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were used to separate the cone −C and some cone K which contains the objec-
tive space A. By this way, the whole apparatus of the conic scalarization method
is constructed on the characterization of minimal elements. Since the function
gw,α(y) = ⟨w, y⟩+ α∥y∥, used for this purpose, is neither odd nor even, the simple
change of y to −y, does not lead to obvious justification of the separation theorem
for the ordering cone C itself and some cone K (which contains the objective space
A). On the other hand, such a change requires to justify the corresponding class of
monotonically increasing functions which will be used as scalarizing functions for
maximization problems.

To overcome these problems, in this paper we use a special class of monotonically
increasing superlinear functions and prove a separation theorem for the ordering
cone C and some cone K. These tools then are used to formulate a scalar problem
and obtain characterization results for maximal points of multiobjective problems,
via scalarization.

The rest of the paper is organized as follows. Section 2 presents a nonlinear
separation theorem. The separation theorem is used in section 3 to prove different
characterization theorems for maximal, weakly maximal and properly maximal ele-
ments of nonconvex sets. Finally, section 4 draws some conclusions from the paper.

2. Separation via superlinear functions

We begin this section by recalling the separation property and the separation
theorem for two cones −C and K, where C is an ordering cone in Rn and K is
a closed cone with −C ∩ K = {0}, such that −C and K satisfy the separation
property. After these explanations we will introduce a special class of superlinear
functions and present a separation theorem for two cones C and K, by using these
functions.

Let (Y, ∥ ·∥) be a real normed space whose partial ordering is induced by a closed
convex pointed cone C. Recall that the dual cone C∗ of C and its quasi-interior C#

are defined by

(2.1) C∗ = {y∗ ∈ Y∗ : ⟨y∗, y⟩ ≥ 0 for all y ∈ C}

and

(2.2) C# = {y∗ ∈ Y∗ : ⟨y∗, y⟩ > 0 for all y ∈ C \ {0}},

respectively.
The following three cones called augmented dual cones of C were introduced

in [15].

(2.3) Ca∗ = {(y∗, α) ∈ C# × R+ : ⟨y∗, y⟩ − α∥y∥ ≥ 0 for all y ∈ C},

(2.4) Ca◦ = {(y∗, α) ∈ C# × R+ : ⟨y∗, y⟩ − α∥y∥ > 0 ∀y ∈ int(C)},

and

(2.5) Ca# = {(y∗, α) ∈ C# × R+ : ⟨y∗, y⟩ − α∥y∥ > 0 ∀y ∈ C \ {0}},

where C is assumed to have a nonempty interior in the definition of Ca◦.
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The following relationship between the three kinds of augmented dual cones Ca∗,
Ca◦, and Ca# is straightforward from their definitions:

(2.6) Ca# ⊂ Ca◦ ⊂ Ca∗.

Definition 2.1. Let g : Rn → R be a given function.
(a) g is called monotonically increasing, if g(y) ≥ g(z) for all y, z ∈ Rn such that

y − z ∈ C,
(b) g is called strictly monotonically increasing, if g(y) > g(z) for all y, z ∈ Rn

such that y − z ∈ int(C),
(c) g is called strongly monotonically increasing, if g(y) > g(z) for all y, z ∈ Rn

such that y − z ∈ C \ {0Rn}.

The following theorem is proved in [15].

Theorem 2.2. Let C ⊂ Rn be the ordering cone, w ∈ Rn and α ∈ R+, and let
function ξ(w,α) : Rn → R be defined as

(2.7) ξ(w,α)(y) = ⟨w, y⟩+ α∥y∥,

where ∥ ·∥ is a given norm. Then, ξ(w,α) is monotonically increasing, strictly mono-
tonically increasing, and strongly monotonically increasing on Rn if and only if
(w,α) ∈ Ca∗, (w,α) ∈ Ca◦, and (w,α) ∈ Ca#, respectively.

Now we recall the separation property introduced in [15].

Definition 2.3. Let C and K be closed cones in Rn with norm-bases CU = C ∩ U
and KU = K∩U, respectively, where U = {x ∈ Rn : ∥x∥ = 1}. Let K∂

U = KU∩bd(K),

and let C̃ and K̃∂ be the closures of the sets co(CU) and co(K∂
U∪{0X}), respectively,

where co denotes the convex hull. The cones C and K are said to satisfy the
separation property with respect to the norm ∥ · ∥ if

(2.8) C̃ ∩ K̃∂ = ∅.
The following theorem is a finite dimensional version of Theorem 4.3 proved

in [15] for reflexive Banach spaces. It concerns the existence of a pair (w,α) ∈ Ca#

for which the corresponding sublevel set of the strongly monotonically increasing
sublinear function ξw,α(y) = ⟨w, y⟩ + α∥y∥ separates the given two cones −C and
K.

Theorem 2.4. Let C and K be nonempty closed cones in Rn. Then, −C and K
satisfy the separation property

(2.9) −C̃ ∩ K̃∂ = ∅,

defined in Definition 2.3, if and only if Ca# ≠ ∅ and there exists a pair (w,α) ∈ Ca#

such that the corresponding sublevel set of function ξw,α(y) = ⟨w, y⟩+α∥y∥ separates
the cones −C and bd(K) in the following sense:

(2.10) ⟨w, y⟩+ α∥y∥ < 0 ≤ ⟨w, z⟩+ α∥z∥

for all y ∈ −C \ {0Rn}, and z ∈ bd(K). In this case the cone −C is pointed.
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The separation Theorem 2.4 given above, is constructed on the separation of the
negative ordering cone −C and some cone K. This construction allows to character-
ize minimal points of some set. It is not obvious, how to apply the above theorem
to the case of cones C and K. The aim of this paper is to formulate and prove a
separation theorem which answers this question, and apply it in characterization of
maximal elements.

First we introduce a class of superlinear functions and then give a separation
theorem using these functions.

Lemma 2.5. Let Rn be partially ordered by a pointed closed convex cone C. Let
y∗ ∈ Rn\{0} and α ∈ R+, and let the superlinear function ζ(y∗,α) : Rn → R be
defined as

(2.11) ζ(y∗,α)(y) = ⟨y∗, y⟩ − α∥y∥.
Then, the function ζ(y∗,α) is monotonically increasing, strictly monotonically in-
creasing (if int(C) ̸= ∅), and strongly monotonically increasing on Rn if and only if
(y∗, α) ∈ Ca∗, (y∗, α) ∈ Ca◦, and (y∗, α) ∈ Ca#, respectively.

Proof. Sufficiency. Let y1, y2 ∈ Rn and y1 − y2 ∈ C. Then,
ζ(y∗,α)(y1)− ζ(y∗,α)(y2)

= ⟨y∗, y1⟩ − α∥y1∥ − ⟨y∗, y2⟩+ α∥y2∥
≥ ⟨y∗, y1 − y2⟩ − α∥y1 − y2∥.

Hence the statement follows from the definitions of Ca∗, Ca◦, and Ca#, respectively.
Necessity. Assume that for some pair (y∗, α) with y∗ ∈ Rn\{0} and α ∈ R+, the

function ζ(y∗,α)(y) = ⟨y∗, y⟩ − α∥y∥ is monotonically increasing. Then, for every
y ∈ C we have

ζ(y∗,α)(y) = ⟨y∗, y⟩ − α∥y∥ ≥ ζ(y∗,α)(0) = 0,

which by definition of Ca∗ implies that (y∗, α) ∈ Ca∗. The proofs of (y∗, α) ∈ Ca◦ and
(y∗, α) ∈ Ca# in the cases if the function ζ(y∗,α) is strictly and strongly monotonically
increasing respectively, are similar to that of the case given above. □

The proof of the following theorem regarding the separation via superlinear func-
tions, is similar (but not trivial) to that of Theorem 2.4, where sublinear separating
functions were used. We present the separation theorem in general form, in infinite
dimensional reflexive Banach spaces.

Theorem 2.6. Let C and K be closed cones in reflexive Banach space Y which
satisfy the separation property (2.8) defined in Definition 2.3:

C̃ ∩ K̃∂ = ∅.

Then, Ca# ̸= ∅, and there exists a pair (y∗, α) ∈ Ca# such that the strongly mono-
tonically increasing superlinear function ζ(y∗,α)(y) = ⟨y∗, y⟩ − α∥y∥ separates the
cones C and bd(K) in the following sense:

⟨y∗, k⟩ − α∥k∥ < 0 < ⟨y∗, c⟩ − α∥c∥(2.12)

for all k ∈ bd(K) \ {0Y} and c ∈ C \ {0Y }. In this case the cone C is pointed.
Conversely, if there exists a pair (y∗, α) ∈ Ca# such that the strongly monotonically
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increasing superlinear function ζy∗,α(y) = ⟨y∗, y⟩ − α∥y∥ separates the cones C and
K in the sense of (2.12), and if either the cone C is closed and convex or (Y, ∥·∥) is
a finite dimensional space, then the cones C and K satisfy the separation property
(2.8).

Proof. Sufficiency. Let C̃ ∩ K̃∂ = ∅. It follows from the definitions of these sets
that they are subsets of the unit ball B which is weakly compact by reflexivity of Y.
Moreover, since C̃ and K̃∂ are closed and convex sets, they are weakly closed (see [9,
Theorem 3.24]) and hence weakly compact. Then, by the James’s theorem [10],
there is a nonzero continuous linear functional y∗ over Y such that the following
separation relation is satisfied:

(2.13) sup{⟨y∗, k⟩ : k ∈ K̃∂} < inf{⟨y∗, c⟩ : c ∈ C̃}.

Let inf{⟨y∗, c⟩ : y ∈ C̃} = γ. Then, since 0 ∈ K̃∂ , by (2.13) we have γ > 0, and
there exists a positive number ε < γ such that

(2.14) ⟨y∗, k⟩+ ε < γ ≤ ⟨y∗, c⟩ for all c ∈ C̃ and k ∈ K̃∂ .

Since CU ⊂ C̃ and K∂
U ⊂ K̃∂ , the inequalities (2.14) imply

(2.15) ⟨y∗, k⟩+ ε < γ ≤ ⟨y∗, c⟩ for all c ∈ CU and k ∈ K∂
U .

Every element c of C \ {0Y} can be represented as c = βy for some β > 0 and
y ∈ CU. Then, from (2.15) and from the fact that γ > 0, we obtain

(2.16) ⟨y∗, c⟩ > 0 for all c ∈ C \ {0Y},
which implies that y∗ ∈ C#.

Now, since ∥k∥ = 1 for each k ∈ K∂
U, it follows from (2.15) that

⟨y∗, k⟩ − (γ − ε)∥k∥ < 0 for all k ∈ K∂
U

or

(2.17) ⟨y∗, k⟩ − (γ − ε)∥k∥ < 0 for all k ∈ bd(K) \ {0Y}.
In a similar way, since ∥c∥ = 1 for each c ∈ CU, it follows from (2.15) that

⟨y∗, c⟩ − (γ − ε)∥c∥ ≥ γ − (γ − ε) = ε > 0 for all c ∈ CU,

which implies that

(2.18) ⟨y∗, c⟩ − (γ − ε)∥c∥ > 0 for all c ∈ C \ {0Y}.
The last inequality means that (y∗, γ−ε) ∈ Ca#. Then, Corollary 3.3 in [15] implies
that C is pointed. Thus, the sufficiency of the theorem is proved.

Necessity. (a) First suppose that (Y, ∥ · ∥) is a finite dimensional space and that,
there exists a pair (y∗, α) ∈ Ca# such that

(2.19) ⟨y∗, k⟩ − α∥k∥ < 0 < ⟨y∗, c⟩ − α∥c∥
for all c ∈ C\{0Y} and k ∈ bd(K)\{0Y}. Then, since CU ⊂ C and K∂

U ⊂ bd(K)\{0Y},
the inequalities (2.19) are true also for all c ∈ CU and k ∈ K∂

U. We have ∥c∥ = 1 =

∥k∥ for all c ∈ CU and k ∈ K∂
U, which together with (2.19) implies that

(2.20) ⟨y∗, k⟩ < α < ⟨y∗, c⟩
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for all c ∈ CU and k ∈ K∂
U. Due to the compactness of CU and the continuity of y∗,

there exists a positive number ε such that the inequalities (2.20) can also be written
in the form

(2.21) ⟨y∗, k⟩ < α− ε < α < ⟨y∗, c⟩

for all c ∈ CU and k ∈ K∂
U. These inequalities mean that the sets K∂

U∪{0Y} and CU
are contained in the closed half-spaces H−(y∗, α − ε) = {y ∈ Y : ⟨y∗, y⟩ ≤ α − ε}
and H+(y∗, α) = {z ∈ Y : ⟨y∗, z⟩ ≥ α}, respectively. Since α − ε > 0, and the
half-spaces H−(y∗, α − ε) and H+(y∗, α) are closed convex sets, they also contain

the closures K̃∂ and C̃ of the sets co(K∂
U ∪ {0Y}) and co(CU) respectively, and since

the half-spaces H−(y∗, α − ε) and H+(y∗, α) are disjoint, consequently so are K̃∂

and C̃, which completes the proof.
Necessity. (b) Now suppose that C is a closed and convex cone of a reflexive

Banach space (Y, ∥ · ∥). In this case the set C̃ is a subset of C, and therefore (2.19)

is also satisfied for all y ∈ C̃. Now, since C̃ is weakly compact and the function
ζ(y) = ⟨y∗, y⟩ − α∥y∥ is weakly lower semicontinuous, there exists some positive
number ε with

(2.22) ⟨y∗, k⟩ − α∥k∥ ≤ −ε < 0 < ⟨y∗, c⟩ − α∥c∥

for all c ∈ C̃ and k ∈ bd(K)\{0Y}. Then (2.21) follows from (2.22), and the remain-
ing part of the proof is similar to the proof of part (a). The proof is completed. □

The class of monotonically increasing superlinear functions given in this section,
are used in the following section, to formulate scalarization theorems for maximiza-
tion problems in multiobjective optimization.

3. Scalarization

Let X ⊂ Rm be a nonempty set and let fi : X → R, i = 1, ..., n are real-valued
functions. Let f(x) = (f1(x), . . . , fn(x)) for every x ∈ X and let A := f(X). We will
assume in this paper that Rn is partially ordered by a closed convex cone C ⊂ Rn.

Consider the following multi-objective optimization problem:

(3.1) max
x∈X

[f1(x), ..., fn(x)].

Remark 3.1. Let (y∗, α) ∈ Ca∗ and let r ∈ Rn be an arbitrary vector. Consider
the function

(3.2) ζ(y∗,α,r)(y) = ⟨y∗, y − r⟩ − α∥y − r∥.

Then it is clear that (see Lemma 2.5), ζ(y∗,α,r) is monotonically increasing, strictly
monotonically increasing and strongly monotonically increasing if and only if (y∗, α) ∈
Ca∗, (y∗, α) ∈ Ca◦ and (y∗, α) ∈ Ca#, respectively. Moreover, it follows from the
definitions of augmented dual cones that,

(3.3) {r}+ C ⊂ {y ∈ Rn : ⟨y∗, y − r⟩ − α∥y − r∥ ≥ 0}

for every (y∗, α) ∈ Ca∗,
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(3.4) {r}+ C \ {0} ⊂ {y ∈ Rn : ⟨y∗, y − r⟩ − α∥y − r∥ > 0}
for every (y∗, α) ∈ Ca# and

(3.5) {r}+ int(C) ⊂ {y ∈ Rn : ⟨y∗, y − r⟩ − α∥y − r∥ > 0}
for every (y∗, α) ∈ Ca◦.

Lemma 3.2. Let C be a nonempty cone of a real normed space (Y, ∥ · ∥), let
(y∗, α) ∈ Ca∗ and let

(3.6) C(y∗, α) = {y ∈ Y : ⟨y∗, y⟩ − α∥y∥ ≥ 0}.
Then, the following statements hold true.

(i) For each (y∗, α) ∈ Ca∗, the set C(y∗, α) is a closed convex cone containing C.
Moreover, it is pointed if α > 0.

(ii) If (y∗, α) ∈ Ca#, then

(3.7) int(C(y∗, α)) = {y ∈ Y : ⟨y∗, y⟩ − α∥y∥ > 0} ̸= ∅
and C \ {0} ⊂ int(C(y∗, α)).

Proof. The proof is omitted because it is similar to the proof of Lemma 3.6 in
[15]. □

The following theorem gives characterization of maximal elements of multiobjec-
tive optimization problem (3.1), in terms of solutions of scalar optimization problem
with the objective function ζ defined in (3.2).

Theorem 3.3. Let A = f(X) ⊂ Rn be a given nonempty set and let r ∈ Rn be a
given vector. Denote C = Rn

+. Let

(w,α) ∈ Ca∗ = {((w1, . . . , wn), α) :

0 ≤ α ≤ wi, wi > 0, i = 1, . . . , n},
and let Sol(SP (w,α, r)) be the set of optimal solutions of the scalar optimization
problem

(3.8) maxy∈A{⟨w, y − r⟩ − α∥y − r∥1}.
Suppose that Sol(SP (w,α, r)) ̸= ∅ for a given pair (w,α) ∈ Ca∗. Then the following
hold.

(i) If

(w,α) ∈ Ca◦ = {((w1, . . . , wn), α) : 0 ≤ α ≤ wi,

wi > 0, i = 1, . . . , n and there exists

k ∈ {1, · · · , n} such that wk > α},
then every element of Sol(SP (w,α, r)) is a weakly maximal element of A.

(ii) If Sol(SP (w,α, r)) consists of a single element, then this element is a maxi-
mal element of A.
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(iii) If

(w,α) ∈ Ca# = {((w1, . . . , wn), α) : 0 ≤ α < wi, i = 1, . . . , n},

then then every element of Sol(SP (w,α, r)) is a properly maximal element of A (in
the sense of both Henig and Benson [1]).

Proof. (i) Let (w,α) ∈ Ca◦ and y ∈ Sol(SP ). Assume to the contrary that y is not
a weakly maximal element of of A. Then, by definition of the weak maximality,
there exists an element a inA such that a > y. Then since the function ζ(w,α,r)(y) =
⟨w, y − r⟩ − α∥y − r∥1 is strictly monotonically increasing (see Remark 3.1), this
leads to ζ(w,α,r)(a) > ζ(w,α,r)(y), which is a contradiction.

(ii) Let (w,α) ∈ Ca∗ and let Sol(SP (w,α, r)) consists of a single element y.
Assume that this element is not a maximal element of A. Then by definition of the
maximality, there exists an element a inA such that a ≥ y. Then since the function
ζ(w,α,r)(y) = ⟨w, y−r⟩−α∥y−r∥1 is monotonically increasing (see Remark 3.1), this
leads to ζ(w,α,r)(a) ≥ ζ(w,α,r)(y). Since y is a single solution, this is a contradiction.

(iii) Let (w,α) ∈ Ca# and let y ∈ Sol(SP (w,α, r)). Then we have:

⟨w, y − r⟩ − α∥y − r∥ ≤ ⟨w, y − r⟩ − α∥y − r∥

for every y ∈ A. This implies

(3.9) ⟨w, y − y⟩ − α∥y − y∥ ≤ 0

for every y ∈ A. On the other hand, since {y} + C(w,α) = {y : ⟨w, y − y⟩ −
α∥y − y∥ ≥ 0}, we obtain by (3.9) that, y ∈ A ∩ {y} + C(w,α). If there was
a point {a} ∈ A ∩ ({y} + C(w,α)) with a ̸= y, this would lead to ζ(w,α,r)(a) >

ζ(w,α,r)(y) since (w,α) ∈ Ca#. Hence it is proved that y is a maximal element of
A with respect to the pointed closed convex cone C(w,α). Now since by Lemma
3.2, C \ {0} ⊂ int(C(y∗, α)), we obtain that y is a properly maximal element of A
in the sense of Henig. Finally, from the equivalence of Benson and Henig proper
efficiencies (see, e.g. [7, Theorem 2.1]), it follows that y is also a Benson properly
minimal element. □

The following theorem presents a necessary and sufficient condition for the given
point to be a Henig properly maximal element. This theorem actually demonstrates
that every properly maximal element of a given set can be generated by the scalar-
ization method suggested in this paper.

Theorem 3.4. Let A ⊂ Rn be a given nonempty set and let C = Rn
+. The point

y ∈ A is a Henig properly maximal element of A with respect to C if and only if
there exists a pair

(w,α) ∈ Ca# = {((w1, . . . , wn), α) : 0 ≤ α < wi, i = 1, . . . , n}

such that the scalar optimization problem

(3.10) max
y∈A

{⟨w, y − y⟩ − α∥y − y∥1}

attains its maximum at y that is, (3.9) holds.
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Proof. Necessity. Assume that y is a properly maximal element of A in the sense
of Henig. Then by the definition, y is a maximal element of A with respect to some
convex cone K with Rn

+ \ {0Rn} ⊂ int(K). By Theorem [16, Theorem 3], the cones
Rn
+ and K satisfy the separation property given in Definition 2.3, with respect to

the l1 norm. Then, by Theorem 2.6, there exists a pair (w,α) ∈ Ca# such that

⟨w, k⟩ − α∥k∥1 < 0 < ⟨w, c⟩ − α∥c∥1
for all k ∈ bd(K) \ {0Rn} and c ∈ Rn

+ \ {0Rn}. Then, since y is a maximal element

of A with respect to K, Rn
+ \ {0Rn} ⊂ int(K) and (w,α) ∈ Ca#, we obtain that

⟨w, y⟩ − α∥y∥1 ≤ 0

for all y ∈ (A− {y}), or

⟨w, y − y⟩ − α∥y − y∥1 ≤ 0

for all y ∈ A. Thus, the necessity of the theorem is proved.
Sufficiency. The proof follows from Theorem 3.3(iii).

□

4. Conclusions

In this paper, a version of the conic scalarization method for maximizing a multi-
objective optimization problems is presented. A new class of superlinear monotone
functions is presented and a nonliner separation theorem with the help of the func-
tions from this class, is proved. The presented class of functions and the separation
theorem are used to characterize maximal elements of maximization problems with-
out convexity and boundedness conditions.
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