l'_i) - fl(xza y—i)v for i = 17 27 3.
(z,y)eX XY

[l —yi || =dist (x;,Y;)
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