
Applied Analysis and Optimization Yokohama Publishers

Copyright 2019C
ISSN 2189-1664 Online Journal  



242 YEKINI SHEHU

(see for instance [6,8,9,13,19,25,32,33,36–38]). In particular, Xu [25,36] introduced
the following iteration (called contraction-proximal point algorithm (CPPA)):

xn+1 = αnu+ (1− αn)J
A
γnxn + en,(1.3)

where u ∈ H is fixed and {αn} ⊂ (0, 1) is real sequence. It was proved in [18,25,36]
that {xn} converges strongly to a solution of (1.1) under the assumptions that
limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and

∑∞
n=1 ∥en∥ < ∞. Several authors have obtained

strong convergence results with errors for solving (1.1) (see, for example ). One of
these recent results is the result of Boikanyo and Morosanu [8], where it was proved
that {xn} generated by (1.3) converges to a solution of (1.1) under the conditions
that (see also [34,35]) limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and either

∑∞
n=1 ∥en∥ < ∞ or

limn→∞
∥en∥
αn

= 0. It was also shown in [8] that (1.3) and the following regularization
for proximal point algorithm:

xn+1 = JA
γn(αnu+ (1− αn)xn + en)(1.4)

are equivalent.

In [2], Alvarez and Attouch introduced and inertial proximal point algorithm for
solving (1.1):

xn+1 = JA
γn(xn + βn(xn − xn−1))(1.5)

and proved that the sequence {xn} generated by (1.5) converges weakly, under cer-
tain conditions on {βn} and {γn}, to a solution of (1.1) in real Hilbert spaces. Their
result extend the classical convergence results concerning the standard proximal
method. Alvarez in [1] introduced a general implicit iterative method for solving
(1.1) in a Hilbert space which unified relaxation, inertial type extrapolation and
projection step and obtained weak convergence result under appropriate assump-
tions on the algorithm parameters.

Let us recall that the term βn(xn − xn−1) in (1.5) is called the inertial. The algo-
rithm (1.5) is based upon a discrete version of a second order dissipative dynamical
system [3, 4] and can be regarded as a procedure of speeding up the convergence
properties (see, e.g., [2,7,15,23,24,28,31]). It is worth mentioning that the scheme
(1.5) reduces to (1.2) when βn = 0. Recently, there have been increasing interests
in studying inertial type algorithms. See, for example, inertial forward-backward
splitting methods [5,20,27], inertial Douglas-Rachford splitting method [10], inertial
ADMM [11,14], and inertial forward-backward-forward method [12]. These results
and other related ones analyzed the convergence properties of inertial extrapolation
type algorithms and demonstrated their performance numerically on some imaging
and data analysis problems. It is based on this recent trend that our contribution
in solving (1.1) in this paper lies.

Our aim in this paper is to introduce contraction-proximal point algorithm (1.3)
with inertial terms and obtain strong convergence of the generated sequence to
a solution of (1.1) in real Hilbert spaces. Our convergence analysis is obtained
under some reasonable assumptions on the sequence of parameters and our result
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serves a unification of many existing results on proximal point algorithm with errors
( [8, 25,35,36]) and proximal point algorithm with inertial terms ( [1, 2]).

2. Preliminaries

We state the following well-known lemmas which will be used in our convergence
analysis in the sequel.

Lemma 2.1. The following well-known results hold in a real Hilbert space:

(i) ||x+ y||2 = ||x||2 + 2⟨x, y⟩+ ||y||2, ∀x, y ∈ H.
(ii) ||x+ y||2 ≤ ||x||2 + 2⟨y, x+ y⟩,∀x, y ∈ H.

Lemma 2.2 ([21,36]). Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ (1− αn)an + σn + γn, n ≥ 1,

where {αn} is a sequence in (0,1) and {σn} is a real sequence. Assume
∑

γn < ∞.
Then the following results hold:

(i) If σn ≤ αM for some M ≥ 0, then {an} is a bounded sequence.
(ii) If

∑
αn = ∞ and lim sup σn

αn
≤ 0, then lim an = 0.

Lemma 2.3. Let A be a maximal monotone operator and JA
γ be its resolvent with

γ > 0. Then, we have

(i) JA
γ : H → H is single-valued and firmly nonexpansive (i.e., ∥JA

γ (x) −
JA
γ (y)∥2 ≤ ∥x− y∥2 − ∥(I − JA

γ )(x)− (I − JA
γ )(y)∥2, ∀x, y ∈ H;

(ii) F (JA
γ ) = A−1(0) := {x ∈ H : 0 ∈ Ax}, where F (JA

γ ) := {x ∈ H|JA
γ (x) = x}

is the seet of fixed points of JA
γ ;

(iii) ∥x− JA
γ x∥ ≤ 2∥x− JA

δ x∥ for all 0 < γ ≤ δ and all x ∈ H (see [25]).

Lemma 2.4. ( [16]) Let T : H → H be a nonexpansive operator. Let {xn} be a
sequence in H and x be a point in H. Suppose that xn ⇀ x,n → ∞ (i.e., {xn}
converges weakly to x) and that xn − Txn → 0, n → ∞. Then, x ∈ F (T ).

3. Proposed Method

In this section, we give a precise statement of our method and give some discus-
sions. Its convergence analysis is postponed to the next section. We first state the
assumptions that we will assume to hold through the rest of this paper.

Assumption 3.1. (a) A : H → 2H is a maximal monotone operator.
(b) A−1(0) ̸= ∅.

Assumption 3.2. Suppose {αn}∞n=1, {γn}∞n=1 and {ϵn}∞n=1 are positive sequences
and sequence of errors {en}∞n=1 ⊂ H satisfying the following conditions:

(a) αn ∈ (0, 1), limn→∞ αn = 0,
∑∞

n=1 αn = ∞, ϵn = o(αn), where ϵn = o(αn)
means limn→∞

ϵn
αn

= 0.

(b) γn ≥ γ > 0 for all n ≥ 1.

(c) either
∑∞

n=1 ∥en∥ < ∞ or limn→∞
∥en∥
αn

= 0.

We next give a precise statement of our method as follows.
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Algorithm 3.3. (S.0) Choose sequences {αn}∞n=1, {γn}∞n=1, {ϵn}∞n=1 and {en}∞n=1

such that the conditions from Assumption 3.2 hold. Select arbitrary points
x0, x1 ∈ H and θ ∈ [0, 1). Let u be arbitrary but fixed in H. Set n := 1.

(S.1) Given the iterates xn−1 and xn (n ≥ 1), choose βn such that 0 ≤ βn ≤ β̄n,
where

β̄n =

{
min

{
θ, ϵn

∥xn−xn−1∥

}
, xn ̸= xn−1

θ, otherwise.

(S.2) Compute

xn+1 = αnu+ (1− αn)J
A
γn(xn + βn(xn − xn−1)) + en.(3.1)

Remark 3.4. Observe that from Assumption 3.2 and Algorithm 3.3 we have that

lim
n→∞

βn∥xn − xn−1∥ = 0

and

lim
n→∞

βn
αn

∥xn − xn−1∥ = 0.

We remark also here that the Step (S.1) in our Algorithm 3.3 is easily implemented
in numerical computation since the value of ∥xn − xn−1∥ is a priori known before
choosing βn.

4. Convergence Analysis

We give our main result in this paper in the next theorem.

Theorem 4.1. Let Assumptions 3.1 and 3.2 hold. Then the sequence {xn} gener-
ated by Algorithm 3.3 converges strongly to z := PA−1(0)u.

Proof. Let yn := xn + βn(xn − xn−1). Then

∥xn+1 − z∥ ≤ αn∥u− z∥+ (1− αn)∥JA
γnyn − z∥+ ∥en∥

≤ αn∥u− z∥+ (1− αn)∥yn − z∥+ ∥en∥
≤ αn∥u− z∥+ (1− αn)(∥xn − z∥+ βn∥xn − xn−1∥) + ∥en∥
= (1− αn)∥xn − z∥+ αn∥u− z∥+ (1− αn)βn∥xn − xn−1∥

+∥en∥.(4.1)

If limn→∞
∥en∥
αn

= 0, then {∥en∥
αn

} is bounded. Furthermore, supn≥1
∥en∥
αn

and

supn≥1
βn

αn
∥xn − xn−1∥ both exist by Lemma 3.4. Take

M := 3max
{
∥u− z∥, sup

n≥1
(1− αn)

βn
αn

∥xn − xn−1∥, sup
n≥1

∥en∥
αn

}
.

Then (4.1) becomes

∥xn+1 − z∥ ≤ (1− αn)∥xn − z∥+ αnM.

By Lemma 2.2 , we get that {xn} is bounded.
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Suppose
∑∞

n=1 ∥en∥ < ∞. We have from (4.1) that

∥xn+1 − z∥ ≤ (1− αn)∥xn − z∥+ αn∥u− z∥+ (1− αn)βn∥xn − xn−1∥+ ∥en∥

= (1− αn)∥xn − z∥+ αn(∥u− z∥+ (1− αn)
βn
αn

∥xn − xn−1∥)

+∥en∥.(4.2)

Take

M1 := 2max{∥u− z∥, sup
n≥1

(1− αn)
βn
αn

∥xn − xn−1∥}.

Then (4.2) becomes

∥xn+1 − z∥ ≤ (1− αn)∥xn − z∥+ αnM1 + ∥en∥.

By Lemma 2.2, we have that {xn} is bounded.

Now, by Lemma 2.1 (i) and the fact that βn ∈ [0, 1), we get

∥yn − z∥ = ∥xn − z + βn(xn − xn−1)∥2

≤ ∥xn − z∥2 + 2βn⟨xn − xn−1, xn − z⟩+ βn∥xn − xn−1∥2.(4.3)

Using Lemma 2.1 (i) again, we get

⟨xn − xn−1, xn − z⟩ = −1

2
∥xn−1 − z∥2 + 1

2
∥xn − z∥2 + 1

2
∥xn − xn−1∥2.(4.4)

Substituting (4.4) into (4.3), we get

∥yn − z∥2 = ∥xn − z∥2 + βn(−∥xn−1 − z∥2 + ∥xn − z∥2 + ∥xn − xn−1∥2)
+βn∥xn − xn−1∥2

= ∥xn − z∥2 + βn(∥xn − z∥2 − ∥xn−1 − z∥2)
+2βn∥xn − xn−1∥2.(4.5)

Using Lemma 2.1 (ii) in (3.1) (noting that JA
γn is firmly nonexpansive), we obtain

∥xn+1 − z∥2 = ∥αn(u− z) + (1− αn)(J
A
γnyn − z) + en∥2

= ∥αn(u− z +
en
αn

) + (1− αn)(J
A
γnyn − z)∥2

≤ (1− αn)∥JA
γnyn − z∥2 + 2αn⟨u− z +

en
αn

, xn+1 − z⟩

≤ (1− αn)∥yn − z∥2 − (1− αn)∥JA
γnyn − yn∥2

+2αn⟨u− z +
en
αn

, xn+1 − z⟩.(4.6)
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Combining (4.5) and (4.6), we get

∥xn+1 − z∥2 ≤ (1− αn)∥yn − z∥2 − (1− αn)∥JA
γnyn − yn∥2

+2αn⟨u− z − en
αn

, xn+1 − z⟩

= (1− αn)∥xn − z∥2 − (1− αn)∥JA
γnyn − yn∥2

+βn(1− αn)(∥xn − z∥2 − ∥xn−1 − z∥2)
+2βn(1− αn)∥xn − xn−1∥2

+2αn⟨u− z +
en
αn

, xn+1 − z⟩.(4.7)

Set

Γn := ∥xn − z∥2,∀n ≥ 1.

Then (4.7) implies

Γn+1 ≤ (1− αn)Γn − (1− αn)∥JA
γnyn − yn∥2 + βn(1− αn)(Γn − Γn−1)

+2βn(1− αn)∥xn − xn−1∥2 + 2αn⟨u− z +
en
αn

, xn+1 − z⟩.(4.8)

We consider two cases for the rest of the proof.

Case 1: Suppose there exists a natural number n0 such that Γn+1 ≤ Γn for all
n ≥ n0. Therefore, limn→∞ Γn exists. From (4.8), we have

(1− αn)∥JA
γnyn − yn∥2 ≤ (Γn − Γn+1) + βn(1− αn)(Γn − Γn−1)

+2βn(1− αn)∥xn − xn−1∥2

+2αn⟨u− z +
en
αn

, xn+1 − z⟩

= (Γn − Γn+1) + βn(1− αn)(Γn − Γn−1)

+2βn(1− αn)∥xn − xn−1∥2 + 2αn⟨u− z, xn+1 − z⟩
+2⟨en, xn+1 − z⟩.(4.9)

Using Assumption 3.2 (noting that limn→∞ βn∥xn−xn−1∥ = 0 and {xn} is bounded),
we have

lim
n→∞

∥JA
γnyn − yn∥ = 0.

This together with Lemma 2.3 (iii) immediately implies that

lim
n→∞

∥JA
γ yn − yn∥ = 0.

Since {xn} is bounded, take a subsequence {xnk
} of {xn} such that xnk

⇀ p ∈ H
and

lim sup
n→∞

⟨u− z, xn − z⟩ = lim
k→∞

⟨u− z, xnk
− z⟩

= ⟨u− z, p− z⟩.(4.10)

From yn = xn + βn(xn − xn−1), we get

∥yn − xn∥ = βn∥xn − xn−1∥ → 0.
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Since xnk
⇀ p, then ynk

⇀ p. Lemma 2.4 then guarantees that p ∈ A−1(0).
Furthermore, we have from z = PA−1(0)u that

lim sup
n→∞

⟨u− z, xn − z⟩ ≤ 0.(4.11)

From (4.8), we have

Γn+1 ≤ (1− αn)Γn + βn(1− αn)(Γn − Γn−1)

+2βn(1− αn)∥xn − xn−1∥2 + 2αn⟨u− z +
en
αn

, xn+1 − z⟩

≤ (1− αn)Γn + βn(1− αn)∥xn − xn−1∥(
√

Γn +
√
Γn−1)

+2βn(1− αn)∥xn − xn−1∥2 + 2αn⟨u− z +
en
αn

, xn+1 − z⟩

≤ (1− αn)Γn + βn∥xn − xn−1∥M2

+2αn⟨u− z +
en
αn

, xn+1 − z⟩,(4.12)

for some M2 > 0 such that M2 := supn≥1(1− αn)(
√
Γn +

√
Γn−1 + 2∥xn − xn−1∥).

If
∑∞

n=1 ∥en∥ < ∞, then we derive from (4.12) that

Γn+1 ≤ (1− αn)Γn + βn∥xn − xn−1∥M2

+αnbn + cn,(4.13)

where bn := 2⟨u− z, xn+1 − z⟩ and cn := M3∥en∥, for some M3 > 0. Using Lemma
2.2 (ii) and Assumption 3.2 in (4.13), we get Γn = ∥xn − z∥ → 0 and thus xn → z
as n → ∞.

If ∥en∥
αn

→ 0, we have from (4.12) that

Γn+1 ≤ (1− αn)Γn + βn∥xn − xn−1∥M2

+αnbn,(4.14)

where bn = 2⟨u − z + en
αn

, xn+1 − z⟩. Observe that lim supn→∞ bn ≤ 0 by (4.11).

Using Lemma 2.2 and Assumption 3.2 in (4.14), we get that xn → z as desired.

Case 2: Assume that there is no n0 ∈ N such that {Γn}∞n=n0
is monotonically

decreasing. The technique of proof used here is adapted from [22]. Let τ : N → N
be a mapping defined for all n ≥ n0 (for some n0 large enough) by

τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1},
i.e. τ(n) is the largest number k in {1, . . . , n} such that Γk increases at k = τ(n);
note that, in view of Case 2, this τ(n) is well-defined for all sufficiently large n.
Clearly, τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and

0 ≤ Γτ(n) ≤ Γτ(n)+1, ∀n ≥ n0.

After a similar to (4.9), it is easy to show that limn→∞ ∥JA
γτ(n)

yτ(n) − yτ(n)∥ = 0,

limn→∞ ∥JA
γ yτ(n)−yτ(n)∥ = 0, limn→∞ ∥yτ(n)−xτ(n)∥ = 0, and limn→∞ ∥JA

γτ(n)
yτ(n)−

xτ(n)∥ = 0.
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Furthermore, using the boundedness of {xn} and Assumption 3.2, we get

∥xτ(n)+1 − xτ(n)∥ ≤ ατ(n)∥u− xτ(n)∥+ (1− ατ(n))∥JA
γτ(n)

yτ(n) − xτ(n)∥
+∥eτ(n)∥ → 0, n → ∞.(4.15)

Since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)}, still denoted by

{xτ(n)}, which converges weakly to some p ∈ A−1(0). Similarly, as in Case 1 above,
we can show that lim sup

n→∞
⟨u− z, xτ(n)+1 − z⟩ ≤ 0. Following (4.12), we obtain

ατ(n)Γτ(n) ≤ βτ(n)∥xτ(n) − xτ(n)−1∥M2

+2ατ(n)⟨u− z +
eτ(n)

ατ(n)
, xτ(n)+1 − z⟩,(4.16)

which shows

Γτ(n) ≤
βτ(n)

ατ(n)
∥xτ(n) − xτ(n)−1∥M2

+2⟨u− z +
eτ(n)

ατ(n)
, xτ(n)+1 − z⟩.(4.17)

We have from (4.17) that limn→∞ ∥xτ(n) − z∥ = limn→∞ Γτ(n) = 0 which, in turn,
implies lim

n→∞
∥xτ(n)+1 − z∥ = 0. Furthermore, for n ≥ n0, it is easy to see that

Γn ≤ Γτ(n)+1 (observe that τ(n) ≤ n for n ≥ n0 and consider the three cases:
τ(n) = n, τ(n) = n−1 and τ(n) < n−1. For the first and second cases, it is obvious
that Γn ≤ Γτ(n)+1, for n ≥ n0. For the third case τ(n) ≤ n − 2, we have from the
definition of τ(n) and for any integer n ≥ n0 that Γj ≥ Γj+1 for τ(n)+1 ≤ j ≤ n−1.
Thus, Γτ(n)+1 ≥ Γτ(n)+2 ≥ · · · ≥ Γn−1 ≥ Γn). As a consequence, we obtain for all
sufficiently large n that 0 ≤ Γn ≤ Γτ(n)+1. Hence lim

n→∞
Γn = 0. Therefore, {xn}

converges strongly to z.
□

Remark 4.2. (a) Our result compliment the strong convergence result of proximal
point algorithm with errors already obtained in [8, 25, 35, 36]. In particular, our
result reduces to the result in [8, 25,35,36] when βn = 0, ∀n ≥ 1.
(b) Our result can also be viewed as the strong convergence version of the already
obtained weak convergence result of proximal point algorithm with inertial obtained
in [1, 2].

5. Application

In this section, we apply Theorem 4.1 by establishing strong convergence result with
inertial terms for the problem of finding a minimizer of a convex function.

Let us consider the problem of finding z ∈ H such that f(z) ≤ f(x) ∀x ∈ H,
where f : H → (−∞,+∞] is a proper lower semicontinuous and convex function.
Recall that z minimizes f if and only if 0 ∈ ∂f(z), where ∂f(x) :=

{
s | f(y) ≥

f(x) + ⟨s, y − x⟩ ∀y
}
denotes the subdifferential of f at x. Furthermore, ∂f is a

maximal monotone operator; see [26,30].
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Corollary 5.1. Let H be a real Hilbert space, f a proper lower semicontinuous
convex function of H into (−∞,∞]. Let Assumptions 3.1 and 3.2 hold. Then the
sequence {xn} generated by the following algorithm:

Algorithm 5.2. (S.0) Choose sequences {αn}∞n=1, {γn}∞n=1, {ϵn}∞n=1 and {en}∞n=1

such that the conditions from Assumption 3.2 hold. Select arbitrary points
x0, x1 ∈ H and θ ∈ [0, 1). Let u be arbitrary but fixed in H. Set n := 1.

(S.1) Given the iterates xn−1 and xn (n ≥ 1), choose βn such that 0 ≤ βn ≤ β̄n,
where

β̄n =

{
min

{
θ, ϵn

∥xn−xn−1∥

}
, xn ̸= xn−1

θ, otherwise.

(S.2) Compute
yn = xn + βn(xn − xn−1)

zn = argmin{f(z) + ∥z−yn∥2
2γn

: z ∈ H}
xn+1 = αnu+ (1− αn)zn + en, n ≥ 1,

(5.1)

Then {xn} converges strongly to the minimizer of f nearest to u.

Proof. We know that ∂f is a maximal monotone operator and (∂f)−1(0) coincides
with the set of minimizers of f . Suppose I denotes the identity mapping on H. It
is known that

(I + γn(∂f))
−1x = argmin{f(z) + ∥z − x∥2

2γn
: z ∈ H}

for all n ≥ 1 and x ∈ H. Therefore, (5.1) reduces to xn+1 = αnu + (1 − αn)(I +
γn(∂f))

−1(xn+βn(xn−xn−1))+en and we obtain the desired conclusion by applying
Theorem 4.1. □
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