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where u(0, x) = u0(x), t > 0, 0 ≤ x ≤ L, with the boundary conditions ∂ru/∂xr = 0
at x = 0, for r =0, 1,. . . , 2q-1, p = 1 or 2, and q is a positive integer. Assume

J0 =
∫ L
0 (L − x)mudx > 0, where m > 4q is a positive integer. Then there is no

global classical solution for the above initial-boundary value problem.

Proof. Multiplying both sides of the equation (1.1) by a test function h(x) which is
smooth and depends on x only, we get

(2.1) (hu)t −
1

2p
h(u2p)x + h

q∑
k=1

∂2ku

∂x2k
= 0.

Assume h(s) = 0 at x = L, for s = 0, 1,. . . ,2q. Integrating both sides of equation
(2.1) in x from 0 to L, we get

(2.2)
dJ

dt
+

1

2p

∫ L

0
h′u(2p)dx+

q∑
k=1

∫ L

0
h(2k)udx = 0,

where J =
∫ L
0 hudx. Let h = (L−x)m, where m is a positive number. Then we get

from (2.2) the equation

(2.3)
dJ

dt
− m

2p

∫ L

0
(L− x)m−1u2pdx+

q∑
k=1

ck

∫ L

0
(L− x)m−2kudx = 0

where ck = m(m− 1) . . . (m− 2k + 1). Thus from equation (2.3), we get

dJ

dt
=

m

2p

∫ L

0
(L− x)m−1u2pdx−

q∑
k=1

ck

∫ L

0
(L− x)m−2kudx

≥ m

2pL

∫ L

0
(L− x)mu2pdx−

q∑
k=1

ck

∫ L

0
(L− x)m−2kudx.

Now

|
∫ L

0
(L− x)m−2kudx| ≤ (

∫ L

0
(L− x)

m− 4kp
2p−1dx)

2p−1
2p (

∫ L

0
(L− x)mu2pdx)

1
2p

≤ (
2p− 1

2p
)b

1
1−2p

k (

∫ L

0
(L− x)

m− 4kp
2p−1dx) + (

bk
2p

)(

∫ L

0
(L− x)mu2pdx)
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where bk = m
2qckL

. Therefore

dJ

dt
≥ m

2pL

∫ L

0
(L− x)mu2pdx−

q∑
k=1

ckbk
2p

∫ L

0
(L− x)mu2pdx)

−
q∑

k=1

ck(
2p− 1

2p
)b

1
1−2p

k (

∫ L

0
(L− x)

m− 4kp
2p−1dx)

= (
m

2pL
−

q∑
k=1

ckbk
2p

)(

∫ L

0
(L− x)mu2pdx)

−
q∑

k=1

ck(
2p− 1

2p
)b

1
1−2p

k (

∫ L

0
(L− x)

m− 4kp
2p−1dx)

=
m

4pL

∫ L

0
(L− x)mu2pdx

−
q∑

k=1

ck(
2p− 1

2p
)b

1
1−2p

k (

∫ L

0
(L− x)

m− 4kp
2p−1dx)

≥ m

4pL
(
m+ 1

Lm+1
)2p−1J2p

−
q∑

k=1

ck(
2p− 1

2p
)b

1
1−2p

k (

∫ L

0
(L− x)

m− 4kp
2p−1dx).

Thus we have

(2.4)
dJ

dt
≥ m

4pL
(
m+ 1

Lm+1
)2p−1J2p −

q∑
k=1

ck(
2p− 1

2p
)b

1
1−2p

k (

∫ L

0
(L− x)

m− 4kp
2p−1dx).

Case 1. Let p = 1. We then have, from (2.4),

(2.5)
dJ

dt
≥ A2J2 −B2.

where A =
√

m(m+1)
4Lm+2 and B =

√∑q
k=1

ck
2 b

−1
k

∫ L
0 (L− x)m−4kdx.

Consider the equation

(2.6)
dI

dt
= A2I2 −B2.

with I(0) = J(0) = J0. Since J0 > 0, we can easily show that I = B(1+D)
A(1−D) , where

D = AJ0−B
AJ0+B e2ABt.

Therefore from (2.5) and (2.6), we have J(t) ≥ I(t) = B(1+D)
A(1−D) , Thus J(t) blows

up as t approaches T for some T ≤ 1
2AB ln AJ0+B

AJ0−B .

Case 2. p = 2. We have, from (2.4),

(2.7)
dJ

dt
≥ E4J4 − F 4,

where E = ( m
8L(

m+1
Lm+1 )

3)
1
4 and F = (

∑q
k=1(

3ck
4 )b

−1
3

k (
∫ L
0 (L− x)m− 8k

3 dx))
1
4 .
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Consider the equation

(2.8)
dI

dt
= E4I4 − F 4.

with I(0) = J(0) = J0. Since J0 > 0, we can easily show that ln(EI−F
EI+F ) −

2tan−1(EI
F ) = ln(EJ0−F

EJ0+F )− 2tan−1(EJ0
F ) + 4EF 3t. Therefore we get

(2.9)
EI − F

EI + F
≥ (

EJ0 − F

EJ0 + F
)R,

where R = e−π−2tan−1(
EJ0
F

)+4EF 3t. Hence, from (2.9),

(2.10) I ≥ F (1 +G)

E(1−G)

where G = (EJ0−F
EJ0+F )R. Therefore, from (2.7), (2.8), and (2.10), we get J(t) ≥ I(t) =

F (1+G)
E(1−G) , Thus J(t) blows up as t approaches T for some T ≤ 1

4EF 3 (π+2tan−1(EJ0
F )+

ln EJ0+F
EJ0−F ). □

Remark 2.2. This method can be applied to a generalized Korteweg-de Vries
equation

ut − u2p−1ux −
q∑

k=1

∂2k+1u

∂x2k+1
= 0,

where p = 1 or 2.

3. The Kuznetsov-Zabolotskaya-Khokhove equation

Theorem 3.1. Given the Kuznetsov-Zabolotskaya-Khokhlov equation

(ut − uux + uxx)x + uyy = 0

where u = u(t, x, y), u(0, x, y) = u0(x, y), t > 0, 0 ≤ x ≤ L, 0 ≤ y ≤ M, with
the following boundary conditions at x = 0: ∂u/∂t = 0, u = 0, ∂u/∂x = 0, and
∂2u/∂x2 = 0, and at y = 0, u = 0 and ∂u/∂y = 0.

Assume J0 =
∫ L
0

∫M
0 (L − x)m(M − y)nu0dxdy > 0, where m > 3 and n >2 are

positive integers. Then there is no global classical solution for the above initial-
boundary value problem in the bounded domain 0 ≤ x ≤ L, 0 ≤ y ≤ M .

Proof. Multiplying both sides of the equation (1.2) by the test function h(x, y) =
(L − x)m+1(M − y)n and integrating from 0 to L in x and from 0 to M in y with
the given boundary conditions, we get

(m+ 1)
dJ

dt
=

∫ M

0

∫ L

0
(m+ 1)m(L− x)m−1(M − y)nu2dxdy

−
∫ M

0

∫ L

0
(m+ 1)m(m− 1)(L− x)m−2(M − y)nudxdy

−
∫ M

0

∫ L

0
n(n− 1)(L− x)m+1(M − y)n−2udxdy,
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where J =
∫M
0

∫ L
0 (L− x)m(M − y)nudxdy. Using the inequalities∫ M

0

∫ L

0
(m+ 1)m(m− 1)(L− x)m−2(M − y)nudxdy

≤ 1

4

∫ M

0

∫ L

0
(m+ 1)2m2(m− 1)2(L− x)m−3(M − y)ndxdy

+

∫ M

0

∫ L

0
(L− x)m−1(M − y)nu2dxdy,

∫ M

0

∫ L

0
n(n− 1)(L− x)m+1(M − y)n−2udxdy

≤ 1

4

∫ M

0

∫ L

0
n2(n− 1)2(L− x)m+3(M − y)ndxdy

+

∫ M

0

∫ L

0
(L− x)m−1(M − y)nu2dxdy,

and∫ M

0

∫ L

0
(L− x)m−1(M − y)nu2dxdy ≥

(
∫M
0

∫ L
0 (L− x)m(M − y)nudxdy)2∫M

0

∫ L
0 (L− x)m+1(M − y)ndxdy

,

we get

(3.1)
dJ

dt
≥ R2J2 − S2

where R =

√
(m+1)m−2

(m+1)
∫M
0

∫ L
0 (L−x)m+1(M−y)ndxdy

and

S = 1
2
√
m+1√∫M
0

∫ L
0 [(m+ 1)2m2(m− 1)2 + n2(n− 1)2(L− x)6](L− x)m−3(M − y)ndxdy.

Following the same argument in the previous section, we see that J(t) blows up

as t approaches T for some T ≤ 1
2RS ln RJ0+S

RJ0−S , where J0 = J(0). □

Remark 3.2. The method can also be extended to the generalized Kuznetsov-
Zabolotskaya-Khokhlov equation

(ut − u2p−1ux +

q∑
k=1

∂2ku

∂x2k
)x + uyy = 0,

where p = 1 or 2, and the generalized Kadomtsev-Petviashvili equation

(ut − u2p−1ux −
q∑

k=1

∂2k+1u

∂x2k+1
)x + uyy = 0,

where p = 1 or 2.
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4. Conclusion

The method of nonlinear capacity offers a very elegant way for providing the
conditions that the solutions of some nonlinear evolution equations would blow up
in a finite time. However since the method depends on the test function that we
use, it remains as an interesting problem to find the exact time that the solutions
of such a nonlinear evolution equation would blow up.
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