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THREE EXTENSIONS OF THE CARISTI’'S THEOREM

ALEXANDER J. ZASLAVSKI

ABSTRACT. In this paper we obtain three extensions of the well-known Caristi’s
theorem. Our first result is on single-valued mappings while in the second and the
third results we deal with set-valued mappings. In particular, we are interesting in
versions of the Caristi’s theorem which take into account possible computational
errors.

1. INTRODUCTION

During more than fifty years now, there has been a lot of activity regarding the
fixed point theory of nonexpansive (that is, 1-Lipschitz) mappings. See, for example,
[2,4,7,8,9,10, 11, 12, 13, 14, 18, 19] and the references cited therein. This activity
stems from Banach’s classical theorem [1] regarding the existence of a unique fixed
point for a strict contraction and covers also the convergence of (inexact) iterates of
a mapping to one of its fixed points. Since that seminal result, many developments
have taken place in this area containing, in particular, the studies on feasibility
problems and on common fixed point problems which find important applications
in engineering and medical sciences [3, 6, 16, 17, 18, 19].

In the present paper we establish three extensions of the well-know Caristi’s fixed
point theorem [5, 15]. In particular, we are interesting in its versions which take
into account possible computational errors and which are concerned with the case
where mappings take a nonempty and closed subset of a complete metric space X
into X.

We begin by recalling the following two versions of Caristi’s theorem.

Theorem 1.1 (Theorem 3.9 of [10]). Suppose that (X, p) is a complete metric space
and T : X — X is a continuous mapping which satisfies for some ¢ : X — [0,00),

Then {T™xz}5° | converges to a fized point of T' for each x € X.

Theorem 1.2 (Theorem 4.1 of [10]). Suppose that (X, p) is a complete metric space,
¢ : X — R is a lower semicontinuous function which is bounded from below, and
T: X — X satisfies

plz, Tx) < ¢p(x) — ¢(Tx), v € X.
Then T has a fixed point.

The following set-valued analog of Caristi’s theorem was obtained in [4] (see also
Theorem 9.37 of [14]).
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Theorem 1.3. Assume that (X, p) is a complete metric space, T : X — 2%\ {0},
graph(T) := {(x,y) € X x X : y € T(x)} is closed, ¢ : X — R' U {oc} is bounded
from below, and that for each x € X,
inf{¢(y) + p(z,y) : y € T(2)} < ().
Let {en}5% 0 C (0,00), Y07 g€en < 00, and let zg € X satisfy ¢(xg) < co. Assume
that for each integer n > 0,
Tnt1 € T(xy)
and
(@n41) + p(Tn, Tpt1) < Inf{@(y) + p(an, y) © y € T(an)} + €n.
Then {x,}5°, converges to a fized point of T

2. THE FIRST RESULT
Let (X, p) be a complete metric space. For each # € X and each r > 0 set
B(z,r)={ye X : p(z,y) <r}.
For each nonempty set Y and each function h: Y — R! U {co} set
inf(h) = inf{h(y): y e Y}.

Theorem 2.1. Let K be a nonempty closed subset of X, ¢ : X — [0,00], T : K —
X be a mappings such that

graph(T) := {(x,Tz) : z € K}

is a closed set in X x X equipped with the product topology and such that for all
re K,

(2.1) O(Tx) + pla, Tz) < $(2).
Assume that xg € K and r > 0 satisfy

(2.2) B(zg,7) C K

and

(2.3) ¢(z0) <.

Then the sequence {T'xo}22, is well defined and converges to a fized point of T.
Proof. Set Tz = x for all x € K. If
Txo = xo,
then the assertion of the theorem holds. Assume that
(2.4) Tz # .

By (2.1)-(2.3),
p(wo, Txo) < ¢p(x0) — d(T'x0) <7
and

(2.5) Txg € K.
Assume that ¢ > 1 is an integer and that
Tixg) €K, i=1,...,q.
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(Note that in view of (2.5) our assumption holds for ¢ = 1.) If an integer i € [1, q)
satisfies

Tlx() = TZ-H:C()

then the assertion of the theorem holds.
Assume that

(2.6) Tixg# T g, i=0,...,¢—1.
If
T(T%) = T,
then the assertion of the theorem holds. Therefore we consider only the case with
(2.7) T(T9zg) # T9x.
By (2.1), (2.6) and (2.7), for all i =0,...,q,
(2.8) H(T ™ ag) < p(T xg, T2g) + H(T T ag) < G(T o).

In view of (2.3) and (2.8),

p(xo, T mg) <Y p(T'wo, T o)

IN

M- 10

I
o

((T"z0) — (T a0)) < p(mo) <7

Together with (2.2) this implies that
Tz € B(zo,r) C K.
Thus by induction we showed that T%zq is well defined and
T'zg € K
for all integers ¢ > 0. In view of (2.1),
S o(Tiwo, THag) < 3 (0(T'20) — $(Ta0)) < 6(a0).
i=0 i=0
Therefore {T%z0}2°, is a Cauchy sequence and there exists
Ty = lim Tixo.
1—00
Since the graph of T is closed we have
T, = x4.

Theorem 2.1 is proved. U
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3. THE SECOND RESULT
Suppose that (X, p) is a complete metric space.

Theorem 3.1. Let K is a nonempty closed subset of X, ¢ : X — [0, 00] be a lower
semicontinuous function, a mapping T : K — 2% satisfy the following property
(a) for each x € K and each M > 0 the set B(x, M) NT(x) is compact.
Assume that
graph(T) = {(z,y) e K x X : y € T(2)}

is a closed set in X x X equipped with the product topology and that for each x € K,

(3.1) inf{p(z,y) + 6y) : y € T(x)} < o(x).
Letxg € K, r >0,
(3.2) ¢(xo) <,
(3.3) B(zg,r) C K.
Then the sequence {x;}5°, C X such that for each integer i > 0,
(3.4) Tit1 € T'(x;),
(3.5) p(@i, xi1) + @(wiv1) = inf{p(wi, 2) + (x) : 2 € T(2s)}
is well defined,
zi € K,1=0,1,...,

there exists

‘lim €T;

1—00

m X and
lim z; € T(lim ;).

1—00 1—+00
Proof. Since the function
p(xo, z) + ¢(z), z€ X
is lower semicontinuous, property (i) implies that there exists

(3.6) a1 € T(xo)

such that

(3.7) p(xo,21) + ¢(x1) = inf{p(z0, 2) + ¢(2) : 2z € T(x0)}
By (3.1), (3.2) and (3.7),

(3.8) p(xo, 1) + ¢(x1) < ¢(zo) <7

In view of (3.3) and (3.8),

(3.9) p(xo,x1) <7,

(3.10) r € K.

Assume that k£ > 1 is an integer,

zeK, i=0,...,k
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and that for all i = 0,...,k — 1, (3.4) and (3.5) hold. (Note that in view of (3.6),
(3.7) and (3.10), our assumption holds for k£ = 1.)
By (3.1) and (3.5), for all i =0,...,k—1,
p(Tit1, i) + d(it1) < ()

and

(3.11) p(@it1, %) < G(xi) — P(Tit1).
It follows from (3.2) and (3.11) that
k

k
p(xivr, i) < (d(x:) — dlwir1))

i=0 i=
(3.12) < P(xg) — P(p41) < Do) < 7.
Since the function
plwn,2) + 0(2), 2 € X

is lower semicontinuous property (a) implies that there exists

(3.13) zp+1 € T(w)
such that
(3.14) p(xp, wpy1) + d(wper) = inf{p(zg, 2) + &(2) : 2z € T(zx)}-
By (3.1) and (3.14),
(3.15) P(@k; Th1) + G(Thr1) < D)
In view of (3.11) and (3.15),
k k
D plwiva,wi) < (6(xi) — dlwis1))
=0 i=0
< ¢(@0) — ¢(Th+1) < (@0)-
Together with (3.2) this implies that
k+1
p(@o, 1) < Y plwir, @) < Plag) <.
=0

In view of (3.3),
ZTp41 € B(xo,r) C K.

Therefore the assumption made for k£ also holds for k + 1. Thus by induction we
showed that the sequence {z;}3°, is well defined and z; € K for all integers i > 0.
By (3.1) and (3.5), for all i = 0,1, ...,

p(xiy1, i) + ¢(zip1) < o)

and

(3.16) p(@it1, %) < G(xi) — A(@it1).
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It follows from (3.16) that for all natural numbers T,

T-1 T-1
D p(@ipr,mi) <> (d(xi) — dlwis))
=0 i=0

< ¢(xo) — p(ar) < d(20)-
Therefore {x;}32, is a Cauchy sequence and there exists
Ty = lim z;
1—00
in X. Clearly,
(T4, x4) = lim (24, 241) € graph(T)
1—00

and x, € T(x,). Theorem 3.1 is proved. O

4. THE THIRD RESULT
Suppose that (X, p) is a complete metric space.

Theorem 4.1. Let K is a nonempty closed subset of X, ¢ : X — [0,00] and
T : K — 2% be a mapping. Assume that

graph(T) == {(z,y) e K x X : ye T(z)}
is a closed set in X x X equipped with the product topology and that for each x € K,

(4.1) inf{p(z,y) + o(y) : y € T(x)} < ().
Letxg € K, r >0,
(4.2) ¢(zo) <,
(4.3) B(zp,r) C K,
{ei}2, satisfy
(4.4) > e <r—¢(w).
i=0
Assume that a sequence {x;};2, C X satisfies for each integer i > 0,
(4.5) zit1 € T(xi),
(4.6) p(@i, Tiv1) + ¢(zip1) < inf{p(zi,2) + ¢(z) + 2 € T(23)} + €.
Then it is well defined,
e K, i=0,1,...,
there exists
lim z;
71— 00

m X and
lim z; € T(lim ;).

i—00 1—00
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Proof. Assume that ¢ > 0 is an integer and that ,
;€ K, 1=0,...,q

are already well defined by (4.5) and (4.6) hold. (Clearly, our assumption holds for
q=20.)
By (4.5) and (4.6),

(4.7) Tg+1 € T'(xg),

(4.8) p(zgr1,2q) + d(xgr1) < inf{p(xg,2) + ¢(2) : 2z € T(xq)} + €.
It is clear that
¢(x;) <ooforalli=0,...,q+1.

In order to show that our assumption holds for ¢+ 1 too it is sufficient to show that
Tq+1 € K.
By (4.1) and (4.6), for i =0,...,q,
p(@it1, i) < € +inf{p(z,2:) + ¢(x) : 2 € T(wi)} — P(wit1)
(4.9) <€+ od(xi) — d(wig1).
It follows from (4.4) and (4.9) that

o

I
o

p(zo, rq11) < ) p(Tit1, i)

-

@
i
o

(p(zi) — d(zit1) + €)

-

N
Il
=)

e + d(xo) — d(rg11)

[

@
Il
o

€i + ¢(xo)

<Y &+ Pp(xg) <.

1=

[e=]

Together with (4.3) the relation above implies that
Zg+1 € B(zo,r) C K.

Thus by induction we showed that the sequence {z;}7°, is well defined and z; € K
for all integers ¢ > 0. By (4.1) and (4.6), for all i = 0,1,...,

p(Tiv1, i) + d(xit1) < ¢(xi) + &

and

(4.10) p(Tiv1, i) < d(xi) — d(Tiv1) + €.
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It follows from (4.2), (4.4) and (4.10) that for all natural numbers 7,

T-1 T-1
' p(Tiv1, x;) < Z(¢(wz‘) — ¢(xir1) + &)
1=0 1=0 -
< ¢(wo) — dlar) + D&
=0

< ¢(z0) + Zei < 00.
i=0

Therefore {x;}32, is a Cauchy sequence and there exists

T, = lim z;
1—00

in X. Clearly,

(T4, xy) = lim (z;,xi41) € graph(T)
1—00

and z, € T'(x,). Theorem 4.1 is proved. O
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