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lie on explicit answers to concrete PDE-problems in models of physics, geometry, or
other applications. On the other hand one might strive for all elliptic problems at
the same time when they share common properties, such that it is reasonable to look
for algebras of operators in the above-mentioned sense, like on closed smooth man-
ifolds, or in Boutet de Monvel’s calculus where the operators have the transmission
property at the boundary. For instance, given an infinite straight cone rather than a
smooth manifold, we might ask for a kind of cone algebra containing not only ellip-
tic differential operators, degenerate in stretched coordinates at the tip of the cone,
with the axial variable r > 0 (such as Laplace-Beltrami operators associated with a
cone-metric) and with r → ∞ as a conical exit to infinity. Corresponding cone alge-
bras do exist, ideed, cf., examples below and other results on edge algebras, created
in [35], see also [2–4, 12–14, 20, 21, 23, 32–34, 36, 37]. Clearly several approaches are
not really disjoint, but not always coordinated. Degenerate differential operators,
partly in a pseudo-differential context, have been investigated by many authors, see
also, [11,22,26–28]. In the present paper we develop fuctional analytic properties of
weighted corner spaces, cf. Theorem 3.1 which extends a corresponding result for
weighted edge spaces, added here for completeness in Section 4 as Proposition 4.2
with a more transparent proof, compared with that of [37, Proposition 3.1.21].

1. Mellin-edge operators

In the following we refer to the terminology from [3, 4] on categories Mk, k ∈
N = {0, 1, 2, . . . , } of corner spaces M of singularity order k, see also [7, Section 1].
Roughly speaking, the elements of Mk are stratified spaces, obtained by repeatedly
forming cones

(1.1) X△ := R+ ×X/({0} ×X)

or wedges

(1.2) X△ × Rq,

k times, combined with globalizations, where X in the first step is a smooth man-
ifold, often assumed to be compact. M0 is a category of oriented smooth mani-
folds with diffeomorphisms as isomorphisms, and we assume that M ∈ Mk entails
Ω ×M, M × Ω ∈ Mk for every Ω ∈ M0 and all k. The analysis will take place on
the respective open stretched cones X∧ := R+ × X and wedges X∧ × Rq in the
splitting of variables (r, x) and (r, x, y), respectively. The variable R+ is interpreted
as the (local) cone-axis variable, and X as the base (link) of the respective cone, or
of the model cone of the wedge when q > 0. In the Appendix below we recall more
terminology in this context.

Example 1. Let X be a closed manifold, endowed with a Riemannian metric gX .
Then X∧ = R+ × X in the variables (r, x) is an infinite (stretched) cone with
the metric dr2 + r2gX and the associated Laplace-Beltrami operator is a special
degenerate operator of the form

(1.3) Acone = r−µ
µ∑

j=0

aj(r)
(
− r

∂

∂r

)j
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for coefficients aj ∈ C∞(R+,Diffµ−j(X)), in this case for µ = 2, with Diffν(X) being
the Fréchet space of differential operators of order ν on X with smooth coefficients.
Sometimes, differential operators like (1.3) will be called to be of Fuchs type. Those
are formulated here for arbitrary µ ∈ R, since we are talking about algebras, gen-
erated by such operators, and we reach operators of order −µ when we talk about
ellipticity and express parametrices. More generally, on X∧ × Ω, Ω ⊆ Rq open, in
the coordinates (r, x, y), we have so-called edge-degenerate differential operators

(1.4) Aedge = r−µ
∑

j+|α|≤µ

aj,α(r, y)
(
− r

∂

∂r

)j
(rDy)

α

for coefficients aj,α ∈ C∞(R+ × Ω,Diffµ−(j+|α|)(X)). Special cases for µ = 2 are
Laplace-Beltrami operators belonging to dr2 + r2gX + dy2. Operators of the form
(1.4) belong to the edge algebra, to be considered below, and parametrices in the
elliptic case are of opposite order.

Remark 1.1. Cones X△ and wedges X△ × Ω are special examples of elements in
M1. For anyM ∈ M1 we have the singular stratum s1(M) which is equal to a single
point in X△, the vertex of the cone, and for M = X△ ×Ω we have s1(M) = Ω, the
edge of M. More generally, an element M ∈ M1 is called a manifold with conical
singularities when dim s1(M) = 0, otherwise, a manifold with edge s1(M) when its
dimension is equal to q > 0.

For the pseudo-differential analysis on spacesM ∈ Mk for k > 1 it is important to
refer to information from the case k = 1. For a space in E ∈ M1 with dim s1(E) = 0
we often assume that s1(E) is a single point; otherwise it would be a discrete subset
of E, and a space with edge Y of dimension > 0 will be denoted by B. While E is
locally close to s1(E) modelled on X△ for some compact X ∈ M0, a space B ∈ M1

with edge Y = S1 of dimension q > 0 is locally near Y modelled on X△ × Rq;
without loss of generality we often refer to local coordinates y ∈ Rq .

Spaces E with conical singularity s1(E) are considered in terms of the stratifica-
tion

(1.5) s(E) := (s0(E), s1(E))

for s0(E) := E \ s1(E). The principal symbol hierarchy of operators Acone on E has
two components

(1.6) σ(Acone) := (σ0(Acone), σ1(Acone)),

consisting of the interior homogeneous principal symbol σ0(Acone) of Acone as an
element of Diffµ(E \ s1(E)) and the operator-valued conormal symbol σ1(Acone) of
Acone. For differential operators (1.3) we have the principal conormal symbol

(1.7) σ1(Acone)(w) :=

µ∑
j=0

aj(0)w
j

which is operator-valued as a family of continuous operators between Sobolev spaces
on X

(1.8) σ1(Acone)(w) : H
s(X) → Hs−µ(X)
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with w being the complex Mellin covariable, dual to −r∂r varying on Γ(n+1)/2−βµ

for some weight βµ ∈ R, cf., notation (1.25) below.

Spaces B ∈ M1 with edge singularities Y = s1(B) of dimension q > 0 have an
analogous stratification

(1.9) s(B) := (s0(B), s1(B))

for s0(B) := M \ s1(B) and the edge s1(B). The principal symbol hierarchy of
operators Aedge on B has the form

(1.10) σ(Aedge) := (σ0(Aedge), σ1(Aedge)),

with the interior homogeneous principal symbol σ0(Aedge) interpreted as an element
Aedge ∈ Diffµ(B \ s1(B)). Moreover, we have the operator-valued principal edge-
symbol σ1(Aedge)(y, η) of Aedge as a family of continuous operators between weighted

Kegel spaces Ks,β(X∧) of smoothness s and weight β on the open stretched cone
X∧, cf. notation (1.20) below,

(1.11) σ1(Aedge)(y, η) : Ks,β(X∧) → Ks−µ,β−µ(X∧)

which is for differential operators (1.4) of the form

(1.12) σ1(Aedge)(y, η) = r−µ
∑

j+|α|≤µ

aj,α(0, y)
(
− r

∂

∂r

)j
(rη)α

for all y ∈ Rq and η ∈ Rq \ {0}. Recall that in this case there is a “subordinate”
y-dependent conormal symbol belonging to the conical singularity of the model cone
X△, here denoted by

(1.13) σcσ1(Aedge)(y, w) =

µ∑
j=0

aj,0(0, y)w
j : Hs(X) → Hs−µ(X),

for w ∈ Γ(n+1)/2−βµ
. Recall from [35] that one of the basic observations of homoge-

neous principal edge symbols is the relation

(1.14) σ1(Aedge)(y, δη) = δµκ−1
δ σ1(Aedge)(y, η)κδ

for every δ ∈ R+, where κδ is the transformation (κδu)(r, x) := δ(1+n)/2u(δr, x),
acting on Ks,β(X∧)-spaces for arbitrary s, β, cf. also notation (1.32), below.

The edge calculus, or its parameter-dependent analogue

(1.15) Lµ(B, g), and Lµ(B, g;Rd
λ),

respectively, for weight data g := (β, β − µ), with λ ∈ Rd being a parameter,
will be systematically employed in the considerations below, cf., Definition 1.2,
and it is necessary to recall some of its structures. First of all, a part of the
definition of a manifold B with edge Y is that B \ Y belongs to M0. Moreover,
Y has a neighborhood V ⊂ B with the structure of an X△-bundle over Y for a
compact X ∈ M0, where the transition maps between the fibres X△ are induced by
isomorphisms

(1.16) R×X → R×X
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in M0 such that (t, x) → (t̃, x̃) restricts to continuous maps R+×X → R+×X and
isomorphisms X → X in M0 and satisfies (δt, x) → (δt̃, x̃) for every δ ∈ R+.

Operators A ∈ Lµ(B, g) for weight data g := (β, β − µ) are pseudo-differential
in general, and because of their specific form near the edge Y they are called edge-
degenerate. In particular, by

(1.17) Diffµ
deg(B)

for µ ∈ N we denote the space of all differential operators on the smooth manifold
B \ Y of order µ which are close to Y in local variables (r, x, y), y ∈ Ω of the
form (1.4). In case of ellipticity the space L−µ(B, g−1) for g−1 := (β − µ, β) just
contains parametrices of operators in (1.17). Similar notation may be used including
parameters λ ∈ Rd, and we write

(1.18) Diffµ
deg(B;Rd).

Operators in (1.17) or (1.18) are connected with their own natural weight data
g := (β, β − µ) where the choice of β appears in connection with ellipticity.

On the open stretched cone

(1.19) X∧ := R+ ×X,

we now recall some notation on distribution spaces, namely, weighted Kegel spaces

(1.20) Ks,β(X∧) := {u = ωu0 + (1− ω)u∞ : u0 ∈ Hs,β(X∧), u∞ ∈ Hs
cone(X

∧)}.
Here ω = ω(r) is a cut-off function on the positive r half-axis. Moreover, Hs

cone(X
∧)

is an analogue of the standard Sobolev space Hs(R1+n) in variables x̃ = (x̃0, x̃
′),

based on the Fourier transform in x̃. For the definition of Hs,β-spaces involved in
(1.20) are first consider

(1.21) Hs,β(R+ × Rn)

where we employ the weighted Mellin transform with respect to r ∈ R+ together
with the Fourier transform in x. The space (1.21) is the completion of C∞

0 (R+×Rn)
with respect to the norm

(1.22) ∥u∥Hs,β(R+×Rn) :=

{∫
Rn

∫
Γn+1

2 −β

⟨ξ, w⟩2s|(Fx→ξMr→wu)(ξ, w)|2 d̄w d̄ξ
} 1

2

where

(1.23) M : C∞
0 (R+) −→ A(Cw)|Γn+1

2 −β
,

(1.24) Mu(w) =

∫ ∞

0
rwu(r)

dr

r

is the weighted Mellin transform and A(Cw) the (Fréchet) space of holomorphic
functions in w,

(1.25) Γα = {w ∈ C : Rew = α}
a weight line, here for α = n+1

2 − β, and M applied to C∞
0 - functions in r ∈ R+,

taking values in C∞
0 (Rn). From (1.21) we then pass to spaces Hs,β(X∧) using an
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open covering of X by coordinate neighborhoods {U1, . . . , UN} and a subordinate
partition of unity {φ1, . . . , φN}. Concerning more details, especially functional an-
alytic properties, see, e.g., [37]. The space Hs

cone(X
∧) occurring in (1.20) treats

the “cylinder” (1.19) as a manifold with conical exit to ∞, which is an important
property for the correct meaning of edge spaces below.

For the definition we first choose a coordinate neighborhood on the unit sphere
Sn in R1+n ∋ (x̃0, x̃

′) where we assume V ⊂ {x̃0 > 0} and we form

(1.26) V ∧ :=
{
x̃ ∈ R1+n \ {0} :

x̃

|x̃|
∈ V

}
.

For any cut-off function ω(r) and s ∈ R we set
(1.27)

Hs
cone(V

∧) :=

{
u(x̃) ∈ Hs

loc(R1+n)|R+×V : (1− ω(|x̃|))u ∈ Hs(R1+n)|R+×V

}
.

Choose a system of diffeomorphisms χj : Uj −→ V , and set

(1.28) χ∧
j : R+ × Uj −→ V ∧, χ∧

j (r, x) = rχj(x) = rχj(x) = x̃,

and

(1.29) Hs
cone(R+ × Uj) :=

{
u(r, x) = ((χj)

−1
∗ v)(r, x) : v ∈ Hs

cone(V
∧)
}
.

Then

(1.30) Hs
cone(X

∧) :=

{ N∑
j=1

φjuj : uj ∈ Hs
cone(R+ × Uj), j = 1, . . . , N

}
.

Recall that the spaces (1.20) are independent of the choice of ω. For s = β = 0 we
have the relation

(1.31) K0,0(X∧) = H0,0(X∧) = r−n/2L2(R+ ×X)

where L2 refers to drdx and dx to a fixed Riemannian metric on X.

Another important class of spaces are the weighted edge spaces which make sense
in abstract form in terms of a (separable) Hilbert space H endowed with a group
action

(1.32) κ = {κδ}δ∈R+ for isomorphisms κδ : H −→ H

such that κδκδ′ = κδδ′ and κ1 = idH . Moreover, we ask strong continuity, i.e., for
every fixed h ∈ H the function {κδh : δ ∈ R+} belongs to C(R+,H). Let us set,
cf. [35],

(1.33) ∥u∥Ws(Rq ,H) :=

{∫
[η]2s∥κ−1

[η] û(η)∥
2
H d̄η

} 1
2

which is finite on S(Rq,H) for every real s. Here η → [η] is any strictly positive
function in C∞(Rq) such that [η] = |η| for |η| > c for some c > 0. An equivalent norm
is obtained when we replace [η] by ⟨η⟩. This gives us by completion the abstract edge
space Ws(Rq,H) which is an analogue of the scalar Sobolev spaces. In analogous
meaning later on we also employ notation [η, λ] where λ ∈ Rd treated as an extra
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component of the corresponding covariable (η, λ). In this sense we also have spaces
Hs,γ(R+ × Rq,H) for some real γ obtained by completing C∞

0 (R+ × Rq,H) with
respect to the norm
(1.34)

∥f∥Hs,γ(R+×Rq ,H) :=

{∫
Rq

∫
Γn+2

2 −γ

[v, η]2s∥κ−1
[v,η](Fy→ηMt→vf)(v, η)∥2H d̄vd̄η

} 1
2

.

The choice of the weight line Γn+2
2

−γ in (1.34) depends on the specific meaning of

the space H and then n = n(H). For instance, we may have H = Ks,β(X∧) for some
real β. Then, according to our scheme of notation, n = n(H) is the dimension of the
model coneX△, which is equal to 1+dimX, i.e., (1+n(H))/2−γ = (2+dimX)/2−γ.

Later on it will be necessary to employ a relationship between norms (1.33), i.e.,
spaces like Ws(R1+q,H) and Hs,γ(R+ × Rq,H) with the norm (1.34). We employ
here the transformation

(1.35) (Sγu)(t) := e−(1/2−γ)tu(e−t),

cf., also [37, formula (2.1.28)] and we have an isomorphism Sγ : C∞
0 (R+) → C∞

0 (R).
For the one-dimensional Fourier transform F t→τ we then have the relation

(1.36) (Mγu)(1/2− γ + iτ ) = (FSγu)(τ ).

Comparing (1.34) and (1.33) we get an isomorphism

(1.37) Sγ−(1+n)/2 : Hs,γ(R+ × Rq,H) → Ws(R1+q
t,y ,H).

Let us now give a definition of (1.15) for any d ∈ N which includes the case d = 0.
We start with Lµ

cl(X;R1+q+d), the class of classical parameter-dependent pseudo-
differential operators on X of order µ, with the parameters (ρ, η, λ) in its natural
Fréchet topology, and we consider functions

(1.38) p(r, y, ρ, η, λ) := p̃(r, y, rρ, rη, rλ)

for

(1.39) p̃(r, y, ρ̃, η̃, λ̃) ∈ C∞(R+,r × Rq
y, L

µ
cl(X;R1+q+d

ρ̃,η̃,λ̃
)).

Here the variables y ∈ Rq play the role of local coordinates on the edge belong-
ing to a coordinate neighborhood on Y. Families of operators r−µOpr,y(p)(λ) are
pseudo-differential analogues of edge-degenerate differential operators (1.4), here
with parameters λ ∈ Rd. Later on the parameter will be employed for formulating
corner-degenerate families of operators. The degenerate behavior of operators for r
close to zero suggests to consider also classes of holomorphic Mellin symbols. For
the definition we first recall the meaning of

(1.40) Mµ
Ow

(X;Rq+d

η̃,λ̃
),

defined to be the set of all

h̃(w, η̃, λ̃) ∈ A(Cw, L
µ
cl(X;Rq+d))
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which induce elements

h̃(α+ iρ, η̃, λ̃) ∈ Lµ
cl(X; Γα × Rq+d)

for every real α, uniformly in compact α-intervals, cf., formula (1.25). We then look
at operator functions

(1.41) h(r, y, w, η, λ) := h̃(w, rη, rλ)

such that

(1.42) h̃(r, y, w, η̃, λ̃) ∈ C∞(R+,r × Rq
y,M

µ
Ow

(X;Rq+d

η̃,λ̃
)).

Let us now give the explcit description of the edge-operator spaces (1.15). For
convenience we content ourselfes to the case of a compact manifold B with edge Y
of dimension q. The case of non-compact B is a simple generalization when we give a
definition in terms of countable locally finite covering of B by wedge-neighborhoods
when those intersect Y, otherwise by corresponding neighborhoods on the smooth
manifold B \ Y. Recall that a wedge neighborhood close to Y has the form of a
wedge X△ × Ω for an open set Ω ⊆ Y and closed X.

Definition 1.2. The space Lµ(B, g;Rd
λ), d ∈ N, of parameter-dependent edge

pseudo-differential operators of order µ ∈ R on a compact manifold B with edge Y
and associated with weight data g = (β, β−µ) is defined to be the set of all families
of operators
(1.43)
Aedge(λ) := ωglobAsing(λ)ω

′
glob + (1− ωglob)Aint(λ)(1− ω′′

glob) + C(λ) + (M +G)(λ)

for global cut-off functions

(1.44) ω′′
glob ≺ ωglob ≺ ω′

glob,

cf., notation in Section 4 below, Aint(λ) ∈ Lµ
cl(B \ Y ;Rd

λ) and

(1.45) Asing(λ) :=
N∑
j=0

Aj, sing(λ)

for

(1.46) Aj, sing(λ) := φj(χ
−1
j )∗Opy

(
[r−µωOp

β−n/2
M (hj)ω

′](y, η, λ)
)
φ′
j ,

and

hj(r, y, w, η, λ) ∈ C∞(R+,r × Rq
y,M

µ
Ow

(X;Rq+d

η̃,λ̃
))|η̃=rη,λ̃=rλ;

{U1, . . . , UN} is an open covering of Y by coordinate neighborhoods, {φ1, . . . , φN}
a subordinate partition of unity, φ′

j ≻ φj are other functions in C∞
0 (Uj), and χj :

Uj → Rq are charts. Moreover, ω, ω′ are cut-off functions on the r half-axis. The
smoothing elements C(λ) and (M +G)(λ) in (1.43) will also be defined in Section
4 below.

In order to keep notation more concise we also write (hopefully without creating
new confusion)

(1.47) Asing(λ) = Opy
(
[r−µωOp

β−n/2
M (h)ω′](y, η, λ)

)
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where h is given by (1.41), (1.42). Later on we employ similar abbreviations for
hinger singularities.

2. Corner differential operators

Spaces L ∈ M2 with

(2.1) s(L) = (s0(L), s1(L), s2(L))

and assume

dim s2(L) = 0.

Such an L is called a singular manifold with corner s2(L). By definition of the
category M2 there is a compact element B ∈ M1 such that a cone-neighborhood V2
of s2(L) in L is modelled on B△. Moreover, the space L \ s2(L) ∈ M1 is a manifold
with edge s1(L) of dimension > 0 and there is a compact X ∈ M0 such that there
is a wedge neighborhood V1 of s1(L) in L with the structure of a (locally trivial)
X△-bundle over s1(L). Furthermore we have s0(L) ∈ M0.

A differential operator on s0(L) is called corner-degenerate if it has the form

(2.2) Acorner = t−µ
µ∑

j=0

bj(t)
(
− t

∂

∂t

)j
for coefficients bj ∈ C∞(R+,Diffµ−j

deg (B)), cf., notation (1.17). The principal symbol

hierarchy in this case consists of three components

(2.3) σ(Acorner) = (σ0(Acorner), σ1(Acorner), σ2(Acorner)),

where σ0(Acorner) is the homogeneous principal symbol of Acorner interpreted as
an element of Diffµ(s0(L)) and σ1(Acorner) is the operator-valued principal edge
symbol, according to the interpretation Acorner ∈ Diffµ(L \ s2(L)), cf., also the
relations (1.11), (1.12). Moreover, we have the corner conormal symbol which is a
family of continuous operators

(2.4) σ2(Acorner)(v) :=

µ∑
j=0

bj(0)v
j : Hs,βφ(B) → Hs−µ,βφ−µ(B)

with v varying over Γ(1+dimB)/2−γ for some corner weight γ ∈ R.

A space D ∈ M2 with

(2.5) s(D) = (s0(D), s1(D), s2(D))

and Z := s2(D) ∈ M0 of dimension l > 0 is a manifold with edge of second
singularity order, also indicated by edge. D \ s2(D) ∈ M1 is a manifold with edge
s1(D) of dimension > 0. There is a compact B ∈ M1 and a wedge neighborhood V2
of s2(D) in D with the structure of a B△-bundle on s2(D). In addition there is a
compact X ∈ M0 such that there is a wedge neighborhood V1 of s1(D) in D \s2(D)
with the structure of a (locally trivial) X△-bundle over s1(D). Furthermore, we have
s0(D) ∈ M0.
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A differential operator A edge on s0(D) is called edge-degenerate if it induces in

a wedge neighborhood V2 of s2(D) in local splittings of variables (t, b, z) ∈ B∧ ×Rl

of the form

(2.6) A edge = t−µ
∑

j+|α|≤µ

bj,α(t, z)
(
− t

∂

∂t

)j
(tDz)

α

for coefficients bj,α ∈ C∞(R+×Rl,Diff
µ−(j+|α|)
deg (B)).Moreover, A edge as an operator

on D \ s2(D) ∈ M1 in a wedge neighborhood V1 of s1(D) in D \ s2(D) in the
splitting of variables (r, x, y) ∈ X∧ × Rq is of the form (2.6) for coefficients aj,α ∈
C∞(R+ × Rq,Diffµ−(j+|α|)(X)).

Similarly to notation (1.17) by

(2.7) Diffµ
deg(D)

we denote the set of all degenerate differential operators of the form (2.6). A similar
notation makes sense for the set of all operators (2.2), but this case is included in
(2.7) anyway, since the dimension of Z may also be equal to 0. Since µ = 0 is an
admitted case we also have smooth functions on a singular manifold M ∈ M2 and
we set

(2.8) C∞(M) := Diff0
deg(M).

It also makes sense to define C∞
0 (M) of compactly supported elements of (2.8).

Clearly we can define spaces of degenerate differential operators like Diffµ
deg(M) for

M ∈ Mk for every k ∈ N and we also have corresponding spaces (2.8). For k = 0
those coincide with the well-known spaces on a smooth manifold.

3. Weighted corner spaces

One of the examples of (1.34) are spaces H := Ks,β(X∧) with the group action

(3.1) (κδu)(r, x) = δ
(1+n)

2 u(δr, x).

A combination of the construction of (1.30) with the idea of abstract edge spaces
gives us spaces

(3.2) Ws
cone(Y

∧,Ks,β(X∧))

where Y ∧ is understood in a similar manner as X∧ = X∧
r,x, and Y

∧ equipped with
the variables ỹ = (t, y) with y ∈ Rq being local coordinates on the edge Y . In other
words we imitate the arguments around (1.26)-(1.30) by first looking at a coordinate
neighborhood V on the unit sphere in R1+q and form

(3.3) V ∧ :=
{
ỹ ∈ R1+q \ {0} :

ỹ

|ỹ|
∈ V

}
.

Then we form

Ws
cone(V

∧
ỹ ,Ks,β(X∧

r,x)) :=

{
u(ỹ) ∈ Ws

loc(R
1+q
ỹ ,Ks,β(X∧

r,x))|R+×V

: (1− σ(|ỹ|))u ∈ Ws(R1+q
ỹ ,Ks,β(X∧

r,x))|R+×V

}
.

(3.4)
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A next step in the definition of (3.2) is that we choose a covering of Y by coordinate
neighborhoods {Uj}j=1,...,N and a subordinate partition of unity {φj}j=1,...,N . Then,
for diffeomorphisms

(3.5) χj : Uj −→ V

we form

(3.6) χ∧
j : U∧

j;t,y −→ V ∧
ỹ by setting χ∧

j (t, y) = tχj(y) =: ỹ,

and we set

Ws
cone(U

∧
j;t,y,Ks,β(X∧

r,x))

:=

{
u(t, y) := ((χ∧

j )
−1
∗ )v)(t, y) : v ∈ Ws

cone(V
∧,Ks,β(X∧

r,x))

}
(3.7)

with (χ∧
j )

−1
∗ indicating the push forward of Ks,β(X∧

r,x)-valued distributions from V ∧

to U∧
j . Then we get spaces

Ws
cone(Y

∧
t,y,Ks,β(X∧

r,x))

:=

{ N∑
j=1

φjuj(t, y) : uj ∈ Ws
cone(U

∧
j ,Ks,β(X∧

r,x)), j = 1, . . . , N

}
.

(3.8)

Moreover, we express the interior contributions, namely,

(3.9) Hs
int((B \ Y )∧) := Hs

cone((2B)∧)|(B\Y )∧

where Hs
cone((2B)∧) is known from (1.30) since 2B is closed, and we form.

(3.10) Hs,β
cone(B

∧) := ωglob1W
s
cone(Y

∧
t,y,Ks,β(X∧

r,x)) + (1− ωglob1)H
s
int((B \ Y )∧)

for a cut-off function ωglob1(r) on B in the local variable r close to Y . Next we
employ the spaces

(3.11) Hs,γ(R+ × Rq,H), (t, y) ∈ R+ × Rq

for a Hilbert space with group action, here for H = Ks,β(X∧
r,x) referring to (3.1)

and X∧
r,x in the variables (r, x). For the Mellin transform

(3.12) Mf(v) =

∫
R+

tvf(t)
dt

t

the space (3.11) is defined by (1.34) while F is the Fourier transform. We now
choose charts λl : Ul −→ Rq, and set

(3.13) Hs,γ
edge(R+ × Ul,H) :=

{
(idR+ × λl)

−1
∗ u : u ∈ Hs,γ(R+ × Rq,H)

}
,

(3.14) Hs,γ
edge(Y

∧,H) :=

{ N∑
j=1

φlul : ul ∈ Hs,γ
edge(R+ × Ul,H)

}
.

In other words, we defined the spaces

(3.15) Hs,γ
edge(Y

∧
t,y,Ks,β(X∧

r,x))
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for

(3.16) Hs,β,γ(B∧) := ωglob1H
s,γ
edge(Y

∧
t,y,Ks,β(X∧

r,x)) + (1− ωglob1)H
s,γ
int ((B \ Y )∧).

Finally, we have

(3.17) Hs,γ
int ((B \ Y )∧) := Hs,γ((2B)∧)|(B\Y )∧

withHs,γ((2B)∧) being the weighted Mellin Sobolev space known from the construc-
tions before. Considering the space B∧, indicating a structure on R+ × B treated
as an edge manifold with conical exit for t→ ∞, we form spaces

(3.18) Ks,β,γ;e(B∧) := [t]−eKs,β,γ(B∧)

for

(3.19) Ks,β,γ(B∧) := σHs,β,γ(B∧) + (1− σ)Hs,β
cone(B

∧)

for some cut-off function σ(t) on the t half-axis. From (3.16) and (3.10) we have

Ks,β,γ(B∧) = σ
{
ωglob1H

s,γ
edge(Y

∧,Ks,β(X∧)) + (1− ωglob1)H
s,γ
int ((B \ Y )∧)

}
+ (1− σ)

{
ωglob1W

s
cone(Y

∧,Ks,β(X∧)) + (1− ωglob1)H
s
int((B \ Y )∧)

}
.

(3.20)

Note that the spaces do not depend on the involved cut-off functions. On elements
u(t, b) in (3.20) we define the group action

(3.21) Λ := {Λδ}δ∈R+ by (Λδu)(t, b) = δ(1+dimB)/2u(δt, b),

and we obtain associated edge spaces

(3.22) Ws(Rl
z,Ks,β,γ(B∧)).

Those are again the source for higher corner analogues of weighted spaces of the
kind (3.20) and (3.22).

Let D ∈ M2 be a compact manifold with edge Z of dimension l > 0, locally near
Z modelled on B△×Rl, for compact B ∈ M1 having an edge Y of dimension q > 0.
Then

(3.23) Dint = D \ Z is locally near Z identified with R+ ×B × Rl.

For references below we set

(3.24) Hs,β(B) := ωglob1W
s(Y,Ks,β(X∧)) + (1− ωglob1)H

s
loc(Bint),

for Hs,β
loc (Bint) := Hs,β(2B)|Bint , Bint = B \ s1(B), where

(3.25) Ws(Y,Ks,β(X∧)) :=
N∑
j=1

φ̃j (χ̃
−1
j )∗Ws(Rq,Ks,β(X∧))

for an open covering {Ũ1, . . . , ŨN} of Y by coordinate neighborhoods, a subordinate

partition of unity {φ̃1, . . . , φ̃N}, and charts χ̃j : Ũj → Rq. Moreover, ωglob1 is a
global cut-off function on B which is an element in C∞(Bint) supported in a small
wedge-neighborhood V of s1(B) with ωglob1 ≡ 1 in a smaller wedge-neighborhood
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V1 of s1(B) such that V1 ⊂ V. For any smoothness s ∈ R and weights β, γ ∈ R we
have weighted edge Sobolev spaces

(3.26) Hs,β,γ(D) := ωglob2W
s(Z,Ks,β,γ(B∧)) + (1− ωglob2)H

s,β
loc (Dint).

Here Hs,β
loc (Dint) := Hs,β(2D)|Dint , cf., formula (3.23) and

(3.27) Ws(Z,Ks,β,γ(B∧)) :=
N∑
j=1

φj (χ
−1
j )∗Ws(Rl,Ks,β,γ(B∧))

for an open covering {U1, . . . , UN} of Z by coordinate neighborhoods, a subordinate
partition of unity {φ1, . . . , φN}, and charts χj : Uj → Rl.Moreover, ωglob2 is a global
cut-off function on D which is an element in C∞(Dint) supported in a small wedge-
neighborhood V2 of s2(D) in D with ωglob2 ≡ 1 in a smaller wedge-neighborhood V 1

2

of s2(D) such that V 1
2 ⊂ V2. Note that the space (3.26) is independent of the cut-off

function ωglob2 . The following assertion is an analogue of the known Proposition 4.2
below, namely,

Theorem 3.1. We have

(3.28) Hs,β,γ(D) ⊂ Hs,β
loc (Dint) and ψHs,β,γ(D) = ψHs,β

loc (Dint),

for every ψ ∈ C∞
0 (Dint), cf., notation (2.8).

Proof. Because of (3.26) and (3.27) it suffices to show

(3.29) (1− ωglob2)W
s(Z,Ks,β,γ(B∧)) ⊂ Hs,β

loc (Dint)

for any cut-off function ωglob2 and

(3.30) φWs(Z,Ks,β,γ(B∧)) = φHs,β
loc (Dint)

for every φ ∈ C∞
0 (Dint). For the latter conclusions we may content ourselfes with

Ws(Rl,Ks,β,γ(B∧)) rather than Ws(Z,Ks,β,γ(B∧)) and φ ∈ C∞
0 (R+ × B × Rl) in-

stead of the former φ. In other words, we verify

(3.31) φWs(Rl,Ks,β,γ(B∧)) = φHs,β
loc (R+ ×B × Rl).

The support of φ may assumed to be contained in a t-interval [ε0, ε1] for ε0 > ε1
and ε1 sufficiently small. The space (3.31) can be locally identified with the sum of
spaces

(3.32) φWs(Rl
z, ωglob1H

s,γ
edge(R+ × Rq,Ks,β(X∧))),

cf., (3.15), and

(3.33) φWs(Rl
z, (1− ωglob1)H

s,γ
int ((B \ Y )∧),

cf. (3.17). By virtue of (1.37) in (3.32) we may replace Hs,γ
edge(R+ × Rq,H) by

Ws(R1+q
t,y ,H) for H = Ks,β(X∧); subscript “edge” may be dropped at this moment,

and the corner weight γ can be left out because of the factor φ which is vanishing
close to t = 0. Moreover, the cut-off function ωglob1(r) is absorbed by the space H
and gives rise to a subspace of H, and this modification may be ignored. In other
words, what in principle remains from (3.32) is a subspace of

(3.34) φWs(Rl
z,Ws(R1+q

t,y ,K
s,β(X∧)).
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Now we may apply relation (4.8) from Section 4 below, and we thus obtain the
first identity on the left-hand side of (3.28). Concerning the nature of the space
(3.33) the factor φ which is localizing far from t = 0 makes the weight γ disappear.
Moreover, since the support of ωglob1 may assumed to be concentated very close to
r = 0 and because we may look at our distribution in an open neighborhood on B
far from Y, where the function 1 − ωglob1 already vanishes, the characterization of

the space Hs,γ
int ((B \Y )∧), in local coordinates (t, x̃) ∈ R1+dimB is a “usual” Sobolev

space Hs(R1+dimB). Thus the space (3.33) may be identified with

(3.35) Ws(Rl
z,H

s(R1+dimB)) = Hs(Rl+1+dimB),

where we apply the identity (4.7) from Section 4 below. □

Corollary 3.2. Together with Proposition 4.2 below it follows that

φψHs,β
loc (Dint) = φHs

loc(Bint),

for B in the meaning of Dint.

4. Appendix

The singular analysis is formulated here for specific stratified spaces with non-
complete metrices. In order to keep the material self-contained in this respect, we
briefly outline some notation around singular manifolds, although such spaces have
been discussed in other papers before, see, e.g., [7, 8]. This will be an occation to
complete further necessary aspects for the present exposition.

By M0 we understand a category of C∞-manifolds with differentiable maps as
morphisms and isomorphisms as diffeomorphisms. Moreover, Mk is a category of
topological spaces M, such that Ω × M,M × Ω ∈ Mk for any Ω ∈ M0 and for
k > 1 every M contains a subspace sk(M) ∈ M0 such that M \ sk(M) belongs
to Mk−1. Moreover, sk(M) has a wedge-neighborhood V ⊂ M which means it
has the structure of an X△

k−1-bundle over sk(M) for a compact Xk−1 ∈ Mk−1, cf.
Remark 4.1 below, where the transition maps between the fibres X△

k−1 are induced
by isomorphisms

(4.1) R×Xk−1 → R×Xk−1

in Mk−1 such that (t, x) → (t̃, x̃) restricts to continuous maps R+ ×Xk−1 → R+ ×
Xk−1 and isomorphisms Xk−1 → Xk−1 in Mk−1.

Remark 4.1. ForM ∈ Mk, k > 1 the above-mentioned bundle V in (i) over sk(M)
has local trivializations U × X△

k−1 for open sets U ⊆ sk(M). In local coordinates
y ∈ Rq, q := dim sk(M) we interpret X△

k−1 as an infinite straight cone with base

(or link) X△
k−1 where the above-mentioned transition maps χ(y) : (t, x) → (t̃, x̃) are

homogeneous in the sense

(4.2) χ(y)(δt, x) = (δt̃, x̃) for all δ ∈ R+.



WEIGHTED CORNER SPACES 405

The situation with V is similar to a manifold M ∈ M1 with smooth boundary
∂M , where a collar neighborhood of the boundary can be identified with [0, 1)×∂M,
and this in turn is isomorphic to R+ × ∂M.

For M ∈ Mk in general we call X△
k−1 the model cone in connection with the

picture that M locally close to sk(M) is modelled on a wedge X△
k−1 × Rq. This

is what we mean by “V has the structure of such a cone bundle over sk(M)”.
From the construction we have a stretched set V of V with the structure of an
R+ ×Xk−1- bundle. This contains an Xk−1-bundle VO over sk(M) and we obtain
V by invariantly attaching VO to V \ sk(M). The same can be done for M itself,
i.e., by attatching VO to M \ sk(M) we obtain the stretchend space M associated
with M. By taking a second copy M− of M =: M+ and identifying points in VO on
the corresponding ± sides, indicated by ∼, we obtain the double space

(4.3) 2M :=
(
M− ∪ M+

)
/ ∼ in Mk−1.

Example 2. Let X be closed and M := X△ × Rq belonging to M1 which is a
manifold with edge. Then we have s1(M) = Rq identified with {0}×Rq. Moreover,
V = [0, 1)×X × Rq, VO = X × Rq, M = R+ ×X × Rq and 2M = R×X × Rq.

The constructions give rise to a representation M =
∪k

j=0 sj(M) as a disjoint

union of strata sj(M) ∈ M0 indicated by

(4.4) s(M) :=
(
s0(M), s1(M), . . . , sk(M)

)
where

(4.5) dimM := dim s0(M) > dim s1(M) > · · · > dim sk−1(M) > dim sk(M) ≥ 0

by successively applying the definition of Mk.

This system of notation has been systematically used for manifolds B with edge
Y, where the dimension q of Y has been often assumed to be > 0. But also the case
dimY = 0 makes sense; then the respective space has conical singularities and then
B is locally close to Y a cylinder the bottom of which equals X ∈ M0. In any case,

according to (4.3), the space

(4.6) 2B

is smooth.

Often we tacitly assume that X is connected, but we also may admit that there
are finitely many connected componentsXj , j = 0, . . . , N, and speak about different
weights associated with Xj for different j. Such a situation only causes straighfor-
ward modifications of the calculus. We also may admit that base spaces Xj of
the respective model cones of wedges are of different dimensions. Such a case has
been considered in [9] which illustates the role of weight normalizations in weighted
Mellin operators referring to dimXj .
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Our considerations around corner spaces employ some specific properties of edge
spaces Ws(Rq,H), cf., the norm expression (1.33) for some separable Hilbert space
H with group action, cf. the notation around (1.32). In particular, we employed [37,
Proposition 3.1.21] which is based on

(4.7) Hs(R1+n × Rq) = Ws(Rq,Hs(R1+n))

with Hs(R1+n) being endowed with the group action (κδf)(x̃) = δ(1+n)/2f(δx̃),
see, [37, Example 1.3.23]. A more general relation of this kind is

(4.8) Ws(Rp+q,H) = Ws(Rp,Ws(Rq,H))

where H is equipped with κ = {κδ}δ∈R+ and Ws(Rq,H)) with χ = {χλ}λ∈R+ for

(4.9) (χλu)(y) = κλ λ
q/2u(λy) for u ∈ Ws(Rq,H).

A proof is given in [37, Remark 1.3.43, Proposition 1.3.44].

Let B be a compact manifold with edge Y of dimension q > 0; in particular, B
is locally close to Y modelled on X△ × Rq. For any smoothness s ∈ R and weight
β ∈ R we have weighted edge Sobolev spaces Hs,β(B), cf., (3.24).

Proposition 4.2. The space (3.24) is independent of the cut-off function ωglob1 . In
particular, we have

(4.10) Hs,β(B) ⊂ Hs
loc(Bint) and φHs,β(B) = φHs

loc(Bint)

for every φ ∈ C∞
0 (Bint).

Since we did employ a similar proposition in more general context we briefly give
the proof.

Proof. By virtue of (3.24), (3.25), it suffices to show

(4.11) (1−ω)Ws(Rq,Ks,β(X∧)) ⊂ Hs
loc(X

∧ ×Rq) for any cut-off function ω(r)

and

(4.12) φWs(Rq,Ks,β(X∧)) = φHs
loc(X

∧ × Rq) for every φ ∈ C∞
0 (X∧ × Rq).

We use the identity

(4.13) ∥u∥2Ws(Rq ,Ks,β(X∧)) =

∫
[η]2s∥[η]−(n+1)/2û([η]−1r, x, η)∥2Ks,β(X∧)d̄η.

Without loss of generality we may assume [η] ≥ 1 for all η. Consider the space

(4.14) Dε := {u ∈ Ws(Rq,Ks,β(X∧)) : suppu ⊂ {(x̃, y) : |x̃| ≥ ε} }.

Then u ∈ Dε implies that û(x̃, η) satisfies supp û ⊂ {(x̃, η) : |x̃| ≥ ε} and then the
same property holds for v̂(x̃, η) := û([η]−1r, x, η). In fact, v̂ vanishes for [η]−1|x̃| ≤ ε
and hence, for |x̃| ≤ ε[η], i.e., it is supported by |x̃| ≥ ε. Now the Ks,β(X∧))-norm
on such functions is equivalent to their Hs(R1+n)-norm, i.e., we have an inequality

(4.15) c1(ε)∥v̂(·, η)∥2Hs(R1+n) ≤ ∥v̂(·, η)∥2Ks,β(X∧)) ≤ c2(ε)∥v̂(·, η)∥2Hs(R1+n)
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for some constants ci(ε) > 0 which remains valid when we replace

v̂(·, η) by [η]φs−(1+n)/2v̂(·, η). Because of (4.13) and by virtue of (4.7) it follows
that

(4.16) c1(ε)∥u∥2Hs(R1+n+q) ≤ ∥u∥2Ws(Rq ,Ks,β(X∧)) ≤ c2(ε)∥u∥2Hs(R1+n+q).

□

Let us finally add the explanation of Lµ
cl(X;Rd

λ), which has been used in differ-
ent constructions around pseudo-differential operators on a smooth manifold X of
dimension n. Modulo some standard globalization, in terms of a locally finite open
covering of X by coordinate neighborhoods and charts mapping to Rn

x, taken as
local coordinates, we assume operators to be of the form

(4.17) A(λ) := Opx(a)(λ) + C(λ)

for a classical symbol

a(x, x′, ξ, λ) ∈ Sµ
cl(R

2n
x,x′ × Rn+d

ξ,λ ).

Here, Sµ
cl(. . . ) indicates classical symbols in Hörmander’s sense (for (ρ, δ) = (1, 0)),

“classical” means asymptotic expansions of symbols which are positively homoge-
neous of order µ − j, j ∈ N for large |ξ, λ|, i.e., λ ∈ Rd is formally treated as a
component of the covariable. Also the corresponding spaces of pseudo-differential
operators with parameters, including d = 0, will be equipped with subscript “cl”.
The larger classes without that subscript mean that the respective symbol estimates
are required without asking the existence of homogeneous conponents of degree µ−j.
The operator C(λ) is smoothing; for d = 0 it is an integral operator with kernel in
C∞(Rn

x×Rn
x′); the corresponding global operator space L−∞(X) is Fréchet, and for

d > 0 we ask C(λ) ∈ S(Rd, L−∞(X)). More background may be found in articles
or standard textbooks on pseudo-differential operators, cf., [17, 24,30,31].

A similar terminology is applied for pseudo-differential operators on a manifold
with singularities with spaces of operator-valued symbols

Sµ(R2q × Rq+d;H, H̃)

for separable Hilbert spaces H and H̃ with group actions κ = {κδ}δ∈R+ and κ̃ =
{κ̃δ}δ∈R+ , respectively. Homogeneity (also called twisted homogeneity) of a function

f(ν) ∈ C∞(Ω× Rq+d
η,λ ,L(H, H̃)) of order ν ∈ R for large |η, λ| and open Ω ⊆ Rp

y for

some p means in this case that

f(ν)(y, δη, δλ) = δνκδf(ν)(y, η, λ)κ̃
−1
δ

for δ ≥ 1 and |η, λ| ≥ c for some constant c > 0. Concerning more material in this
context, see [14,35–37].
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