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be needed in the sequel. In Section 2, we state and prove various second-order
parameter-free sufficient optimality results for (P ) using a variety of generalized
(F , β, γ, ϕ, π, ω, ρ, θ,m)-sounivexity assumptions. Finally, in Section 3 we summa-
rize our main results and also point out some further research opportunities arising
from the principal problems investigated in the present paper.

We next present more generalized versions of the new classes of (strictly)
(ϕ, η, ρ, θ,m)-sonvex, (strictly) (ϕ, η, ρ, θ,m)-pseudosonvex, and (prestrictly)
(ϕ, η, ρ, θ,m)-quasisonvex functions introduced recently in [5]. Here we shall fur-
ther generalize these functions by considering their univex counterparts. We shall
use the word sounivex for second - order univex.

Let f : X → R be a twice differentiable function.

Definition 1.1. The function f is said to be (strictly) (F , β, γ, ϕ, π, ω, ρ, θ,
m)-sounivex at x∗ if there exist functions β, γ : X × X → R+ ≡ (0,∞), ϕ : R →
R, ρ : X×X → R, π, ω, θ : X×X → Rn, a sublinear function F(x, x∗; ·) : Rn → R,
and a positive integer m such that for each x ∈ X (x ̸= x∗) and z ∈ Rn,

ϕ
(
f(x)− f(x∗)

)
(>) ≥ F

(
x, x∗;β(x, x∗)∇f(x∗)

)
+ β(x, x∗)⟨π(x, x∗),∇2f(x∗)z⟩

− 1

2
γ(x, x∗)⟨ω(x, x∗),∇2f(x∗)z⟩

+ ρ(x, x∗)∥θ(x, x∗)∥m,

where ∥ · ∥ is a norm on Rn and ⟨a, b⟩ is the inner product of the vectors a and b.
The function f is said to be (strictly) (F , β, γ, ϕ, π, ω, ρ, θ,m)-sounivex on X if

it is (strictly) (F , β, γ, ϕ, π, ω, ρ, θ,m)-sounivex at each x∗ ∈ X.

Definition 1.2. The function f is said to be (strictly) (F , β, γ, ϕ, π, ω, ρ, θ, m)-
pseudosounivex at x∗ if there exist functions β, γ : X ×X → R+, ϕ : R → R, ρ :
X ×X → R, π, ω, θ : X ×X → Rn, a sublinear function F(x, x∗; ·) : Rn → R, and
a positive integer m such that for each x ∈ X (x ̸= x∗) and z ∈ Rn,

F
(
x, x∗;β(x, x∗)∇f(x∗)

)
+ β(x, x∗)⟨π(x, x∗),∇2f(x∗)z⟩ − 1

2
γ(x, x∗)⟨ω(x, x∗),∇2f(x∗)z⟩

≥ −ρ(x, x∗)∥θ(x, x∗)∥m ⇒ ϕ
(
f(x)− f(x∗)

)
(>) ≥ 0.

The function f is said to be (strictly) (F , β, γ, ϕ, π, ω, ρ, θ,m)-pseudosounivex on
X if it is (strictly) (F , β, γ, ϕ, π, ω, ρ, θ,m)-pseudosounivex at each x∗ ∈ X.

Definition 1.3. The function f is said to be (prestrictly) (F , β, γ, ϕ, π, ω, ρ, θ,
m)-quasisounivex at x∗ if there exist functions β, γ : X ×X → R+, ϕ : R → R, ρ :
X ×X → R, π, ω, θ : X ×X → Rn, a sublinear function F(x, x∗; ·) : Rn → R, and
a positive integer m such that for each x ∈ X and z ∈ Rn,

ϕ
(
f(x)−f(x∗)

)
(<) ≤ 0 ⇒ F

(
x, x∗;β(x, x∗)∇f(x∗)

)
+β(x, x∗)⟨π(x, x∗),∇2f(x∗)z⟩

− 1

2
γ(x, x∗)⟨ω(x, x∗),∇2f(x∗)z⟩ ≤ −ρ(x, x∗)∥θ(x, x∗)∥m.
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The function f is said to be (prestrictly) (F , β, γ, ϕ, π, ω, ρ, θ,m)-quasisounivex
on X if it is (prestrictly) (F , β, γ, ϕ, π, ω, ρ, θ,m)-quasisounivex at each x∗ ∈ X.,

In the proofs of the duality theorems, sometimes it may be more convenient to
use certain alternative but equivalent forms of the above definitions. These are
obtained by considering the contrapositive statements. For example, (F , β, γ, ϕ,
π, ω, ρ, θ, m)-quasisounivexity can be defined in the following equivalent way:

The function f is said to be (F , β, γ, ϕ, π, ω, ρ, θ,m)-quasisounivex at x∗ if there exist
functions β, γ : X ×X → R+, ϕ : R → R, ρ : X ×X → R, π, ω, θ : X ×X → Rn, a
sublinear function F(x, x∗; ·) : Rn → R, and a positive integer m such that for each
x ∈ X and z ∈ Rn,

F
(
x, x∗;β(x, x∗)∇f(x∗)

)
+ β(x, x∗)⟨π(x, x∗),∇2f(x∗)z⟩

− 1

2
γ(x, x∗)⟨ω(x, x∗),∇2f(x∗)z⟩ > −ρ(x, x∗)∥θ(x, x∗)∥m ⇒

ϕ
(
f(x)− f(x∗)

)
> 0.

We observe that the new classes of generalized convex functions specified in
Definitions 1.1 - 1.3 contain a variety of special cases that can easily be iden-
tified by appropriate choices of F(x, x∗), ϕ, ρ, θ, and m. For example, if let
F
(
x, x∗;∇f(x∗)

)
= β(x, x∗)⟨∇f(x∗), π(x, x∗)⟩, where π is a function from X × X

to Rn, then we obtain the definitions of (strictly) (ϕ, π, ρ, θ,m)-sonvex, (strictly)
(ϕ, π, ρ, θ,m)-pseudosonvex, and (prestrictly) (ϕ, π, ρ, θ,m)-quasisonvex functions
introduced recently in [5].

We conclude this section by recalling a set of second-order parameter-free neces-
sary optimality conditions for (P ). This result is obtained from Theorem 3.1 of [5]
by eliminating the parameter λ∗ and redefining the Lagrange multipliers. We shall
use the form and features of this result to formulate our generalized second-order
parameter-free sufficient optimality conditions for (P ).

Theorem 1.4 ([4]). Let x∗ be a normal optimal solution of (P), let λ∗ = φ(x∗) ≡
max1≤i≤p fi(x

∗)/gi(x
∗), and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q, and

Hk, k ∈ r, are twice continuously differentiable at x∗. Then for each z∗ ∈ C(x∗),
there exist u∗ ∈ U ≡ {u ∈ Rp : u ≥ 0,

∑p
i=1 ui = 1}, v∗ ∈ Rq

+ ≡ {v ∈ Rq : v ≥ 0},
and w∗ ∈ Rr such that
p∑

i=1

u∗i [D(x∗, u∗)∇fi(x
∗)−N(x∗, u∗)∇gi(x

∗)]+

q∑
j=1

v∗j∇Gj(x
∗)+

r∑
k=1

w∗
k∇Hk(x

∗) = 0,

⟨
z∗,

{ p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)−N(x∗, u∗)∇2gi(x

∗)] +

q∑
j=1

v∗j∇2Gj(x
∗)

+
r∑

k=1

w∗
k∇2Hk(x

∗)
}
z∗
⟩
≥ 0,

u∗i [D(x∗, u∗)fi(x
∗)−N(x∗, u∗)gi(x

∗)] = 0, i ∈ p,
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max
1≤i≤p

fi(x
∗)

gi(x∗)
=

N(x∗, u∗)

D(x∗, u∗)
,

v∗jGj(x
∗) = 0, j ∈ q,

where C(x∗) is the set of all critical directions of (P) at x∗, that is,

C(x∗) = {z ∈ Rn : ⟨∇fi(x
∗)− λ∇gi(x

∗), z⟩ = 0, i ∈ A(x∗),

⟨∇Gj(x
∗), z⟩ ≤ 0, j ∈ B(x∗),

⟨∇Hk(x
∗), z⟩ = 0, k ∈ r},

A(x∗) = {j ∈ p : fj(x
∗)/gj(x

∗) = max
1≤i≤p

fi(x
∗)/gi(x

∗)}, B(x∗) = {j ∈ q : Gj(x
∗) =

0}, N(x∗, u∗) =
∑p

i=1 u
∗
i fi(x

∗), and D(x∗, u∗) =
∑p

i=1 u
∗
i gi(x

∗).

In the above theorem, a normal optimal solution refers to an optimal solution at
which an appropriate second-order constraint qualification is satisfied.

2. Sufficient optimality conditions

In this section, we discuss several families of second-order parameter-free sufficient
optimality results under various generalized (F , β, γ, ϕ, π, ω, ρ, θ,m)-sounivexity hy-
potheses imposed on certain combinations of the problem functions. This is accom-
plished by employing a certain partitioning scheme which was originally proposed
in [3] for the purpose of constructing generalized dual problems for nonlinear pro-
gramming problems. Now we need to develop some additional notations .

Let {J0, J1, . . . , JM} and {K0,K1, . . . ,KM} be partitions of the index sets q and
r, respectively; thus, Jµ ⊆ q for each µ ∈ M ∪ {0}, Jµ ∩ Jν = ∅ for each µ, ν ∈
M ∪ {0} with µ ̸= ν, and ∪M

µ=0Jµ = q. Obviously, similar properties hold for

{K0,K1, . . . ,KM}. Moreover, if M1 and M2 are the numbers of the partitioning
sets of q and r, respectively, then M = max{M1,M2} and Jµ = ∅ or Kµ = ∅ for
µ > min{M1,M2}

In addition, we use the real-valued functions ξ → Φi(ξ, x, v, w), i ∈ p, ξ →
Φ(ξ, x, u, v, w), and ξ → Λt(ξ, v, w) defined, for fixed x, u, v, and w, on X as follows:

Φi(ξ, x, u, v, w) = D(x, u)fi(ξ)−N(x, u)gi(ξ)

+
∑
j∈J0

vjGj(ξ) +
∑
k∈K0

wkHk(ξ), i ∈ p,

Φ(ξ, x, u, v, w) =

p∑
i=1

ui[D(x, u)fi(ξ)−N(x, u)gi(ξ)]

+
∑
j∈J0

vjGj(ξ) +
∑
k∈K0

wkHk(ξ),

Λt(ξ, v, w) =
∑
j∈Jt

vjGj(ξ) +
∑
k∈Kt

wkHk(ξ), t ∈ M.

In the proofs of our sufficiency theorems, we shall make frequent use of the
following auxiliary result which provides an alternative expression for the objective
function of (P ).
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Lemma 2.1 ([8]). For each x ∈ X,

φ(x) ≡ max
1≤i≤p

fi(x)

gi(x)
= max

u∈U

∑p
i=1 uifi(x)∑p
i=1 uigi(x)

.

Making use of the sets and functions defined above, we can now formulate our first
collection of generalized second-order parameter-free sufficient optimality results for
(P ) as follows.

Theorem 2.2. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q,
and Hk, k ∈ r, are twice differentiable at x∗, and that for each z∗ ∈ C(x∗), there
exist u∗ ∈ U, v∗ ∈ Rq

+, and w∗ ∈ Rr such that

(2.1)

p∑
i=1

u∗i [D(x∗, u∗)∇fi(x
∗)−N(x∗, u∗)∇gi(x

∗)]

+

q∑
j=1

v∗j∇Gj(x
∗) +

r∑
k=1

w∗
k∇Hk(x

∗) = 0,

β(x, x∗)
⟨
π(x, x∗),

p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)−N(x∗, u∗)∇2gi(x

∗)]z∗(2.2)

+

q∑
j=1

v∗j∇2Gj(x
∗)z∗ +

r∑
k=1

w∗
k∇2Hk(x

∗)z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)

−N(x∗, u∗)∇2gi(x
∗)]z∗ +

q∑
j=1

v∗j∇2Gj(x
∗)z∗

+
r∑

k=1

w∗
k∇2Hk(x

∗)z∗
⟩
≥ 0 ∀ x ∈ F,

(2.3) max
1≤i≤p

fi(x
∗)

gi(x∗)
=

N(x∗, u∗)

D(x∗, u∗)
,

(2.4) v∗jGj(x
∗) = 0, j ∈ q.

Assume, furthermore, that any one of the following four sets of hypotheses is satis-
fied:

(a) (i) ξ → Φ(ξ, x∗, u∗, v∗, w∗) is prestrictly (F , β, γ, ϕ̄, π, ω, ρ̄, θ,m)-
quasisounivex at x∗ and ϕ̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) for each t ∈ M, ξ → Λt(ξ, v
∗, w∗) is strictly (F , β, γ, ϕ̃t, π, ω, ρ̃t, θ,m)-

pseudosounivex at x∗, ϕ̃t is increasing, and ϕ̃t(0) = 0;

(iii) ρ̄(x, x∗) +
∑M

t=1 ρ̃t(x, x
∗) ≥ 0 for all x ∈ F;
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(b) (i) ξ → Φ(ξ, x∗, u∗, v∗, w∗) is (F , β, γ, ϕ̄, π, ω, ρ̄, θ,m)-pseudosounivex at x∗

and ϕ̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) for each t ∈ M, ξ → Λt(ξ, v
∗, w∗) is (F , β, γ, ϕ̃t, π, ω, ρ̃t, θ,m)-

quasisounivex at x∗, ϕ̃t is increasing, and ϕ̃t(0) = 0;

(iii) ρ̄(x, x∗) +
∑M

t=1 ρ̃t(x, x
∗) ≥ 0 for all x ∈ F;

(c) (i) ξ → Φ(ξ, x∗, u∗, v∗, w∗) is prestrictly (F , β, γ, ϕ̄, π, ω, ρ̄, θ,m)-
quasisounivex at x∗ and ϕ̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) for each t ∈ M, ξ → Λt(ξ, v
∗, w∗) is (F , β, γ, ϕ̃t, π, ω, ρ̃t, θ,m)-

quasisounivex at x∗, ϕ̃t is increasing, and ϕ̃t(0) = 0;

(iii) ρ̄(x, x∗) +
∑M

t=1 ρ̃t(x, x
∗) > 0 for all x ∈ F;

(d) (i) ξ → Φ(ξ, x∗, u∗, v∗, w∗) is prestrictly (F , β, γ, ϕ̄, π, ω, ρ̄, θ,m)-
quasisounivex at x∗ and ϕ̄(a) ≥ 0 ⇒ a ≥ 0;

(ii) for each t ∈ M1, ξ → Λt(ξ, v
∗, w∗) is (F , β, γ, ϕ̃t, π, ω, ρ̃t, θ,m)-

quasisounivex at x∗, for each t ∈ M2 ̸= ∅, ξ → Λt(ξ, v
∗, w∗) is strictly

(F , β, γ, ϕ̃t, π, ω, ρ̃t, θ,m)-pseudosounivex at x∗, and for each t ∈ M, ϕ̃t

is increasing and ϕ̃t(0) = 0, where {M1,M2} is a partition of M ;

(iii) ρ̄(x, x∗) +
∑M

t=1 ρ̃t(x, x
∗) ≥ 0 for all x ∈ F.

Then x∗ is an optimal solution of (P).

Proof. Let x be an arbitrary feasible solution of (P ).
(a) : It is clear that (2.1) and (2.2) can be expressed as follows:

(2.5)

p∑
i=1

u∗i [D(x∗, u∗)∇fi(x
∗)−N(x∗, u∗)∇gi(x

∗)] +
∑
j∈J0

v∗j∇Gj(x
∗)+

∑
k∈K0

w∗
k∇Hk(x

∗) +
M∑
t=1

[∑
j∈Jt

v∗j∇Gj(x
∗) +

∑
k∈Kt

w∗
k∇Hk(x

∗)
]
= 0,

β(x, x∗)
⟨
π(x, x∗),

{ p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)−N(x∗, u∗)∇2gi(x

∗)]

+
∑
j∈J0

v∗j∇2Gj(x
∗) +

∑
k∈K0

w∗
k∇2Hk(x

∗)
}
z∗
⟩

+ β(x, x∗)
⟨
π(x, x∗),

M∑
t=1

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

(2.6)

− 1

2
γ(x, x∗)[

⟨
ω(x, x∗),

{ p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)−N(x∗, u∗)∇2gi(x

∗)]

+
∑
j∈J0

v∗j∇2Gj(x
∗) +

∑
k∈K0

w∗
k∇2Hk(x

∗)
}
z∗
⟩

+
⟨
ω(x, x∗),

M∑
t=1

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩
] ≥ 0.
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Since for each t ∈ M ,

Λt(x, v
∗, w∗) =

∑
j∈Jt

v∗jGj(x) +
∑
k∈Kt

w∗
kHk(x)

≤ 0 (by the feasibility of x)

=
∑
j∈Jt

v∗jGj(x
∗) +

∑
k∈Kt

w∗
kHk(x

∗) (by (2.4) and the feasibility of x∗)

= Λt(x
∗, v∗, w∗),

and hence ϕ̃t

(
Λt(x, v

∗, w∗)− Λt(x
∗, v∗, w∗)

)
≤ 0, it follows from (ii) that

F
(
x, x∗;β(x, x∗)

[∑
j∈Jt

v∗j∇Gj(x
∗) +

∑
k∈Kt

w∗
k∇Hk(x

∗)
])

+ β(x, x∗)
⟨
π(x, x∗),

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

< −ρ̃t(x, x
∗)∥θ(x, x∗)∥m.

Summing over t ∈ M and using the sublinearity of F(x, x∗; ·), we obtain

F
(
x, x∗;β(x, x∗)

M∑
t=1

[∑
j∈Jt

v∗j∇Gj(x
∗) +

∑
k∈Kt

w∗
k∇Hk(x

∗)
])

(2.7)

+ β(x, x∗)
⟨
π(x, x∗),

M∑
t=1

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

M∑
t=1

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

< −
M∑
t=1

ρ̃t(x, x
∗)∥θ(x, x∗)∥m.

Combining (2.5) - (2.7), and using (iii) we get

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗i [D(x∗, u∗)∇fi(x
∗)−N(x∗, u∗)∇gi(x

∗)]

+
∑
j∈J0

v∗j∇Gj(x
∗) +

∑
k∈K0

w∗
k∇Hk(x

∗)
})

+ β(x, x∗)
⟨
π(x, x∗),

{ p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)−N(x∗, u∗)∇2gi(x

∗)]

+
∑
j∈J0

v∗j∇2Gj(x
∗) +

∑
k∈K0

w∗
k∇2Hk(x

∗)
}
z∗
⟩
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− 1

2
γ(x, x∗)[

⟨
ω(x, x∗),

{ p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)−N(x∗, u∗)∇2gi(x

∗)]

+
∑
j∈J0

v∗j∇2Gj(x
∗) +

∑
k∈K0

w∗
k∇2Hk(x

∗)
}
z∗
⟩
]

>
M∑
t=1

ρ̃t(x, x
∗)∥θ(x, x∗)∥m ≥ −ρ̄(x, x∗)∥θ(x, x∗)∥m,

which by virtue of (i) implies that

ϕ̄
(
Φ(x, x∗, u∗, v∗, w∗)− Φ(x∗, x∗, u∗, v∗, w∗)

)
≥ 0.

But ϕ̄(a) ≥ 0 ⇒ a ≥ 0, and hence we get

Φ(x, x∗, u∗, v∗, w∗) ≥ Φ(x∗, x∗, u∗, v∗, w∗) = 0,

where the equality follows from the feasibility of x∗ and definitions of D(x∗, u∗) and
D(x∗, u∗). Since x ∈ F, the above inequality reduces to

(2.8)

p∑
i=1

u∗i [D(x∗, u∗)fi(x)−N(x∗, u∗)gi(x)] ≥ 0.

Now using (2.3), (2.8), and Lemma 2.1, we see that

[φ(x∗) =
N(x∗, u∗)

D(x∗, u∗)
≤

∑p
i=1 u

∗
i fi(x)∑p

i=1 u
∗
i gi(x)

≤ max
u∈U

∑p
i=1 uifi(x)∑p
i=1 uigi(x)

= φ(x).

Since x ∈ F was arbitrary, we conclude from this inequality that x∗ is an optimal
solution of (P ).

(b) : Proceeding as in the proof of part (a), we see that (ii) leads to the following
inequality:

F
(
x, x∗;β(x, x∗)

M∑
t=1

[∑
j∈Jt

v∗j∇Gj(x
∗) +

∑
k∈Kt

w∗
k∇Hk(x

∗)
)

+ β(x, x∗)
⟨
π(x, x∗),

M∑
t=1

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

M∑
t=1

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

≤ −
M∑
t=1

ρ̃t(x, x
∗)∥θ(x, x∗)∥m.

Combining this inequality with (2.5) and (2.6), and using (iii) we get

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗i [D(x∗, u∗)∇fi(x
∗)−N(x∗, u∗)∇gi(x

∗)]
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+
∑
j∈J0

v∗j∇Gj(x
∗) +

∑
k∈K0

w∗
k∇Hk(x

∗)
})

+ β(x, x∗)
⟨
π(x, x∗),

{ p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)−N(x∗, u∗)∇2gi(x

∗)]

+
∑
j∈J0

v∗j∇2Gj(x
∗) +

∑
k∈K0

w∗
k∇2Hk(x

∗)
}
z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

{ p∑
i=1

u∗i [D(x∗, u∗)∇2fi(x
∗)−N(x∗, u∗)∇2gi(x

∗)]

+
∑
j∈J0

v∗j∇2Gj(x
∗) +

∑
k∈K0

w∗
k∇2Hk(x

∗)
}
z∗
⟩

≥
M∑
t=1

ρ̃t(x, x
∗)∥θ(x, x∗)∥m

≥ −ρ̄(x, x∗)∥θ(x, x∗)∥m,

which by virtue of (i) implies that

ϕ̄
(
Φ(x, x∗, u∗, v∗, w∗)− Φ(x∗, x∗, u∗, v∗, w∗)

)
≥ 0.

The rest of the proof is identical to that of part (a).
(c) and (d) : The proofs are similar to those of parts (a) and (b). □

Theorem 2.3. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q,
and Hk, k ∈ r, are twice differentiable at x∗, and that for each z∗ ∈ C(x∗), there
exist u∗ ∈ U, v∗ ∈ Rq

+, and w∗ ∈ Rr such that (2.1) - (2.4) and the following
relations hold:

(2.9) u∗i [D(x∗, u∗)fi(x
∗)−N(x∗, u∗)gi(x

∗)] = 0, i ∈ p.

Assume, furthermore, that any one of the following seven sets of hypotheses is
satisfied:

(a) (i) for each i ∈ I+ ≡ {i ∈ p}, ξ → Φi(ξ, x
∗, u∗, v∗, w∗) is (F , β, γ, ϕ̄i, π, ω, ρ̄i,

θ,m)-pseudosounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;

(ii) for each t ∈ M, ξ → Λt(ξ, v
∗, w∗) is (F , β, γ, ϕ̃t, π, ω, ρ̃t, θ,m)-

quasisounivex at x∗, ϕ̃t is increasing, and ϕ̃t(0) = 0;

(iii)
∑

i∈I+ u∗i ρ̄i(x, x
∗) +

∑M
t=1 ρ̃t(x, x

∗) ≥ 0 for all x ∈ F;

(b) (i) for each i ∈ I+, ξ → Φi(ξ, x
∗, u∗, v∗, w∗) is prestrictly (F , β, γ, ϕ̄i, π, ω,

ρ̄i, θ,m)-quasisounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;

(ii) for each t ∈ M, ξ → Λt(ξ, v
∗, w∗) is strictly (F , β, γ, ϕ̃t, π, ω, ρ̃t, θ,m)-

pseudosounivex at x∗, ϕ̃t is increasing, and ϕ̃t(0) = 0;

(iii)
∑

i∈I+ u∗i ρ̄i(x, x
∗) +

∑M
t=1 ρ̃t(x, x

∗) ≥ 0 for all x ∈ F;

(c) (i) for each i ∈ I+, ξ → Φi(ξ, x
∗, u∗, v∗, w∗) is prestrictly (F , β, γ, ϕ̄i, π, ω,

ρ̄i, θ,m)-quasisounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;
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(ii) for each t ∈ M, ξ → Λt(ξ, v
∗, w∗) is (F , β, γ, ϕ̃t, π, ω, ρ̃t, θ,m)

-quasisounivex at x∗, ϕ̃t is increasing, and ϕ̃t(0) = 0;

(iii)
∑

i∈I+ u∗i ρ̄i(x, x
∗) +

∑M
t=1 ρ̃t(x, x

∗) > 0 for all x ∈ F;

(d) (i) for each i ∈ I1+, ξ → Φi(ξ, x
∗, u∗, v∗, w∗) is (F , β, γ, ϕ̄i, π, ω, ρ̄i, θ,m)-

pseudosounivex at x∗, for each i ∈ I2+, ξ → Φi(ξ, x
∗, u∗, v∗, w∗) is

prestrictly (F , β, γ, ϕ̄i, π, ω, ρ̄i, θ,m)-quasisounivex at x∗, and for each
i ∈ I+, ϕ̄i is strictly increasing and ϕ̄i(0) = 0, where {I1+, I2+} is a
partition of I+;

(ii) for each t ∈ M, ξ → Λt(ξ, v
∗, w∗) is strictly (F , β, γ, ϕ̃t, π, ω, ρ̃t, θ,m)-

pseudosounivex at x∗, ϕ̃t is increasing, and ϕ̃t(0) = 0;

(iii)
∑

i∈I+ u∗i ρ̄i(x, x
∗) +

∑M
t=1 ρ̃t(x, x

∗) ≥ 0 for all x ∈ F;

(e) (i) for each i ∈ I1+ ̸= ∅, ξ → Φi(ξ, x
∗, u∗, v∗, w∗) is (F , β, γ, ϕ̄i, π, ω, ρ̄i,

θ,m)-pseudosounivex at x∗, for each i ∈ I2+, ξ → Φi(ξ, x
∗, u∗, v∗, w∗)

is prestrictly (F , β, γ, ϕ̄i, π, ω, ρ̄i, θ,m)-quasisounivex at x∗, and for each
i ∈ I+, ϕ̄i is strictly increasing and ϕ̄i(0) = 0, where {I1+, I2+} is a
partition of I+;

(ii) for each t ∈ M, ξ → Λt(ξ, v
∗, w∗) is (F , β, γ, ϕ̃t, ρ̃t, π, ω, θ,m)

-quasisounivex at x∗, ϕ̃t is increasing, and ϕ̃t(0) = 0;

(iii)
∑

i∈I+ u∗i ρ̄i(x, x
∗) +

∑M
t=1 ρ̃t(x, x

∗) ≥ 0 for all x ∈ F;

(f) (i) for each i ∈ I+, ξ → Φi(ξ, x
∗, u∗, v∗, w∗) is prestrictly (F , β, γ, ϕ̄i, π,

ω, ρ̄i, θ,m)-quasisounivex at x∗, ϕ̄i is strictly increasing, and ϕ̄i(0) = 0;

(ii) for each t ∈ M1 ̸= ∅, ξ → Λt(ξ, v
∗, w∗) is strictly (F , β, γ, ϕ̄t, π, ω,

ρ̃t, θ, m)-pseudosounivex at x∗, for each t ∈ M2, ξ → Λt(ξ, v
∗, w∗) is

(F , β, γ, ϕ̃t, π, ω, ρ̃t, θ,m)-quasisounivex at x∗, and for each t ∈ M, ϕ̃t

is increasing and ϕ̃t(0) = 0, where {M1,M2} is a partition of M ;

(iii)
∑

i∈I+ u∗i ρ̄i(x, x
∗) +

∑M
t=1 ρ̃t(x, x

∗) ≥ 0 for all x ∈ F;

(g) (i) for each i ∈ I1+, ξ → Φi(ξ, x
∗, u∗, v∗, w∗) is (F , β, γ, ϕ̄i, ρ̄i, π, ω, θ,m)-

pseudosounivex at x∗, for each i ∈ I2+, ξ → Φi(ξ, x
∗, u∗, v∗, w∗) is

prestrictly (F , β, γ, ϕ̄i, π, ω, ρ̄i, θ,m)-quasisounivex at x∗, and for each
i ∈ I+, ϕ̄i is strictly increasing and ϕ̄i(0) = 0, where {I1+, I2+} is a
partition of I+;

(ii) for each t ∈ M1, ξ → Λt(ξ, v
∗, w∗) is strictly (F , β, γ, ϕ̃t, π, ω, ρ̃t,

θ, m)-pseudosounivex at x∗, for each t ∈ M2, ξ → Λt(ξ, v
∗, w∗) is

(F , β, γ, ϕ̃t, π, ω, ρ̃t, θ,m)-quasisounivex at x∗, and for each t ∈ M , ϕ̃t

is increasing and ϕ̃t(0) = 0, where {M1,M2} is a partition of M ;

(iii)
∑

i∈I+ u∗i ρ̄i(x, x
∗) +

∑M
t=1 ρ̃t(x, x

∗) ≥ 0 for all x ∈ F;

(iv) I1+ ̸= ∅, M1 ̸= ∅, or
∑

i∈I+ u∗i ρ̄i(x, x
∗) +

∑M
t=1 ρ̃t(x, x

∗) > 0.

Then x∗ is an optimal solution of (P).

Proof. (a) : Suppose to the contrary that x∗ is not an optimal solution of (P ). Then
there is a feasible solution x̄ of (P ) such that φ(x̄) < φ(x∗) and hence it follows
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that
D(x̄, u∗)fi(x̄)−N(x̄, u∗)gi(x̄) < 0 for each i ∈ p.

Keeping in mind that v∗ ≥ 0 and using this strict inequality, we see that

Φi(x̄, x
∗, v∗, w∗) = D(x̄, u∗)fi(x̄)−N(x̄, u∗)gi(x̄)

+
∑
j∈J0

v∗jGj(x̄) +
∑
k∈K0

w∗
kHk(x̄)

≤ D(x̄, u∗)fi(x̄)−N(x̄, u∗)gi(x̄) (by the feasibility of x̄)

< 0

= D(x̄, u∗)fi(x
∗)−N(x̄, u∗)gi(x

∗)

+
∑
j∈J0

v∗jGj(x
∗) +

∑
k∈K0

w∗
kHk(x

∗)

(by (2.4), (2.9), and the feasibility of x∗)

= Φi(x
∗, x∗, u∗, v∗, w∗),

and so using the properties of the function ϕ̄i, we get

ϕ̄i

(
Φi(x̄, x

∗, u∗, v∗, w∗)− Φi(x
∗, x∗, u∗, v∗, w∗)

)
< 0,

which in view of (i) implies that for each i ∈ I+,

F
(
x, x∗;β(x, x∗)

{
D(x̄, u∗)∇fi(x

∗)−N(x̄, u∗)∇gi(x
∗)

+
∑
j∈J0

v∗j∇Gj(x
∗) +

∑
k∈K0

w∗
k∇Hk(x

∗)
})

+ β(x, x∗)
⟨
π(x̄, x∗),

[
D(x̄, u∗)∇2fi(x

∗)−N(x̄, u∗)∇2gi(x
∗)

+
∑
j∈J0

v∗j∇2Gj(x
∗) +

∑
k∈K0

w∗
k∇2Hk(x

∗)
]
z
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

[
D(x̄, u∗)∇2fi(x

∗)−N(x̄, u∗)∇2gi(x
∗)

+
∑
j∈J0

v∗j∇2Gj(x
∗) +

∑
k∈K0

w∗
k∇2Hk(x

∗)
]
z
⟩

< −ρ̄i(x, x
∗)∥θ(x̄, x∗)∥m.

Since u∗ ≥ 0, u∗i = 0 for each i ∈ p\I+,
∑p

i=1 u
∗
i = 1, and F(x, x∗; ·) is sublinear,

the above inequalities yield

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗i [D(x̄, u∗)∇fi(x
∗)−N(x̄, u∗)∇gi(x

∗)](2.10)

+
∑
j∈J0

v∗j∇Gj(x
∗) +

∑
k∈K0

w∗
k∇Hk(x

∗)
})

+ β(x, x∗)
⟨
π(x̄, x∗),

{ p∑
i=1

u∗i [D(x̄, u∗)∇2fi(x
∗)−N(x̄, u∗)∇2gi(x

∗)]

+
∑
j∈J0

v∗j∇2Gj(x
∗) +

∑
k∈K0

w∗
k∇2Hk(x

∗)
}
z∗
⟩
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− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

{ p∑
i=1

u∗i [D(x̄, u∗)∇2fi(x
∗)−N(x̄, u∗)∇2gi(x

∗)]

+
∑
j∈J0

v∗j∇2Gj(x
∗) +

∑
k∈K0

w∗
k∇2Hk(x

∗)
}
z∗
⟩

< −
∑
i∈I+

u∗i ρ̄i(x, x
∗)∥θ(x̄, x∗)∥m.

As seen in the proof of Theorem 2.2, our assumptions in (ii) lead to

F
(
x, x∗;β(x, x∗)

M∑
t=1

[∑
j∈Jt

v∗j∇Gj(x
∗) +

∑
k∈Kt

w∗
k∇Hk(x

∗)
])

+ β(x, x∗)
⟨
π(x̄, x∗),

M∑
t=1

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

M∑
t=1

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

≤ −
M∑
t=1

ρ̃t(x, x
∗)∥θ(x̄, x∗)∥m,

which when combined with (2.5) and (2.6) results in

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗i [D(x̄, u∗)∇fi(x
∗)−N(x̄, u∗)∇gi(x

∗)]

+
∑
j∈J0

v∗j∇Gj(x
∗) +

∑
k∈K0

w∗
k∇Hk(x

∗)
})

+ β(x, x∗)
⟨
π(x̄, x∗),

[ p∑
i=1

u∗i [D(x̄, u∗)∇2fi(x
∗)−N(x̄, u∗)∇2gi(x

∗)]

+
∑
j∈J0

v∗j∇2Gj(x
∗) +

∑
k∈K0

w∗
k∇2Hk(x

∗)
]
z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

[ p∑
i=1

u∗i [D(x̄, u∗)∇2fi(x
∗)−N(x̄, u∗)∇2gi(x

∗)]

+
∑
j∈J0

v∗j∇2Gj(x
∗) +

∑
k∈K0

w∗
k∇2Hk(x

∗)
]
z∗
⟩

≥
M∑
t=1

ρ̃t(x, x
∗)∥θ(x̄, x∗)∥m.

In view of (iii), this inequality contradicts (2.10). Hence, x∗ is an optimal solution
of (P ).

(b) - (g) : The proofs are similar to that of part (a). □
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In the next theorem, we present another collection of sufficient optimality results
which are somewhat different from those stated in Theorems 2.2 and 2.3. These
results are formulated by utilizing a partition of p in addition to those of q and r, and
by placing appropriate generalized (F , β, γ, ϕ, π, ω, ρ, θ,m)-sounivexity requirements
on certain combinations of the problem functions.

Let {I0, I1, . . . , Iℓ} be a partition of p such that L = {0, 1, 2, . . . , ℓ} ⊂ M =
{0, 1, . . . ,M}, and let the real-valued function ξ → Πt(ξ, x, u, v, w) be defined, for
fixed u, v, w by

Πt(ξ, x, u, v, w) =
∑
i∈It

ui[D(x, u)fi(ξ)−N(x, u)gi(ξ)] +
∑
j∈Jt

vjGj(ξ)

+
∑
k∈Kt

wkHk(ξ), t ∈ M.

Theorem 2.4. Let x∗ ∈ F and assume that the functions fi, gi, i ∈ p, Gj , j ∈ q,
and Hk, k ∈ r, are twice differentiable at x∗, and that for each z∗ ∈ C(x∗), there
exist u∗ ∈ U, v∗ ∈ Rq

+, and w∗ ∈ Rr such that (2.1) - (2.4) and (2.9) hold. Assume,
furthermore, that any one of the following seven sets of hypotheses is satisfied:

(a) (i) for each t ∈ L, ξ → Πt(ξ, x
∗, u∗, v∗, w∗) is strictly (F , β, γ, ϕ̄t, π, ω, ρt,

θ,m)- pseudosounivex at x∗, ϕt is increasing, and ϕt(0) = 0;

(ii) for each t ∈ M \ L, ξ → Λt(ξ, v
∗, w∗) is (F , β, γ, ϕt, π, ω, ρt, θ,

m)-quasisounivex at x∗, ϕt is increasing, and ϕt(0) = 0;

(iii)
∑

t∈M ρt(x, x
∗) ≥ 0 for all x ∈ F;

(b) (i) for each t ∈ L, ξ → Πt(ξ, x
∗, u∗, v∗, w∗) is prestrictly (F , β, γ, ϕt, π, ω,

ρt, θ,m)-quasisounivex at x∗, ϕt is increasing, and ϕt(0) = 0;

(ii) for each t ∈ M\L, ξ → Λt(ξ, v
∗, w∗) is strictly (F , β, γ, ϕt, π, ω, ρt, θ,m)-

pseudosounivex at x∗, ϕt is increasing, and ϕt(0) = 0;

(iii)
∑

t∈M ρt(x, x
∗) ≥ 0 for all x ∈ F;

(c) (i) for each t ∈ L, ξ → Πt(ξ, x
∗, u∗, v∗, w∗) is prestrictly (F , β, γ, ϕt, π, ω, ρt,

θ,m)- quasisounivex at x∗, ϕt is increasing, and ϕt(0) = 0;

(ii) for each t ∈ M \ L, ξ → Λt(ξ, v
∗, w∗) is (F , β, γ, ϕt, π, ω, ρt, θ,m)-

quasisounivex at x∗, ϕt is increasing, and ϕt(0) = 0;

(iii)
∑

t∈M ρt(x, x
∗) > 0 for all x ∈ F;

(d) (i) for each t ∈ L1, ξ → Πt(ξ, x
∗, u∗, v∗, w∗) is strictly (F , β, γ, ϕt, π, ω,

ρt, θ,m)-pseudosounivex at x∗, for each t ∈ L2, ξ → Πt(ξ, x
∗, u∗, v∗, w∗)

is prestrictly (F , β, γ, ϕt, π, ω, ρt, θ,m)-quasisounivex at x∗, and for each
t ∈ L, ϕt is increasing and ϕt(0) = 0, where {L1,L2} is a partition of
L;

(ii) for each t ∈ M\L, ξ → Λt(ξ, v
∗, w∗) is strictly (F , β, γ, ϕt, π, ω, ρt, θ)-

pseudosounivex at x∗, ϕt is increasing, and ϕt(0) = 0;

(iii)
∑

t∈M ρt(x, x
∗) ≥ 0 for all x ∈ F;

(e) (i) for each t ∈ L1 ̸= ∅, ξ → Πt(ξ, x
∗, u∗, v∗, w∗) is strictly (F , β, γ, ϕt, π, ω,

ρt, θ,m)-]pseudosounivex at x∗, for each t ∈ L2, ξ → Πt(ξ, u
∗, v∗, w∗, λ∗)

is prestrictly (F , β, γ, ϕt, π, ω, ρt, θ,m)-quasisounivex at x∗, and for each
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t ∈ L, ϕt is increasing and ϕt(0) = 0, where {L1,L2} is a partition of
L;

(ii) for each t ∈ M \ L, ξ → Λt(ξ, v
∗, w∗) is (F , β, γ, ϕt, ρt, θ,m)-

quasisounivex at x∗, ϕt is increasing, and ϕt(0) = 0;

(iii)
∑

t∈M ρt(x, x
∗) ≥ 0 for all x ∈ F;

(f) (i) for each t ∈ L, ξ → Πt(ξ, x
∗, u∗, v∗, w∗) is prestrictly (F , β, γ, ϕt, π,

ω, ρt, θ,m) -quasisounivex at x∗, ϕt is increasing, and ϕt(0) = 0;

(ii) for each t ∈ (M \ L)1 ̸= ∅, ξ → Λt(ξ, v
∗, w∗) is strictly (F , β, γ, ϕt,

π, ω, ρt, θ, m) -pseudosounivex at x∗, for each t ∈ (M \ L)2, ξ →
Λt(ξ, v

∗, w∗) is (F , β, γ, ϕt, π, ω, ρt, θ,m)-quasisounivex at x∗, and for
each t ∈ L, ϕt is increasing and ϕt(0) = 0, where {(M\L)1, (M\L)2}
is a partition of M\L;

(iii)
∑

t∈M ρt(x, x
∗) ≥ 0 for all x ∈ F;

(g) (i) for each t ∈ L1, ξ → Πt(ξ, x
∗, u∗, v∗, w∗) is (F , β, γ, ϕt, π, ω, ρt, θ,m)-

pseudosounivex at x∗, for each t ∈ L2, ξ → Πt(ξ, x
∗, u∗, v∗, w∗) is

prestrictly (F , β, γ, ϕt, π, ω, ρt, θ,m)-quasisounivex at x∗, and for each
t ∈ L, ϕt is increasing and ϕt(0) = 0, where {L1,L2} is a partition of
L;

(ii) for each t ∈ (M\L)1, ξ → Λt(ξ, v
∗, w∗) is strictly (F , β, γ, ϕt, π, ω, ρt,

θ, m)-pseudosounivex at x∗, for each t ∈ (M\ L)2, ξ → Λt(ξ, v
∗, w∗)

is (F , β, γ, ϕt, π, ω, ρt, θ,m)-quasisounivex at x∗, and for each t ∈ M \
L, ϕt is increasing and ϕt(0) = 0, where {(M \ L)1, (M \ L)2} is a
partition of M\L;

(iii)
∑

t∈M ρt(x, x
∗) ≧ 0 for all x ∈ F;

(iv) L1 ≠ ∅, (M\L)1 ̸= ∅, or
∑

t∈M ρt(x, x
∗) > 0.

Then x∗ is an optimal solution of (P).

Proof. (a): Suppose to the contrary that x∗ is not an optimal solution of (P ). As
seen in the proof of Theorem 2.3, this supposition leads to the inequalities

D(x̄, u∗)fi(x̄)−N(x̄, u∗)gi(x̄) < 0, i ∈ p,

for some x̄ ∈ F. Since u∗ ≥ 0, we see that for each t ∈ L,

(2.11)
∑
i∈It

u∗i [D(x̄, u∗)fi(x̄)−N(x̄, u∗)gi(x̄)] ≤ 0.

Now using this inequality, we see that

Πt(x̄, x
∗, u∗, v∗, w∗) =

∑
i∈It

u∗i [D(x̄, u∗)fi(x̄)−N(x̄, u∗)gi(x̄)]

+
∑
j∈Jt

v∗jGj(x̄) +
∑
k∈Kt

w∗
kHk(x̄)

≤
∑
i∈It

u∗i [D(x̄, u∗)fi(x̄)−N(x̄, u∗)gi(x̄)] (by the feasibility of x̄)

≤ 0 (by (2.11))
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=
∑
i∈It

u∗i [D(x̄, u∗)fi(x
∗)−N(x̄, u∗)gi(x

∗)] +
∑
j∈Jt

v∗jGj(x
∗)

+
∑
k∈Kt

w∗
kHk(x

∗) (by (2.4), (2.9), and the feasibility of x∗)

= Πt(x
∗, x∗, u∗, v∗, w∗),

and hence

ϕt

(
Πt(x̄, x

∗, u∗, v∗, w∗)−Πt(x
∗, x∗, u∗, v∗, w∗)

)
≤ 0,

which in view of (i) implies that

F
(
x, x∗;β(x, x∗)

{∑
i∈It

u∗i [D(x̄, u∗)∇fi(x
∗)−N(x̄, u∗)∇gi(x

∗)]

+
∑
j∈Jt

v∗j∇Gj(x
∗) +

∑
k∈Kt

w∗
k∇Hk(x

∗)
})

+ β(x, x∗)
⟨
π(x̄, x∗),

[∑
i∈It

u∗i [D(x̄, u∗)∇2fi(x
∗)−N(x̄, u∗)∇2gi(x

∗)]

+
∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

[∑
i∈It

u∗i [D(x̄, u∗)∇2fi(x
∗)−N(x̄, u∗)∇2gi(x

∗)]

+
∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

< −ρt(x̄, x
∗)∥θ(x̄, x∗)∥m.

Summing over t ∈ L and using the sublinearity of F(x, x∗; ·), we obtain

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗i [D(x̄, u∗)∇fi(x
∗)−N(x̄, u∗)∇gi(x

∗)]

+
∑
t∈L

[∑
j∈Jt

v∗j∇Gj(x
∗) +

∑
k∈Kt

w∗
k∇Hk(x

∗)
]})

+ β(x, x∗)
⟨
π(x̄, x∗),

∑
t∈L

{∑
i∈It

u∗i [D(x̄, u∗)∇2fi(x
∗)−N(x̄, u∗)∇2gi(x

∗)]

+
∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
}
z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

∑
t∈L

{∑
i∈It

u∗i [D(x̄, u∗)∇2fi(x
∗)−N(x̄, u∗)∇2gi(x

∗)]

+
∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
}
z∗
⟩

≤ −
∑
t∈L

ρt(x̄, x
∗)∥θ(x̄, x∗)∥m.

Proceeding as in the proof of Theorem 2.2, we obtain for each t ∈ M\L,

ϕt

(
Λt(x̄, v

∗, w∗)− Λt(x
∗, v∗, w∗)

)
≤ 0,
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which in view of (ii) implies that

F
(
x, x∗;β(x, x∗)

[∑
j∈Jt

v∗j∇Gj(x
∗) +

∑
k∈Kt

w∗
k∇Hk(x

∗)
])

+ β(x, x∗)
⟨
π(x̄, x∗),

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

≤ −ρt(x̄, x
∗)∥θ(x̄, x∗)∥m.

Summing over t ∈ M\L and using the sublinearity of F(x, x∗; ·), we get

F
(
x, x∗;β(x, x∗)

[ ∑
t∈M\L

[∑
j∈Jt

v∗j∇Gj(x
∗) +

∑
k∈Kt

w∗
k∇Hk(x

∗)
])

(2.12)

+ β(x, x∗)
⟨
π(x̄, x∗),

∑
t∈M\L

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

∑
t∈M\L

[∑
j∈Jt

v∗j∇2Gj(x
∗) +

∑
k∈Kt

w∗
k∇2Hk(x

∗)
]
z∗
⟩

< −
∑

t∈M\L

ρt(x̄, x
∗)∥θ(x̄, x∗)∥m.

Now combining (2.12) and (2.13) and using (iii), we obtain

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗i [D(x̄, u∗)∇fi(x
∗)−N(x̄, u∗)∇gi(x

∗)](2.13)

+

q∑
j=1

v∗j∇Gj(x
∗) +

r∑
k=1

w∗
k∇Hk(x

∗)
})

+ β(x, x∗)
⟨
π(x̄, x∗),

{ p∑
i=1

u∗i [D(x̄, u∗)∇2fi(x
∗)−N(x̄, u∗)∇2gi(x

∗)]

+

q∑
j=1

v∗j∇2Gj(x
∗) +

r∑
k=1

w∗
k∇2Hk(x

∗)
}
z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

{ p∑
i=1

u∗i [D(x̄, u∗)∇2fi(x
∗)−N(x̄, u∗)∇2gi(x

∗)]

+

q∑
j=1

v∗j∇2Gj(x
∗) +

r∑
k=1

w∗
k∇2Hk(x

∗)
}
z∗
⟩

< −
∑
t∈M

ρt(x̄, x
∗)∥θ(x̄, x∗)∥m ≤ 0.
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Now multiplying (2.1) by β(x, x∗), applying the sublinear function F(x, x∗; ·) to
both sides of the resulting equation, and then adding the equation to (2.2), we get

F
(
x, x∗;β(x, x∗)

{ p∑
i=1

u∗i [D(x̄, u∗)∇fi(x
∗)−N(x̄, u∗)∇gi(x

∗)]

+

q∑
j=1

v∗j∇Gj(x
∗) +

r∑
k=1

w∗
k∇Hk(x

∗)
})

+ β(x, x∗)
⟨
π(x̄, x∗),

{ p∑
i=1

u∗i [D(x̄, u∗)∇2fi(x
∗)−N(x̄, u∗)∇2gi(x

∗)]

+

q∑
j=1

v∗j∇2Gj(x
∗) +

r∑
k=1

w∗
k∇2Hk(x

∗)
}
z∗
⟩

− 1

2
γ(x, x∗)

⟨
ω(x, x∗),

{ p∑
i=1

u∗i [D(x̄, u∗)∇2fi(x
∗)−N(x̄, u∗)∇2gi(x

∗)]

+

q∑
j=1

v∗j∇2Gj(x
∗) +

r∑
k=1

w∗
k∇2Hk(x

∗)
}
z∗
⟩
≥ 0,

which contradicts (2.14). Therefore, we conclude that x∗ is an optimal solution of
(P ).
(b) - (g) : The proofs are similar to that of part (a). □

3. Concluding remarks

Remark 3.1. Applying a Dinkelbach-type parametric approach [1], we have es-
tablished numerous sets of generalized second-order sufficient optimality criteria for
a discrete minmax fractional programming problem using a variety of generalized
(F , β, γ, ϕ, π, ω, ρ, θ,m)- sounivexity assumptions. These optimality results further
can be used for constructing various duality models as well as for developing new
algorithms for the numerical solution of minmax fractional programming problems.
More significantly, main results can be used, for example, employing similar tech-
niques, one can investigate the second-order sufficient optimality aspects of the
following semiinfinite minmax fractional programming problem:

Minimize max
1≤i≤p

fi(x)

gi(x)

subject to

Gj(x, t) ≤ 0 for all t ∈ Tj , j ∈ q; Hk(x, s) = 0 for all s ∈ Sk, k ∈ r; x ∈ X,

where X, fi, and gi, i ∈ p, are as defined in the description of (P ), for each j ∈ q
and k ∈ r, Tj and Sk are compact subsets of complete metric spaces, for each
j ∈ q, ξ → Gj(ξ, t) is a real-valued function defined on X for all t ∈ Tj , for each
k ∈ r, ξ → Hk(ξ, s) is a real-valued function defined on X for all s ∈ Sk, for each
j ∈ q and k ∈ r, t → Gj(x, t) and s → Hk(x, s) are continuous real-valued functions
defined, respectively, on Tj and Sk for all x ∈ X.
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