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formulation EP (fp,Kλ) corresponds to a parametric perturbation of an original
equilibrium problem of the type: find x ∈ K such that

(1.2) EP (f,K) f(x, y) ≥ 0, ∀y ∈ K,

where f : K ×K → R and K ⊂ X.

In this paper we establish quantitative stability for the problem EP (fp,Kλ).
Roughly speaking, we evaluate the influence of the parametric perturbation on the
solutions set Sp,λ. Here, the evaluation in question is expected to be an estimate of
a Lipschitz or Hölder type by computing the distance between two solutions sets
Sp,λ and Sp′,λ′ in terms of the norm perturbations ∥p−p′∥ and ∥λ−λ′∥. This means
that we have to find as far as possible the sharpest error bounds, say e1, e2 > 0,
such that for some q1, q2 from (0, 1], for any p, p′ and λ, λ′ around initial values p
and λ respectively,

(1.3) haus(Sp,λ, Sp′,λ′) ⩽ e1∥p− p′∥q1 + e2∥λ− λ′∥q2 .
Here, haus(A,B) stands for the Hausdorff distance between two bounded subsets

A and B. We would like to emphasize that it is not an easy task to obtain such a
stability result by considering at the same time perturbations on both the bifunction
and the constraint set because of technical difficulties besides the very weak format
of the continuity and monotonicity assumptions, namely, weak quasimonotonicity
and relaxed upper sign property. Thus, inspired by [1, 3], we divide the treatment
in two steps where we firstly deal with one parameter inherent in the objective
bifunction level and secondly with the other one arising in the constraint set. As
observed in the two lastly quoted references, the case of global perturbation in both
of the constraints and the objective bifunction comes easily from these two cases by
the triangle inequality.

The main primary observation of the present research is that estimates of the
type (1.3), when the constraints set is fixed (i.e., λ = λ′ and e2 = 0) could be
derived from a similar estimate of Minty type solutions (see Theorem 4.6 below)
under a very weak continuity assumption only supposed on the objective function
namely relaxed upper sign continuity. Instead, we consider the condition of strong
quasiconvexity -with respect to the second argument- that plays the role of strong
generalized monotonicity usually required to obtain quantitative stability in varia-
tional problems. But we observed that under this weaker format of assumptions, a
restriction on the required stability is in force. More precisely, Theorem 4.6 (below)
ensures the Hölder estimate only by fixing p′ at the initial value p. Thus, with a
similar technique as in Theorem 4.6, we prove quantitative stability of standard
equilibrium points of weakly pseudomonotone perturbed bifunctions, see Theorem
4.11.

A particular but very important example of application is the parametric quasi-
convex programming. In this context, one can expect a result of the following form:
given a family of parametric quasiconvex real-valued functions, say gp : X → R, by
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keeping Kλ as before in the abstract formulation, we are able to provide conditions
through which the following can be envisaged:

haus(Argmin
Kλ

gp,Argmin
Kλ′

gp′) ⩽ e1∥p− p′∥q1 + e2∥λ− λ′∥q2 .(1.4)

Moreover, our method leads to a new conclusion regarding what we call global
strong minimizers which meet the so-called strict minimizers of order 2 also known
as 2-order sharp minimizers with a certain modulus following [30]. In particular,
we stress the role of strong quasiconvexity to obtain this sharpness with different
modulus of the form τα, where τ is any real number in (0, 14) and α is the strong
quasi-convexity constant of the function subject to parametric minimization.

Let us emphasise that the stability of star and strict solutions considered in [3]
for variational inequalities is not evidently generalizable to the general formulation
of the problem EP (f,K), and in addition, this kind of solutions always requires the
non-emptiness of the interior of the corresponding constraints. We are thus moti-
vated in this work to consider rather weak Minty solutions which, thanks to relaxed
upper-sign property, become standard solutions as underlined in [19]. Moreover,
with an intimate link to strong quasiconvexity, we introduce the notion of strong
solutions which are nothing else but a type of strong approximate solutions and
may meet the class of star and strict solutions when we regard equilibrium points
as solutions to Stampacchia variational inequalities, and will prove to have stability
properties under mild assumptions.

The paper is organized as follows. In Section 2, we recall the material and fix
the notations we need. In Section 3, we introduce and discuss solutions concepts
as well as a fundamental penalization result. In Section 4, we present our main
results on quantitative stability and situate them in the close recent literature. We
begin with the case of perturbation on the objective bifunction and end by the one
of perturbation at the level of the feasibility set K. Finally, in Section 5, we discuss
applications to quasiconvex programming for which we establish two results.

2. Preliminaries

Throughout the paper, unless otherwise is specified, X is a normed vector space
whose norm is denoted by ∥.∥ , X∗ will denote its topological dual and ⟨., .⟩ the
corresponding duality pairing. The closed unit ball of X (resp. X∗) will be denoted
by B̄X (resp. B̄X∗) and we write B̄(x, r) for the closed ball of radius r > 0 and
center x ∈ X. The notations Λ and M will stand for two other normed vector
spaces of parameters, whose norms are also denoted by ∥.∥. We further consider
a family of arbitrary convex subsets {Kλ}λ∈Λ of X and a family of bifunctions
{fp := fp(., .)}p∈M defined on K × K, where K is a closed and convex subset of
X. Given a pair (p, λ) ∈ M × Λ, we consider the parametric equilibrium problem
defined above in (1.1) and fix p̄ ∈M and λ̄ ∈ Λ.

2.1. Weak Minty solutions and notations. LetK be a closed and convex subset
of X. For any µ ⩾ 0, the weak µ-Minty equilibrium problem corresponding to (1.2)
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is as follows: find x ∈ K such that

µ−MEP (f,K) f(y, x) ⩽ µ∥y − x∥2, ∀y ∈ K.

For µ = 0, µ−MEP (f,K) collapses into the standard Minty equilibrium formula-
tion MEP (f,K): find x ∈ K such that f(y, x) ≤ 0 for all y ∈ K.

Definition 2.1. ( [19]) Let µ ≥ 0 be fixed. A point x ∈ K is said to be a local weak
µ-Minty equilibrium for f if there exists a neighborhood Vx of x such that

f(y, x) ⩽ µ∥y − x∥2, ∀y ∈ K ∩ Vx.

Notations:

▶ For any µ ⩾ 0, Mµ(f,K) will stand for the set of solutions to µ−MEP (f,K)
and Mµ

L(f,K) for the local solutions of this problem.
▶ S(f,K) denotes the set of (standard) solutions to the equilibrium problem
EP (f,K).

▶ For any p ∈ M, Sp denotes the set of solutions to EP (fp,K) i.e., Sp :=
S(fp,K).

▶ For any λ ∈ Λ, Sλ denotes the set of solutions to EP (f,Kλ) i.e., Sλ :=
S(f,Kλ).

▶ For any p ∈ M, Mµ
p will stand for the solutions to µ −MEP (fp,K) i.e.,

Mµ
p :=Mµ(fp,K).

▶ For any p ∈M, L−Mµ
p will stand for the local solutions to µ−MEP (fp,K)

i.e., L−Mµ
p :=Mµ

L(fp,K).

2.2. The µ−upper sign property. LetK be a closed and convex subset ofX. The
following concept of regularity will play an important role in our stability analysis.

Definition 2.2. ( [19]) Let µ ≥ 0. A bifunction f is said to have the µ-upper
sign property at x ∈ K (with respect to the first variable) if there exists a convex
neighborhood Vx of x such that for all y ∈ Vx ∩K,

f(zt, x) ⩽ µ∥zt − x∥2,∀t ∈]0, 1[=⇒ f(x, y) ⩾ 0,(2.1)

where zt = (1− t)x+ ty. If µ = 0, the equilibrium bifunction f is said to have the
upper sign property.

Remark 2.3.
• For the case µ = 0, if f is upper hemicontinuous in x and semistrictly
quasiconvex (in particular if it is strongly convex) in the second argument
then it has the µ-upper sign property in x, see [19, Lemma 3 and Remark
1 pp 1221].

• The µ-upper sign property in x is not a kind of weak continuity, but if for
every x ∈ K there exists r > 0 such that for every y ∈ K ∩ B(x, r) the
following implication is satisfied:

(1− t)f(zt, x) + tf(zt, y) ≥ 0, ∀t ∈]0, 1[,(2.2)

then the upper hemicontinuity of f in x implies the µ-upper sign property
of f at x for every µ ≥ 0, see [19, Lemma 4, pp 1223] for more details.
The condition (2.2) is satisfied if f is locally convex in the second argument,
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uniformly with respect to x, that is, there exists r > 0, independent of x,
such that the function f(x, .) restricted to the open ball B(x, r) is convex.

For further discussion on this new concept of regularity in the context of variational
inequalities, the interested reader is referred to [19, Section 3.2, pp 1224]. Here, we
only recall its interest in our case in the following result.

Proposition 2.4. Let K be a convex subset of X and f : K × K −→ R be a
bifunction. If f has the µ-upper sign property in x and for all x, y ∈ K,

f(x, y) < 0 =⇒ f(x, (1− t)x+ ty) < 0, ∀t ∈]0, 1[,(2.3)

then Mµ(f,K) ⊂Mµ
L(f,K) ⊂ S(f,K).

Proof. The inclusion Mµ(f,K) ⊂ Mµ
L(f,K) is always true while the second one

Mµ
L(f,K) ⊂ S(f,K) is exactly the result in [19, Theorem 1].

□

2.3. Continuity concepts for set-valued maps and Stampacchia variational
inequalities. For any nonempty subset A of X and any point x ∈ X, d(x,A) =
inf{∥x − y|∥ : y ∈ A} will stand for the distance from x to A, and if B is another
subset of X, e(A,B) denotes the excess of A on B given by e(A,B) = sup{d(a,B) :
a ∈ A}. Finally, the Hausdorff distance between two bounded subsets A and B of
X is given by

haus(A,B) = max{e(A,B), e(B,A)}.

To make sense of the use of Hausdorff distances in our quantitative stability, through-
out the remaining of the paper, the solutions sets to the considered equilibrium
problems are supposed to be nonempty and bounded. As observed in [3], the case
of unboundedness can obtained from the bounded one with the use of the so-called
ρ-Hausdorff distance also known as Attouch-Wets distance.

Let us now recall the concept on continuity of set-valued maps needed for our
purpose.

Definition 2.5. Let (M, ∥.∥) and (X, ∥.∥) be two normed vector spaces. A set val-
ued mapping T :M ⇒ X is said to be Lipschitz continuous relative to a (nonempty)
set D of the domain of T (i.e., D ⊂ domT ) if there exists κ ≥ 0 such that

haus(T (y′), T (y)) ⩽ κ∥y − y′∥, ∀y, y′ ∈ D,(2.4)

or equivalently, there exists κ ≥ 0 such that

T (y′) ⊂ T (y) + κ∥y − y′∥BX , ∀y, y′ ∈ D,(2.5)

where BX = {x ∈ X : ∥x∥ ≤ 1} denotes the closed unit ball in X.

Let us introduce some notations which will be useful throughout this paper and
recall the classical definition of Stampacchia variational inequality.
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Definition 2.6. ( [3]) LetK be a closed and convex subset ofX and let T : X ⇒ X∗

be a set valued map. The Stampacchia variational inequality problem related to T
and K is to find x ∈ K and x∗ ∈ T (x) such that

SV I(T,K) ⟨x∗, y − x⟩ ≥ 0, ∀y ∈ K.

We denote by ST (K) the set of solutions to SV I(T,K).
If the (dual)-element x∗ in the inequality SV I(T,K) is such that x∗ ∈ T (x)\{0},
then x is called a star solution to SV I(T,K). We denote by S∗

T (K) the set of star
solutions of SV I(T,K).
If the (dual)-element x∗ in the inequality SV I(T,K) is such that ⟨x∗, y − x⟩ >
0, ∀y ∈ K\{x}, then x is called a strict solution to SV I(T,K). We denote by
S>
T (K) the set of strict solutions of SV I(T,K).

Remark 2.7. Strict and star solutions when they exist should belong to the bound-
ary of K, see [4, Subsection 4.2] and the comment before relation (1) in [8]. More-
over, as considered in [3, 4, 10], this kind of solutions exist if K has a nonempty
relative interior.

2.4. Generalized convexity and generalized monotonicity. Let K be a
nonempty convex subset of X. A function g : K −→ R is said to be:

• quasiconvex if for all x, y ∈ K,

g(tx+ (1− t)y) ⩽ max{g(x), g(y)}, ∀t ∈]0, 1];
• strictly quasiconvex if for all x, y ∈ K with x ̸= y,

g(tx+ (1− t)y) < max{g(x), g(y)}, ∀t ∈]0, 1[;
• semistrictly quasiconvex if g is quasiconvex and for all x, y ∈ K,

g(x) < g(y) =⇒ g(tx+ (1− t)y) < g(y), ∀t ∈]0, 1[;(2.6)

• α-strongly quasiconvex, for some α ≥ 0, if for any x, y ∈ K and any t ∈ [0, 1],

g(tx+ (1− t)y) ⩽ max
(
g(x), g(y)

)
− αt(1− t)∥x− y∥2.

Definition 2.8. ( [19]) Let µ ⩾ 0 be fixed and f be a real-valued bifunction defined
on K ×K, where K is a convex subset of X. The bifunction f is said to be

• µ-weakly monotone if, and only if for all x, y ∈ K,

f(x, y) + f(y, x) ⩽ µ∥y − x∥2;(2.7)

• µ-weakly pseudomonotone if, and only if for all x, y ∈ K,

f(x, y) ⩾ 0 =⇒ f(y, x) ⩽ µ∥y − x∥2;(2.8)

• µ-weakly quasimonotone if, and only if for all x, y ∈ K,

f(x, y) > 0 =⇒ f(y, x) ⩽ µ∥y − x∥2;(2.9)

• strongly µ-quasimonotone if, and only if for all x, y ∈ K,

f(x, y) > 0 =⇒ f(y, x) ⩽ −µ∥y − x∥2;(2.10)
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• properly µ-weakly quasimonotone if, and only if for all n ∈ N, x1, . . . , xn ∈ K
and x ∈ Conv{x1, . . . , xn} there exists i ∈ {1, . . . , n} such that

f(xi, x) ⩽ µ∥xi − x∥2.

Remark 2.9. Observe that

(1) The concept of µ-weakly pseudomonotonicity is closely tied with the set
of weak µ-Minty equilibrium points of a bifunction fp. Actually, if (2.8) is
satisfied then standard equilibria are also of a µ-Minty type i.e., Sp ⊂Mµ

p .
(2) If, in addition to conditions of the previous point, fp is α-strongly quasicon-

vex then Mµ
p coincides with Sp and reduces at most to a point for every µ

such that fp has the µ-upper sign property with µ < α
4 .

3. Penalization and uniqueness

In this section, we introduce and discuss a new concept of equilibrium points,
what we call µ-strong equilibrium point. Let K be a closed and convex subset of
X and f : K ×K → R a bifunction. Let us agree to introduce the following:

Definition 3.1. Let µ ≥ 0. A point x ∈ K will be said to be µ-strong solution (or
µ-strong equilibrium point) to EP (f,K) if

µ− EP (f,K) f(x, y) ⩾ µ∥y − x∥2, ∀y ∈ K.(3.1)

We denote by Sµ(f,K) the set of solutions to µ− EP (f,K).

Remark 3.2.
• µ-strong solutions to EP (f,K) are nothing else but standard solutions
to the following (auxiliary) equilibrium problem EP (g,K) with g(x, y) =
f(x, y)−µ∥x− y∥2, x, y ∈ K. They are of course of strong type since µ ≥ 0.
Weak solutions correspond to µ < 0. A further motivation to qualify this
type of solutions as strong ones comes from the strong quasiconvexity, see
Proposition 3.4.

• It is straightforward to see that Sµ(f,K) ⊂ S(f,K) for all µ ≥ 0, the
converse will be the object of Proposition 3.4 below.

The concept of µ- strong solutions in the case of Stampacchia variational inequal-
ities is given in the following definition

Definition 3.3. Let K be a closed and convex subset of X and T : K ⇒ X∗ be a
set-valued map. For any µ ≥ 0, a point x ∈ K will be said to be µ-strong solution
to SV I(T,K) if there exists a dual element x∗ ∈ T (x) such that

µ− SV I(T,K) ⟨x∗, y − x⟩ ⩾ µ∥y − x∥2, ∀y ∈ K.(3.2)

We denote by Sµ
T (K) the set of µ-strong solutions to SV I(T,K).

For the link between equilibrium problems and variational inequalities, we refer
to the recent study by Aussel , Dutta and Pandit [7]. Next, we show that µ-
strong equilibrium points and standard ones coincide under strong quasiconvexity
condition.

Proposition 3.4. Let K be a convex subset of X and f : K × K −→ R be a
bifunction. Assume that the following conditions hold:
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i) f(x, x) = 0 for all x ∈ K,
ii) f is µ-strongly quasiconvex in the second argument for some µ ≥ 0.

Then, for all τ ∈ [0, 14 ], the problems EP (f,K) and τµ-EP (f,K) are equivalent
i.e., S(f,K) = Sτµ(f,K).

Proof. The inclusion Sτµ(f,K) ⊂ S(f,K) is trivial. We have to prove the converse
inclusion. Let x be a solution to EP (f,K) i.e., x ∈ S(f,K). Then,

f(x, x) ⩾ 0, ∀x ∈ K.(3.3)

Let t ∈ [0, 1] and x ∈ K, put xt = tx + (1 − t)x. By (3.3) and assumption ii) we
have

0 ⩽ f(x, xt) ⩽ max{f(x, x), f(x, x)} − t(1− t)µ∥x− x∥2, ∀x ∈ K.(3.4)

Hence, by assumption i) and (3.3), we obtain

0 ⩽ f(x, xt) ⩽ f(x, x)− t(1− t)µ∥x− x∥2, ∀x ∈ K.(3.5)

Therefore,

t(1− t)µ∥x− x∥2 ⩽ f(x, x), ∀x ∈ K, ∀t ∈ [0, 1].(3.6)

Thus, given that the function ψ(t) = t(1 − t) is continuous with 1
4 as least upper

bound, it follows that

τµ∥x− x∥2 ⩽ f(x, x), ∀x ∈ K, ∀τ ∈ [0,
1

4
].(3.7)

This means that x ∈ Sτµ(f,K) for all τ ∈ [0, 14 ], ending the proof.
□

Remark 3.5. The condition i) in Proposition 3.4 is sufficient but not necessary as
shows the following counter-example.

Example 3.6. Take f(x, y) = y2 − x with K = [0, 1]. Clearly, f is α-strongly
convex (and hence α-strongly quasiconvex) for all α ∈]0, 1] but f(x, x) = x2−x < 0
for all x ∈]0, 1[. However, 0 is a τα-strong equilibrium (unique in this case) for f
over [0, 1] for all τ ∈ (0, 14) since f(0, y) = y2 ⩾ α|y − 0|2 ⩾ τα|y − 0|2 for all
y ∈ K. If K = [1,+∞[ then 1 is a τα-strong equilibrium (unique in this case) of
f over K since f(1, y) ⩾ α|y − 1|2 ⩾ τα|y − 1|2 for all y ∈ K and all τ ∈ (0, 14).

Remark also that g(x, y) = y2−x2 satisfies the conditions i) and ii) (with α ⩽ 1) of
Proposition 3.4 and it has the same unique equilibrium point 0 (resp. 1) over [0, 1]
(resp. [1,+∞[) which is a τα-strong equilibrium for f over [0, 1] (resp. [1,+∞[) for
any τ ∈ (0, 14).

Proposition 3.7. Let µ > 0, K be a convex subset of X and f : K ×K −→ R be
a bifunction. Assume that the following conditions hold:

i) f(x, x) = 0 for all x ∈ K;
ii) f is τµ-weakly quasimonotone for some τ ∈]0, 14 [;
iii) f is µ-strongly quasiconvex in the second argument.

Then, the problem EP (f,K) admits at most one solution.
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Proof. Suppose for contradiction that EP (f,K) admits two solutions x1 and x2 in
K (x1 ̸= x2). Since f is µ-strongly quasiconvex in y, from Proposition 3.4, for all
τ ′ ∈]0, 14 [, it follows that

τ ′µ∥x1 − x2∥2 ⩽ f(x1, x2).

Clearly, f(x1, x2) > 0, then by the τµ-weak quasimonotonicity of f we deduce that

f(x2, x1) ⩽ τµ∥x1 − x2∥2.(3.8)

But x2 is also a solution to EP (f,K), then we have

τ ′µ∥x1 − x2∥2 ⩽ f(x2, x1), ∀τ ′ ∈]0,
1

4
[.(3.9)

Hence, for any τ ′ > τ (τ ′ ∈]0, 14 [), (3.8) and (3.9) are in conflict.
□

Remark 3.8.
• The assumption ii) is essential in Proposition 3.7. To see this, let g : R → R
be an α-strongly quasiconvex function with nonnegative real values, α > 0,
such that g(0) = 0 and

lim
x→+∞

g(x) = +∞.(3.10)

Consider the bifunction f : K × K → R defined, for x, y ∈ K, by
f(x, y) = g(y−x). Clearly, it is a simple matter to check that f is α-strongly
quasiconvex in the second argument. Observe that in view of (3.10), for a
fixed x ∈ R,

lim
y→+∞

f(x, y) = +∞.(3.11)

This implies that f is not µ-weakly quasimonotone for any µ > 0. Moreover,
for all x ∈ R, f(x, x) = g(0) = 0. However, R provides a set of equilibrium
points of f over R.

• The conclusion of Proposition 3.7 remains true if f is µ-weakly quasimono-
tone and µ

τ -strongly quasiconvex in the second argument for some τ ∈]0, 14 [.
• Under assumptions of Proposition 3.7 and according to proposition 3.4, also
the problem µ− EP (f,K) admits at most one solution.

4. Quantitative stability

4.1. Perturbation with respect to the objective bivariate function f . We
begin our treatment by considering the perturbation at the level of the bifunction,
the convex constraints set K being fixed. In this respect, for every p ∈ M, let Sp
be the set of solutions to the following perturbed problem: find xp ∈ K such that

EP (fp,K) fp(xp, y) ⩾ 0, ∀y ∈ K.

For a given µ ≥ 0 and p ∈M, the weak-µ Minty problem (whose set of solutions is
already fixed as Mµ

p ) corresponding to EP (fp,K) is as follows: find xµp ∈ K such
that



316 M. AIT MANSOUR, R-.A. ELAKRI, AND M. LAGHDIR

µ−MEP (fp,K) fp(y, x
µ
p ) ⩽ µ∥y − xµp∥2, ∀y ∈ K.

For a fixed initial value p̄ ∈ M of the parameter, the following assumption will be
needed:

(A1) There exist θ > 0, 2 > δ ≥ 0, and there exists γ with min{1, 2− δ} ⩾ γ ≥ 0
and a neighborhood N of p̄ such that for all x, y ∈ K and all p, p′ ∈ N we have

|fp(x, y)− fp′(x, y)| ⩽ θ
∥∥p− p′

∥∥γ ∥y − x∥δ .

Example 4.1. Let gp : K −→ R be a family of Lipschitz functions for p ∈ M .
Assume that the Clarke subdifferential of gp satisfies the following Lipschitz property
with respect to p: There exist θ > 0 and a neighborhood N of p̄ such that for all
p, p′ ∈ N,

(4.1) ∂Cgp(x) ⊂ ∂Cgp′(x) + θ∥p− p′∥B̄X∗ , ∀x ∈ K.

Then, the family of bifunctions (fp)p∈N such that fp(x, y) := g0p(x, y − x) satisfies
the assumption (A1) with δ = γ = 1. Indeed, from (4.1) we easily obtain

g0p(x, y − x) = sup
z∗∈∂Cgp(x)

⟨z∗, y − x⟩

≤ sup
w∗∈∂Cgp′ (x),u

∗∈BX∗

⟨w∗ + θ∥p− p′∥u∗, y − x⟩

≤ sup
w∗∈∂Cgp′ (x)

⟨w∗, y − x⟩+ θ∥p− p′∥|∥x− y∥

= g0p′(x, y − x) + θ∥p− p′∥|∥x− y∥.
Consequently,

(4.2) g0p(x, y−x)− g0p′(x, y−x) ≤ θ∥p− p′∥∥x− y∥ ∀x, y ∈ K and ∀p, p′ ∈ N.

Since the role of p and p′ is symmetric, the previous inequality is also true with
p (resp. p′) at the place of p′ (resp. p). This shows that (A1) is satisfied for this
example.

Remark 4.2. Taking into account that the subsets ∂Cgp(x) are weak* closed in
X∗, the condition (4.1) is nothing else but the Lipschitz continuity relative to N of
the map p⇒ ∂Cgp.

Example 4.3. Let K be a compact subset of Rn, n ≥ 1. For a given α > 0, for
any p > 1, consider the bifunction fp defined on K ×K by fp(x, y) =

pα
2 ∥y − x∥2.

Put R = sup{∥y − x∥, x, y ∈ K} and see easily that (A1) is satisfied with θ = Rα
2 ,

δ = 1 and γ = 1. Moreover, remark that fp is pα-strongly quasiconvex and also
α-strongly quasiconvex since p > 1.

The following result, which will be useful for the proof of Theorem 4.6 below, obtains
the same conclusion of Proposition 2.4 in the case of strong quasiconvexity by
removing the technical assumption (2.3).
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Lemma 4.4. Let fp : K ×K −→ R, p ∈ M, be a perturbed equilibrium bifunction
such that

i) fp(x, x) = 0 for all x ∈ K;
ii) fp has the µ-upper sign property at x for some µ ≥ 0;
iii) fp is α-strongly quasiconvex in the second argument for some α ≥ 0.

Then, the set L−Mµ
p of local solutions to the weak µ-Minty equilibrium problem is

included in the set Sp of standard equilibrium points.

Proof. Assume that x ∈ L −Mµ
p and take y ∈ K \ {x}. Then there exists r1 > 0

such that

(4.3) |fp(z, x)| ≤ µ∥z − x∥2, ∀z ∈ K ∩B(x, r1).

From the definition of µ-upper sign property in the first argument there exists r2 > 0
such that

(4.4) |fp(zt, x)| ≤ µ∥zt − x∥2 =⇒ fp(x, z) ≥ 0, ∀z ∈ K ∩B(x, r2),

where zt = (1− t)x+ tz for t ∈]0, 1[. Take r = inf(r1,r2)
2 and combine between (4.3)

and (4.4) to see that

(4.5) fp(x, z) ≥ 0, ∀z ∈ B(x, r) ∩K.
Since K ∩ B(x, r)∩]x, y[̸= ∅, we can choose t ∈]0, 1[ such that yt := (1 − t)x + ty
and yt ∈ B(x, r)∩K. Consequently, yt satisfies the relation (4.5), i.e., fp(x, yt) ≥ 0.
But fp is α-strongly quasiconvex in the second argument, then

0 ≤ fp(x, yt) ≤ max
(
fp(x, x), fp(x, y)

)
− αt(1− t)∥x− y∥2

< max
(
0, fp(x, y)

)
.

Hence, necessarily max
(
0, fp(x, y)

)
= fp(x, y) and fp(x, y) > 0 for all y ∈ K \ {x}.

Taking into account the condition i) of this lemma we deduce that fp(x, y) ≥ 0 for
all y ∈ K, this achieves the proof.

□
Lemma 4.5. Let K be a closed and convex subset of X. Let f be a real-valued
bifunction defined on K ×K. Let µ ≥ 0. Assume that the following conditions hold:

i) f is α-strongly quasiconvex for some α > 0;
ii) f has the µ-upper sign property;
iii) α

4 > µ.

Then, Mµ(f,K) reduces at most to a singleton.

Proof. Assume that Mµ(f,K) is nonempty and suppose for a contradiction that
there exists x1, x2 ∈Mµ(f,K) such that x1 ̸= x2. By definition of Mµ, f(x2, x1) ≤
µ∥x1 − x2∥2. At the meantime, thanks to Lemma 4.4, x2 ∈ S(f,K). Then, Propo-

sition 3.4 ensures that S(f,K) = S
α
4 (f,K). Therefore,

α

4
∥x1 − x2∥2 ≤ f(x2, x1).
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But f(x2, x1) ≤ µ∥x1 − x2∥2 < α
4 ∥x1 − x2∥2, a contradiction.

□

Let us now state our main result on quantitative stability for µ-Minty solutions
around the initial value p of the parameter p.

Theorem 4.6. Let fp : K × K −→ R for p ∈ M be a perturbed equilibrium
bifunction. Assume that (A1) holds and the following conditions are satisfied:

i) fp is α-strongly quasiconvex in the second argument for some α > 0 and
fp(x, x) = 0 for all x ∈ K;

ii) fp has the µ-upper sign property in x and Mµ
p is nonempty and bounded for

some µ ≥ 0;
iii) For some µ ≥ 0 such that 1

4α > µ, Mµ
p is nonempty and bounded for all

p ∈ N \ {p}.
Then, the corresponding sets of µ-Minty solutions satisfy the following Hölder esti-
mate:

haus(Mµ
p ,M

µ
p ) ⩽ κ∥p− p∥γ̃ , ∀p ∈ N.(4.6)

Here, κ =
(

θ
1
4
α−µ

) 1
2−δ

and γ̃ = γ
2−δ .

Proof. Let p ∈ N, x ∈ Mµ
p and x ∈ Mµ

p such that x ̸= x. Then thanks to Lemma

4.4, it results that x ∈Mµ
p ⊂ L−Mµ

p ⊂ Sp. Thus, using again i), from Proposition
3.4 it follows that

fp(x, x) ⩾
1

4
α∥x− x∥2.(4.7)

Now, since x ∈Mµ
p , by the definition of µ-Minty solutions, we have

fp(y, x) ⩽ µ∥x− y∥2, ∀y ∈ K.(4.8)

In particular with y = x in (4.8) we get

fp(x, x) ⩽ µ∥x− x∥2 or else − fp(x, x) ⩾ −µ∥x− x∥2.(4.9)

Therefore, the sum of (4.7) and (4.9) leads to

fp(x, x)− fp(x, x) ⩾ (
1

4
α− µ)∥x− x∥2,(4.10)

which, thanks to the assumption (A1), yields

∥∥∥x− x
∥∥∥ ⩽

( θ
1
4α− µ

) 1
2−δ
∥∥∥p− p

∥∥∥ γ
2−δ

.(4.11)

Since x and x are arbitrarily taken in Mµ
p and Mµ

p respectively, it results that
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e(Mµ
p ,M

µ
p ) = sup

x∈Mµ
p

d(x,Mµ
p ) ⩽

( θ
1
4α− µ

) 1
2−δ
∥∥∥p− p

∥∥∥ γ
2−δ

.(4.12)

Similarly, we also have

e(Mµ
p ,M

µ
p ) = sup

x∈Mµ
p

d(x,Mµ
p ) ⩽

( θ
1
4α− µ

) 1
2−δ
∥∥∥p− p

∥∥∥ γ
2−δ

.(4.13)

From (4.12) and (4.13) we immediately obtain

haus(Mµ
p ,M

µ
p ) = max

(
e(Mµ

p ,M
µ
p ), e(M

µ
p ,M

µ
p )
)
⩽
( θ

1
4α− µ

) 1
2−δ
∥∥∥p− p

∥∥∥ γ
2−δ

.

□

Remark 4.7.
• Theorem 4.6 extends, to weak µ-Minty solution, the result obtained in [5,
Theorem 6.2] for strong µ- Minty solution in the sense of [5, (v) of Definition
4.4].

• A strong (remarkable) point in Theorem 4.6 is that hypotheses i) and ii)
are done only on the initial bivariate function fp.

If the condition i) and ii) of Theorem 4.6 are satisfied for all p ∈ N , we can deduce
that the set Mµ

p contains at most one element. Precisely, thanks to Lemma 4.5 we
state the following:

Corollary 4.8. Let fp : K × K −→ R for p ∈ M be a perturbed equilibrium
bifunction. Assume that (A1) holds and the following conditions are satisfied for all
p ∈ N :

i) fp is α-strongly quasiconvex in the second argument for some α > 0 and
fp(x, x) = 0 for all x ∈ K;

ii) fp has the µ-upper sign property in x and Mµ
p is nonempty for some µ ≥ 0;

iii) 1
4α > µ.

Then, the corresponding sets of µ-Minty solutions Mµ
p are reduced to a singleton

{xp} and we have the following estimate:

∥xp − xp′∥ ⩽ κ∥p− p′∥γ̃ , ∀p, p′ ∈ N.(4.14)

Here, κ =
(

θ
1
4
α−µ

) 1
2−δ

and γ̃ = γ
2−δ .

Example 4.9. Take K := [−1, 1], p := 0, N := [−1, 1], and (fp)p∈R defined as
follows:

fp(x, y) :=


−(y−x)2

|p| exp( 1
p2

)
, if p ̸= 0

(y − x)2, if p = 0.
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It is straightforward to see that M0
p = M1

p = [−1, 1]. We verify that the functions
fp satisfies all assumptions of Theorem 4.6.

• Let x, y ∈ K and p, p′ ∈ N.
First case: If x, y is in K such that p ̸= 0 . In this case we have

|fp(x, y)− fp′(x, y)| =
∣∣ (y − x)2

|p| exp( 1
p2
)
− (y − x)2

|p′| exp( 1
p′2

)

∣∣
= |y − x||x+ y|

∣∣ 1

|p′| exp( 1
p′2

)
− 1

|p| exp( 1
p2
)

∣∣
≤ 2|y − x|

(
1

|p′| exp( 1
p′2

)
+

1

|p| exp( 1
p2
)

)
.

Since lim
|p|→0

1
|p| exp( 1

p2
)
= 0, there exists θ > 0 such that 1

|p| exp( 1
p2

)
≤ 1

4θ for

p ∈ N . Therefore,

|fp(x, y)− fp′(x, y)| ≤ θ|y − x|.

Second case: If p = 0 we have

|fp(x, y)− fp′(x, y)| = 0 ≤ θ|x− y|.

Then, for all x, y ∈ K and all p, p′ ∈ N , we have |fp(x, y) − fp′(x, y)| ≤
θ|x−y|, hence the bifunctions fp satisfy the assumption (A1) with θ positive,
γ = 0 and δ = 1.

• Clearly, the bifunction f0(x, y) = (y − x)2 is null on the diagonal, moreover
it has the µ-upper sign property for µ = 1 and it is in addition α-strongly
quasiconvex with α = 1.

• For all p ∈ N \ {0} and all x, y ∈ [−1, 1] we have fp(y, x) ≤ 0× (y − x)2.

As a conclusion, the bifunctions (fp)p∈R satisfy all conditions of Theorem 4.6 with
µ = 0, µ = 1 and p ∈ [−1, 1].

Example 4.10. Take K := [−1, 1], N := [−1, 1], µ := 0 and (fp)p∈R defined by

fp(x, y) := (y − p)(y − x).

Remark that for all p ∈ N , the function fp is null on the diagonal, α-strongly convex
in the second argument (hence strongly quasiconvex) with α := 1, moreover it has
the µ-upper sign property for all µ ≥ 0. On the other hand, for all p, p′ ∈ N and all
x, y ∈ K, | fp(x, y)− fp′(x, y) |=| x− y || p− p′ |, then the condition (A1) is fulfilled
with θ = δ = γ = 1. Consequently, the conditions of Corollary 4.8 are satisfied,
and hence the estimate (4.14) holds. In this case, the corresponding set of 0-Minty
solutions M0

p is reduced to a singleton {xp}. In this case, (4.14) takes the following
format:

| xp − xp′ |≤ 4 | p− p′ |, ∀p, p′ ∈ N.
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Observe that in this example, for every p ∈ N ,

xp ∈M0
p ⇐⇒ (xp − p)(xp − y) ≤ 0, ∀y ∈ K

⇐⇒ xp = p.

Notation: In the sequel, we denote by D the domain of the map Mµ for some
µ ≥ 0 defined by p ⇒ Mµ(p) := Mµ

p , so under the assumptions of Theorem 4.6, N
is a subset of D.

Next, we present a similar quantitative stability for two standard solutions sets
Sp and Sp′ for arbitrary parameters p and p′.

Theorem 4.11. Let fp : K × K −→ R for p ∈ M be a perturbed equilibrium
bifunction. Assume that (A1) holds and the following conditions are satisfied:

i) fp is α-strongly quasiconvex in the second argument for some α > 0 and
fp(x, x) = 0 for all x ∈ K;

ii) Sp is nonempty and bounded;
iii) For all p ∈ N \ {p} , Sp is nonempty and bounded;
iv) For some µ ≥ 0 such that 1

4α > µ, fp is µ-weakly pseudomonotone and Sp
is nonempty for all p ∈ N \ {p} .

Then, the corresponding sets of standard solutions satisfy the following Hölder es-
timate:

haus(Sp, Sp) ⩽ κ∥p− p∥γ̃ , ∀p ∈ N.(4.15)

Here, κ =
(

θ
1
4
α−µ

) 1
2−δ

and γ̃ = γ
2−δ .

Proof. Let p ∈ N \ {p} , x ∈ Sp and x ∈ Sp. Using i) and Proposition 3.4 we obtain
that

fp(x, x) ⩾
1

4
α∥x− x∥2.(4.16)

Now, since x ∈ Sp, the µ-weak pseudomonotonicity of fp ensures that x ∈ Mµ
p .

Thus, by definition of µ-Minty solutions, we have

fp(y, x) ⩽ µ∥x− y∥2, ∀y ∈ K.(4.17)

In particular with y = x in (4.17) it follows that

fp(x, x) ⩽ µ∥x− x∥2 or else − fp(x, x) ⩾ −µ∥x− x∥2.(4.18)

Therefore, the sum of (4.16) and (4.18) implies

fp(x, x)− fp(x, x) ⩾ (
1

4
α− µ)∥x− x∥2.(4.19)

Hence, by involving the assumption (A1), it results that
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∥∥∥x− x
∥∥∥ ⩽

( θ
1
4α− µ

) 1
2−δ
∥∥∥p− p

∥∥∥ γ
2−δ

.(4.20)

Since x and x are arbitrarily taken in Sp and Sp respectively, we clearly see that

e(Sp, Sp) = sup
x∈Sp

d(x, Sp) ⩽
( θ

1
4α− µ

) 1
2−δ
∥∥∥p− p

∥∥∥ γ
2−δ

.(4.21)

Similarly, we also have

e(Sp, Sp) = sup
x∈Sp

d(x, Sp) ⩽
( θ

1
4α− µ

) 1
2−δ
∥∥∥p− p

∥∥∥ γ
2−δ

.(4.22)

From (4.21) and (4.22) we immediately obtain

haus(Sp, Sp) = max
(
e(Sp, Sp), e(Sp, Sp)

)
⩽
( θ

1
4α− µ

) 1
2−δ
∥∥∥p− p

∥∥∥ γ
2−δ

.

□

We end this subsection by a quantitative satability result for the case of uniqueness
of solutions under additional assumptions.

Corollary 4.12. Assume that the assumptions of Theorem 4.11 are satisfied and
suppose moreover that fp is µ-weakly pseudomonotone and has the µ-upper sign
property, µ > 0 and for all p ∈ N\{p}, fp is µ

τ -strongly quasiconvex, for some

τ ∈]0, 14 [, and fp(x, x) = 0 for all x ∈ K.
Then, for all p ∈ N, Sp is reduced to a singleton {xp} and the single-valued solutions
map p 7→ xp is Hölder continuous around p i.e.,

∥xp − xp′∥ ⩽ κ∥p− p′∥γ̃ , ∀p, p′ ∈ N.(4.23)

Here, as before, κ =
(

θ
1
4
α−µ

) 1
2−δ

and γ̃ = γ
2−δ .

Proof. For p = p, the conditions on fp ensure that Sp = Mµ
p . But, by Lemma 4.5,

Mµ
p is reduced to a singleton {xp}. For p ̸= p, Sp is reduced to a singleton thanks

to Proposition 3.7 and Remark 3.8 (second point). The required estimate is then
direct from Theorem 4.11. This completes the proof.

□

4.2. Perturbation with respect to the feasibility set K. In this section, we
deal with the perturbation at the level of the feasibility set. Then, assume that the
set of constraints K depends on a parameter λ ∈ Λ, i.e., K : Λ ⇒ X, λ 7−→ Kλ,
while the objective function f is supposed to be a fixed with a relaxation of the
domain to the whole space X i.e., f : X × X → R. Then, for all λ ∈ Λ, the
corresponding perturbed equilibrium problem is as follows: find xλ ∈ Kλ such that
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EP (f,Kλ) f(x
λ
, y) ⩾ 0, ∀y ∈ Kλ.

Recall that the set of solutions to EP (f,Kλ) is denoted by Sλ and Kλ is convex
and closed for any λ ∈ Λ.

The following hypotheses will be considered in the sequel for our stability results
around an initial value λ of the parameter λ:

(A2) The set-valued map K defined by K(λ) := Kλ is Lipschitz continuous
around λ̄, that is, for a neighborhood Λ of λ̄ and some constants L > 0
and 1 ⩾ ξ > 0,

Kλ ⊂ Kλ′ + L
∥∥λ− λ′

∥∥ξ BX , for all λ, λ′ ∈ Λ.

(A3) For some α > 0, f is α-strongly quasiconvex in y, and f(x, x) = 0 for all
x ∈ X.

(A4) −f is strictly pseudomonotone i.e., for all x, y ∈ X, x ̸= y,

f(x, y) ⩽ 0 =⇒ f(y, x) > 0.

(A5) For some m > 0, f is m-strongly quasimonotone i.e., for all x, y ∈ X,

f(x, y) > 0 =⇒ f(y, x) ⩽ −m ∥x− y∥2 .

(A6) For some β > 0, there exists R > 0 such that for all x, y, y′ ∈ X we have

|f(x, y)− f(x, y′)| ⩽ R
∥∥y − y′

∥∥β .
In [3, Theorem 3.5], the authors presented a quantitative stability result with re-

spect to perturbed constraints for the particular problem of Stampacchia variational
inequality by using (A4) and (A5). This double monotonicity assumption seems to
be restrictive and interests only the subdifferential of some examples of functions
as indicated in [3]. In the next result, we are able to remove this too demanding
monotonicity condition in the framework of the more general abstract equilibrium
formulation.

Theorem 4.13. Assume that for all λ ∈ Λ, Sλ is nonempty and the following
conditions are satisfied:

i) (A2) with ξ = 1 holds and there exists a convex subset D ⊂ X such that
Kλ ⊂ D;

ii) (A3) holds;
iii) (A6) is verified with β = 1;
iv) f is quasimonotone on D ×D.

Then, for all λ ∈ Λ, Sλ is reduced to a singleton {xλ} and for some τ ∈]0, 14 [ such
that ατ < LR there exists a neighborhood Λ of λ, such that

(4.24) ∥xλ − xλ′∥ ≤ ϱτ∥λ− λ′∥
1
2 , ∀λ, λ′ ∈ Λ.

where, ϱτ =
(
LR
ατ

) 1
2
+ L.
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Proof. Let τ ∈]0, 14 [ such that ατ < LR. Take Λ = Λ ∩B(λ, ατ
2LR), where

B
(
λ,

ατ

2LR

)
=
{
λ ∈ Λ : ∥λ− λ∥ < ατ

2LR

}
is the open ball centred at λ with radius ατ

2LR . Let λ, λ
′ ∈ Λ, and put x = xλ and

x′ = xλ′ such that x ̸= x′. There are two cases to treat:

First case: f(x, x′) > 0, then by the assumption iv),

f(x′, x) ⩽ 0 or else − f(x′, x) ⩾ 0.(4.25)

Now by assumption (A2), there exists y′ ∈ Kλ′ such that

∥x− y′∥ ⩽ L
∥∥λ− λ′

∥∥ .(4.26)

Then, since x′ ∈ Sλ′ , from the assumption ii) and Proposition 3.4, it follows that

f(x′, y′) ⩾ τα∥x′ − y′∥2.(4.27)

Thus, (4.25) and (4.27) together imply

ατ
∥∥x′ − y′

∥∥2 ⩽ f(x′, y′)− f(x′, x).(4.28)

Now involve assumption iii) ((A6) with β = 1) in (4.28) and see that

ατ
∥∥x′ − y′

∥∥2 ⩽ f(x′, y′)− f(x′, x) ⩽ R∥y′ − x∥.(4.29)

Accordingly, from (4.26) and (4.29), we obtain

ατ∥x′ − y′∥2 ⩽ LR∥λ− λ′∥.(4.30)

Thus,

∥x′ − y′∥ ⩽
(LR
ατ

) 1
2
∥∥∥λ− λ′

∥∥∥ 1
2
.(4.31)

Therefore, by (4.26) and (4.31), it follows that

∥x′ − x∥ ⩽ ∥x′ − y′∥+ ∥y′ − x∥

⩽
(LR
ατ

) 1
2
∥∥∥λ− λ′

∥∥∥ 1
2
+ L

∥∥λ− λ′
∥∥ .

Hence, since ατ < LR and λ, λ′ ∈ Λ, a fortiori ∥λ− λ′∥ < 1. Then, from the
previous inequality we deduce that

∥x′ − x∥ ⩽
[(LR

ατ

) 1
2
+ L

] ∥∥λ− λ′
∥∥ 1

2 .(4.32)

Second case: f(x, x′) ⩽ 0. By assumption (A2), there exists y ∈ Kλ such that

∥x′ − y∥ ⩽ L
∥∥λ− λ′

∥∥ .(4.33)

In addition, the same argument as in the justification of (4.27) enables us to claim
that

f(x, y) ⩾ ατ∥x− y∥2.(4.34)



QUANTITATIVE STABILITY FOR EQUILIBRIUM PROBLEMS 325

Hence, using the assumption of the case, we see that

f(x, y)− f(x, x′) ⩾ ατ∥x− y∥2.(4.35)

Next, by assumption (A6), (4.33) and (4.35), it results that

LR
∥∥λ− λ′

∥∥ ⩾ R∥x′ − y∥ ⩾ ατ∥x− y∥2.(4.36)

This means that

∥x− y∥ ⩽
(LR
ατ

) 1
2
∥∥λ− λ′

∥∥ 1
2 .(4.37)

Now with the same justification as in (4.32), thanks to (4.33) and (4.37), we conclude
that

∥x− x′∥ ⩽ ∥x− y∥+ ∥x′ − y∥

⩽
[(LR

ατ

) 1
2
+ L

] ∥∥λ− λ′
∥∥ 1

2 .

Put ϱτ =
[(

LR
ατ

) 1
2
+ L

]
and obtain in both the two cases the following

∥x− x′∥ ⩽ ϱτ

∥∥∥λ− λ′
∥∥∥ 1

2
.

This finishes the proof.
□

Remark 4.14. Theorem 4.13 relaxes the strong quasimonotonicity on f considered
in [5, Theotem 11] to standard quasimonotonicity.

In the following, we give an example of a bifunction satisfying the conditions of
Theorem 4.13 under perturbed constraints.

Example 4.15. Let X = Λ = R2. Consider the polyhedral convex mapping K :
R2
+ ⇒ R2 defined for λ ∈ R2 by

K(λ) := {x ∈ R2
+ : Ax ≤ λ},

where A is a fixed 2 × 2 matrix. Recall that any polyhedral convex mapping is
Lipschitz continuous relatively to its domain (here domK ⊂ R2

+), see ( [22, pp
150]). Then, there exists L > 0 such that

Kλ ⊂ Kλ′ + L
∥∥λ− λ′

∥∥ B̄X , for all λ, λ′ ∈ Λ,

where Λ is a neighborhood of λ :=

(
1
1

)
with Λ ⊂ domK (the domain of K). Let

us take

x =

(
x1
x2

)
, λ =

(
λ1
λ2

)
, A :=

(
1 0
0 1

)
, Λ := B(λ, 1),

where B(λ, 1) is the open ball of center λ and radius 1 in the vector space (R2, ∥.∥),
∥.∥ is the Euclidean norm. Then K(λ) =

{
x ∈ R2

+ : x ≤ λ
}
, where x ≤ λ means
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that x1 ≤ λ1 and x2 ≤ λ2. Therefore, consider the bifunction f : R2 × R2 −→ R
defined by:

f(x, y) := ∥y∥ − ∥x∥.
If λ ∈ Λ we have λ1 ≤ 2 and λ2 ≤ 2, then λ ≤ 2, hence K(λ) ⊂ {x ∈ R2

+ : x ≤ 2}
for all λ ∈ Λ. Let us take D := {x ∈ R2

+ : x ≤ 2}. The bifunction f satisfies
all assumptions of Theorem 4.13. Indeed, it is straightforward to see that f is
null on the diagonal, quasimonotone on D×D and satisfies the condition (A6) with
R = β = 1. Moreover, by [23, Theorem 2], f is α-strongly quasiconvex in the second
argument on the bounded and closed subset D with α = 1. Choose finally some
τ ∈]0, 14 [ such that τ ≤ L and Λ = B(1, τ

2L) and conclude that all the requirements
of Theorem 4.13 are satisfied.

5. Application to parametric quasiconvex programming

In this last section, we turn our attention to a perturbed quasiconvex program-
ming problem, and prove a Hölder-type estimate on the set of solutions for two
situations: The case of the perturbation on the constraint and the case of the per-
turbation on the objective function.
As before, X,M , and Λ are normed vector spaces. Let g : X −→ R be a quasiconvex
function, D be a closed convex subset of X, and K : Λ ⇒ X be a set-valued map
for which we assume that for all λ ∈ Λ, Kλ := K(λ) is a convex and closed subset of
D. The notation Argmin

Kλ

g denotes the set of solutions of the following perturbed

quasiconvex program:

(PQP )λ inf
x∈Kλ

g(x).

The analysis will be done around an initial point λ.

Definition 5.1. Let g : X −→ R be a real-valued function and let τ ≥ 0 be fixed.
A point x ∈ X will be said a τ -strong minimizer of g over a constraints set D ⊂ X
if, and only if

g(x) ⩾ g(x) + τ∥x− x∥2, ∀x ∈ D.(5.1)

We denote by Sτ
g the set of all τ -strong minimizers of g over a constraints setD ⊂ X.

Definition 5.2. Let g : X −→ R be a real-valued function and let µ ≥ 0 be fixed.
A point x ∈ X will be called a local weak µ-minimizer of g over a set of constraints
D ⊂ X if, and only if there exists a neighborhood Vx of x such that

g(x) ≤ g(x) + µ∥x− x∥2, ∀x ∈ D ∩ Vx.(5.2)

We denote by L− Sµ
g the set of all local weak µ-minimizers of g over a constraints

set D ⊂ X.

Remark 5.3.
• Let us consider the bifunction fg defined on X × X by fg(x, y) := g(y) −
g(x), x, y ∈ X, then a point x ∈ X is a τ -strong minimizer for g over a set
D if, and only if x ∈ X is a τ -strong solution to EP (fg, D).
A point x ∈ X is a local weak µ-minimizer for g over a set D if, and only
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if x ∈ X is a local weak µ-Minty solution to EP (fg, D). In this regard, the
reader may also find valuable information in [7].

• τ -strong minimizers are known in the literature under the name ”strict min-
imizer ” of order 2 or else 2-order global sharp minimizers with modulus τ ,
see [30]. Here, we prefer to adopt the terminology of ’strong minimizer’
since it is closed to the concept of strong equilibrium point proposed above
in Definition 3.1.

Theorem 5.4. Let g : X −→ R be a Lipschitz function with a Lipschitz coefficient
c > 0. Assume that:

i) g is α-strongly quasiconvex, with α > 0;
ii) the map K satisfies (A2) with ξ = 1;
iii) for all Λ, Argmin

Kλ

g is nonempty; where Λ is the neighborhood of λ provided

in (A2).

Then, the following assertions are satisfied:

(1) For all τ ∈ [0, 14 ], and all λ ∈ Λ, g admits a τα-strong minimizer over Kλ.

(2) For all λ ∈ Λ, Argmin
Kλ

g is reduced to a singleton {xλ} and for some τ ∈]0, 14 [

such that ατ < cL there exists a neighborhood Λ of λ, such that

(5.3) ∥xλ − xλ′∥ ≤ ϱτ∥λ− λ′∥
1
2 , ∀λ, λ′ ∈ Λ,

where, ϱτ =
(

cL
ατ

) 1
2
+ L, L being the constant provided in (A2).

Proof. Let fg be the bifunction defined on X×X by fg(x, y) = g(y)−g(x), x, y ∈ X.
Clearly, the first point of the conclusion comes from Proposition 3.4 by the use of
assumptions i) and iii). The second point follows immediately from Theorem 4.13
applied to the bifunction fg.

□

Remark 5.5.
• Theorem 5.4 improves [3, Theorem 4.3] by removing the following assump-
tions:

• 0 /∈ ∂Cg(X), where ∂Cg(X) is the Clarke subdifferential of g.
• For any a > infX g, the interior of any adjusted sublevel set of g is nonempty.
• Our approach is a direct one and doesn’t necessitate the recourse to Stam-
pacchia variational inequalities formulated with the normal operator to ad-
justed sublevels sets of g. Moreover, in our case, the minimum value is
achieved at a unique point.

We now come back into the case when the objective function g is perturbed by
a parameter p ∈ M , here g : X ×M −→ R is assumed to be quasiconvex in X.
We will write g(., p) = gp for any p ∈M . The analysis will also be done around an
initial value p of the parameter p. The set Argmin

K
gp denotes the solutions set of

the following perturbed quasiconvex program:
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(PQP )p inf
x∈K

gp(x),

where K is a convex and closed subset of X. Consider the family of bifunctions
{fgp , p ∈M} defined by fgp(x, y) = gp(y)− gp(x) for all x, y ∈ X and all p ∈M .

Proposition 5.6. Let α > 0 be fixed, K be a nonempty convex and closed subset of
X and N be a neighborhood of p ∈ M. If the function gp is α-strongly quasiconvex
for all p ∈ N then the bifunction fgp has the α-upper sign property at x for all
p ∈ N.

Proof. Let x, y ∈ K, p ∈ N and consider zt = (1− t)x+ ty for all t ∈]0, 1[. Assume
that gp(y) < gp(x). Hence the α-strongly quasiconvexity of gp implies that

gp(zt) ≤ gp(x)− αt(1− t)∥x− y∥2, ∀t ∈]0, 1[,

thus

gp(x)− gp(zt) ≥ αt(1− t)∥x− y∥2, ∀t ∈]0, 1[.

Take k ∈]0, 1[ such that k(1− k) > k2 and see that

gp(x)− gp(zk) > αk2∥x− y∥2,

this means that

gp(x)− gp(zk) > α∥zk − x∥2.

Hence,

gp(y) < gp(x) =⇒ ∃ k ∈]0, 1[ such that gp(x)− gp(zk) > α∥zk − x∥2.

Accordingly,

gp(x)− gp(zt) ≤ α∥zt − x∥2, ∀t ∈]0, 1[=⇒ gp(y) ≥ gp(x), ∀x, y ∈ K, ∀p ∈ N.

Therefore, the bifunction fgp has the (global) α-upper sign property at x, completing
the proof.

□

Remark 5.7. For all µ ≤ α, every bifunction with the α-upper sign property has
the µ-upper sign property.

In the following, we extend the result of [21, Proposition 4] to local weak µ-
minimizers.

Proposition 5.8. Let α > 0 and µ > 0 such that µ ≤ α. Let K be a nonempty
convex and closed subset of X and let ψ : X −→ R be a real-valued function.
Suppose that ψ is α-strongly quasiconvex. Then x ∈ K is a local weak µ-minimizer
of ψ over K if and only if x is a (global) minimizer for ψ over K.
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Proof. A global minimizer of ψ over K is trivially a local weak µ-minimizer of ψ
over K. We shall only show the converse. Suppose that a point x ∈ K is a local
weak µ-minimizer of ψ over K and take φ : K × K −→ R defined by φ(x, y) :=
ψ(y)−ψ(x) for x, y ∈ K. Then, on the one hand, x is a local weak µ-Minty solution
to EP (φ,K). On the other hand, from Proposition 5.6 it results that φ has the
α-upper sign property at x. Thus, according to Remark 5.7, the function φ has also
the µ-upper sign property at x. Moreover, φ is null on the diagonal, then from
Lemma 4.4, it follows that x is a (standard) solution to EP (φ,K), which means
that ψ(y)− ψ(x) ≥ 0 for all y ∈ K. This finishes the proof.

□

Now, we are ready to state our stability result for the parametric quasiconvex
program (PQP )p.

Theorem 5.9. Let α > 0, µ > 0 and let p ∈ M be a fixed value of the parameter.
Let K be a closed and convex subset of X. Assume that the following assumptions
are satisfied:

i) There exist θ > 0, 1 ⩾ γ > 0 and a neighborhood N of p̄ such that for all
x ∈ K and all p, p′ ∈ N,

|gp(x)− gp′(x)| ⩽ ϑ
∥∥p− p′

∥∥γ ;
ii) For all p ∈ N, Argmin

K
gp is nonempty;

iii) for all p ∈ N, gp is α-strongly quasiconvex;
iv) µ < 1

4α.

Then, for all p ∈ N, Argmin
K

gp is reduced to a singleton {xp} and the single valued

map p 7→ xp is Hölder continuous around p, i.e.,

(5.4) ∥xp − xp′∥ ⩽ τ
∥∥p− p′

∥∥ γ
2 ,

where τ =
(

2ϑ
1
4
α−µ

) 1
2
.

Proof. Recall that with the bifunction fgp (defined by fgp(x, y) = gp(y)−gp(x), x, y ∈
K), Argmin

K
gp is nothing else but the set of standard equilibrium points of fgp which

coincide with its µ-Minty ones since fgp is trivially continuous and monotone. Now,
with the assumption i), the bifunction fgp satisfies the condition (A1) with δ = 0
and θ = 2ϑ. Moreover, for any p be fixed in N, by assumption ii), Argmin

K
gp is

nonempty, then there exists x ∈ K such that gp(x) ≤ gp(y) for all y ∈ K, hence
fgp(y, x) ≤ 0 ≤ µ ∥ x − y ∥2. Moreover, for all x ∈ K, fgp(x, x) = 0 and fgp
is α-strongly quasiconvexity in the second argument since gp is so with respect to
its variable. On the other hand, thanks to Proposition 5.6 and Remark 5.7, the
bifunction fgp satisfies the µ-upper sign property at x. Thus, Lemma 4.5 ensures
that Argmin

K
gp is reduced to a singleton {xp}. Therefore, the required estimate in

(5.4) follows from Corollary 4.8.
□
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[24] A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, Variational Methods in partially ordered
Spaces, New York: Springer-Verlag, 2003.

[25] J. Gwinner, Stability of monotone variational inequalities with various applications. in: Varia-
tional Inequalities and Network Equilibrium Problems, F. Giannessi, A. Maugeri (eds.), Plenum
Press, New York. 1995, pp. 123–142.

[26] B. S. Mordukhovich, Variational Analysis and Applications, New York: Springer, 2018.
[27] R. T. Rockafellar and R. J.-B. Wets, Variationnal Analysis, Berlin: Springer-verlag, 1998.
[28] M. Sion, On general minimax theorems, Pacific Journal of Mathematics. 8 (1958), 171176.
[29] N. D. Yen, Lipschitz continuity of solutions of variational inequalities with a parametric poly-

hedral constrain, Math. Oper. Res. 20 (1995), 695–707.
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