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A third-order method for the equation (1.2) with a strongly monotone operator
A was constructed in [5]. As it is noted above, in this paper we study the equa-
tion (1.2) with an arbitrary monotone operator. Such sort of ill-posed problems are
very difficult to implementation. Their exact solution is possible only in exceptional
cases. Therefore in order to find an approximate solution of (1.2), it is necessary to
have as wide a variety of methods as possible. It is especially important when in
addition the approximations should satisfy the a priori known properties of sought
solution. Let us also emphasize that the technique for the convergence proof of reg-
ularized continuous third-order method allows to investigate regularized continuous
methods of order higher than three.

In accordance with the theory and applications of ill-posed problems, we assume
in the sequel that in (1.2) A and f are known with errors, i.e.,
a) instead of f, the parametric approximations f(t) ∈ H are given for all t ≥ t0 ≥ 0
and there exists a positive function δ(t) such that δ(0) = 0, δ(t) → 0 as t → +∞
and

(1.3) ∥f(t)− f∥ ≤ δ(t) ∀t ≥ t0,

b) instead of A, the parametric approximating monotone operators A(t) : H → H
are given for all t ≥ t0 ≥ 0 and there exists bounded positive functions g(s), s ≥ 0,
and h(t) such that h(0) = 0, h(t) → 0 as t→ +∞, and

(1.4) ∥A(t)v −Av∥ ≤ h(t)g(∥v∥) ∀t ≥ t0, ∀v ∈ H.

It is known (see, for instance, [2], Theorem 2.1.2) that there exists a unique
solution xα(t) of equation

(1.5) Axα(t) + α(t)xα(t) = f

for all t ≥ t0, and

(1.6) lim
t→∞

∥xα(t)− x∗∥ = 0,

if the continuous function α(t) satisfies the conditions

(1.7) α(t) > 0 ∀t ≥ t0 and lim
t→∞

α(t) = 0.

It follows from (1.6) that there exists a constant M > 0 such that

(1.8) ∥xα(t)∥ ≤M ∀t ≥ t0.

2. Regularized continuous method of the third-order

We construct a continuous regularized third-order method for the equation (1.2)
in the form of the following Cauchy problem: For all t ≥ t0 ≥ 0

(2.1) y′′′(t) + φ1(t)y
′′(t) + φ2(t)y

′(t) + φ3(t)[A(t)y(t) + α(t)y(t)− f(t)] = 0,

(2.2) y(t0) = y0, y′(t0) = y′0, y
′′(t0) = y′′0 ,

where y0, y
′
0, y

′′
0 are some arbitrary fixed elements of H, φ1(t), φ2(t), φ3(t) are

positive continuous bounded functions.
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Suppose that {A(t)} is a family of continuous operators A(t) : H → H with
respect to t ∈ [t0,+∞) satisfying the Lipschitz condition with a constant L > 0,
that is

(2.3) ∥A(t)u−A(t)v∥ ≤ L∥u− v∥ ∀u, v ∈ H, ∀t ≥ t0.

Then the problem (2.1), (2.2) has a unique solution in the class of functions C3[t0,+∞)
(see [7], p. 33.4). It is not difficulty to see that (2.3) and (1.4) imply inequality

∥Au−Av∥ ≤ L∥u− v∥ ∀u, v ∈ H.

Hence, we obtained the continuity of operator A.
Assume further that there exists a number r0 > 0 such that at least for large

enough t the following inequality is true:

φ1(t)∥y′′(t)∥2 − (y(t) + y′′(t), y′(t)) + φ2(t)(y
′(t), y′′(t))

+ φ3(t)(A(t)y(t) + α(t)y(t)− f(t), y′′(t)) ≥ 0,(2.4)

if

∥y(t)∥2 + ∥y′(t)∥2 + ∥y′′(t)∥2 ≥ r0.

Similarly to [5], it is proved that (2.4) provides the existence of a constant r̃0 > 0
such that

(2.5) ∥y(t)∥ ≤ r̃0, ∥y′(t)∥ ≤ r̃0, ∥y′′(t)∥ ≤ r̃0 ∀t ≥ t0.

We can establish the conditions which guarantee the convergence ∥y(t)−x∗∥ → 0
as t→ ∞. In view of (1.6), it is sufficient to present the conditions for convergence

of y(t) to xα(t) as t→ ∞. Let λ(t) and λ̄(t) =
λ(t)

α(t)
be positive double continuously

differentiable decreasing convex from below functions for all t ≥ t0 ≥ 0, l and m be
some positive numbers. Let

(2.6) l > m > λ(t) > 0, lim
t→∞

λ(t) = 0,

(2.7) lim
t→∞

tλ(t) = +∞,

(2.8) lim
t→∞

λ(t)

α(t)
= 0.

By (1.7), we deduce from (2.8) that

(2.9) lim
t→∞

λ(t) = 0.

Introduce now in (2.1) the functions φ1(t), φ2(t), φ3(t) as it follows:

(2.10) φ1(t) = l +m+ λ(t), φ2(t) = lm+ (l +m)λ(t), φ3(t) =
lmλ(t)

2α(t)
.

Let τ ≥ t0 be an arbitrary fixed number and xα(τ) be a solution of the equation
(1.5) with t = τ, i.e.,

(2.11) Axα(τ) + α(τ)xα(τ) = f.
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Multiplying (2.1) by y(t)− xα(τ) and using (2.11), we get for all t ≥ t0

(y′′′(t), y(t) − xα(τ)) + φ1(t)(y
′′(t), y(t)− xα(τ))

+ φ2(t)(y
′(t), y(t)− xα(τ))

+ φ3(t)(A(t)y(t)−Axα(τ) + α(t)y(t)− α(τ)xα(τ)

+ f − f(t), y(t)− xα(τ)) = 0.(2.12)

We make the following transformations:

Λ(t, τ) = φ3(t)(A(t)y(t)−Axα(τ) + α(t)y(t)− α(τ)xα(τ) + f − f(t),

y(t)− xα(τ)) = φ3(t)[(A(t)y(t)−Ay(t), y(t)− xα(τ))

+ (Ay(t)−Axα(τ), y(t)− xα(τ)) + φ3(τ)α(τ)∥y(t)− xα(τ)∥2

+ [φ3(t)α(t)− φ3(τ)α(τ)] (y(t), y(t)− xα(τ))

+ [φ3(τ)− φ3(t)]α(τ)(xα(τ), y(t)− xα(τ))

+ φ3(t)(f − f(t), y(t)− xα(τ)).

Since the operator A is monotone and bounded, the aggregate families {f(t)} and
{A(t)} are bounded for all t ≥ t0 (see (1.3) and (1.4)), by (1.8), (2.10) and (2.5) we
conclude that there exists a positive constant c1 such that the following estimate is
fulfilled:

Λ(t, τ) ≥ c1

{
− φ3(t)[h(t) + δ(t)]− |λ(t)− λ(τ)| − |λ̄(t)− λ̄(τ)|α(τ)

}
+ φ3(τ)α(τ)∥y(t)− xα(τ)∥2.(2.13)

We introduce a scalar function

(2.14) r(t, τ) =
∥y(t)− xα(τ)∥2

2
and find

(2.15) r′t(t, τ) = (y′(t), y(t)− xα(τ)),

(2.16) r′′t (t, τ) = ∥y′(t)∥2 + (y′′(t), y(t)− xα(τ)),

(2.17) r′′′t (t, τ) = (y′′′(t), y(t)− xα(τ)) + 3(y′′(t), y′(t)).

By make using (2.5) and (2.13) – (2.17) (2.12) leads to the inequality

r′′′t (t, τ) + φ1(τ)r
′′
t (t, τ) + φ2(τ)r

′
t(t, τ) + 2φ3(τ)α(τ)r(t, τ)

≤ c1
{
φ3(t)[h(t) + δ(t)] + |λ(t)− λ(τ)|+ |λ̄(t)− λ̄(τ)|α(τ)

}
+ 3(y′′(t), y′(t)) + φ1(τ)∥y′(t)∥2.(2.18)

To estimate the right-hand side of (2.18), firstly we multiply (2.1) by y′(t) and get
the following equality for scalar products:

(y′′′(t), y′(t)) + φ1(t)(y
′′(t), y′(t)) + φ2(t)∥y′(t)∥2

+ φ3(t)(A(t)y(t) + α(t)y(t)− f(t), y′(t)) = 0.(2.19)

Suppose that ρ(t) = ∥y′(t)∥2/2. Then
ρ′(t) = (y′′(t), y′(t)) and ρ′′(t) = (y′′′(t), y′(t)) + ∥y′′(t)∥2.
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Taking into account again that the families {f(t)} and {A(t)} are bounded, y(t) is
bounded and α(t) is continuous for all t ≥ t0, we assert from (2.19) that there exists
a constant c2 > 0 such that

ρ′′(t) + φ1(t)ρ
′(t) + 2φ2(t)ρ(t) ≤ c2φ3(t)∥y′(t)∥+ ∥y′′(t)∥2.

Hence, we obtain the inequality

ρ′′(t) + (l +m)ρ′(t) + 2φ2(t)ρ(t)

≤ c2φ3(t)∥y′(t)∥+ λ(t)|ρ′(t)|+ ∥y′′(t)∥2.(2.20)

Secondly, we multiply (2.1) by y′′(t) and get following equality:

(y′′′(t), y′′(t)) + φ1(t)∥y′′(t)∥2 + φ2(t)(y
′(t), y′′(t))+

+ φ3(t)(A(t)y(t) + α(t)y(t)− f(t), y′′(t)) = 0.(2.21)

Let R(t) = ∥y′′(t)∥2/2. Then R′(t) = (y′′′(t), y′′(t)), and from (2.21) it follows that
there exists a constant c3 > 0 such that

(2.22) R′(t) + 2φ1(t)R(t) + φ2(t)ρ
′(t) ≤ c3φ3(t)∥y′′(t)∥.

Using the numerical inequality 2ab ≤ a2 + b2 we can write the estimate

(2.23) c3φ3(t)∥y′′(t)∥ ≤ [φ3(t)]
ϵR(t) + 2−1c23 [φ3(t)]

2−ϵ ,

where ϵ ∈ (0, 2) is any fixed number. Since

(2.24) |ρ′(t)| = |(y′′(t), y′(t))| ≤ ρ(t) +R(t),

we state from (2.22) and (2.23) that there exists a constant c4 > 0 such that

R′(t) + {2φ1(t)− [φ3(t)]
ϵ − φ2(t)}R(t)

≤ c4 [φ3(t)]
2−ϵ + φ2(t)ρ(t), t ≥ t0.(2.25)

Assumptions (2.10), (2.6), (2.8) and property (2.9) of the function λ(t) allow us
to claim: there exist constants l,m, l0 such that the relations

(2.26) 2φ1(t)− [φ3(t)]
ϵ − φ2(t) ≥ l0 > 1

are satisfied at least with sufficiently large t ≥ t0. Therefore, (2.25) yields the
inequality

R′(t) + l0R(t) ≤ c4 [φ3(t)]
2−ϵ + φ2(t)ρ(t).

Further we use Lemma 7.2.2 from [2], p. 389 and the L’Hopital’s rule to obtain the
following assertion: there exist constants c5 > 0 and β ∈ (0, 1) such that

R(t) ≤ R(t0) exp(−l0(t− t0))

+

∫ t

t0

{
c4 [φ3(s)]

2−ϵ + φ2(s)ρ(s)
}
exp(l0(s− t))ds

≤ c5

{
exp(−l0t) + [φ3(t)]

2−ϵ
}
+ βφ2(t)ρ(t).(2.27)
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Taking into account (2.24), we conclude from (2.20) and (2.27) that there exists
a constant c6 > 0 such that

ρ′′(t) + (l +m)ρ′(t) + 2φ2(t)ρ(t)

≤ c6

{
φ3(t)∥y′(t)∥+ exp(−l0t) + [φ3(t)]

2−ϵ
}

+ [2βφ2(t) + λ(t) + βλ(t)φ2(t)] ρ(t).(2.28)

Similarly to (2.23), we have

c6φ3(t)∥y′(t)∥ ≤ [φ3(t)]
ϵ ρ(t) + 2−1c26 [φ3(t)]

2−ϵ .

Therefore, there exists a constant c7 > 0 such that from (2.28) it follows the in-
equality

ρ′′(t) + (l +m)ρ′(t) + {2φ2(t)(1− β)− λ(t)(1 + βφ2(t))− [φ3(t)]
ϵ} ρ(t)

≤ c7

{
exp(−l0t) + [φ3(t)]

2−ϵ
}
.(2.29)

Next we find the number m0 such that

(2.30) 2φ2(t)(1− β)− λ(t)(1 + βφ2(t))− [φ3(t)]
ϵ > m0 > 0

at least for sufficiently large t ≥ t0. Such a choice m0 is possible because under our
conditions λ(t) and φ3(t) are infinitely small as t→ ∞ and β ∈ (0, 1). Without loss
of generality, we believe that (2.30) is true for all t ≥ t0. Then (2.29) leads to the
inequality

(2.31) ρ′′(t) + (l +m)ρ′(t) +m0ρ(t) ≤ c7

{
exp(−l0t) + [φ3(t)]

2−ϵ
}
.

In virtue of (2.30) we can choose m0 to guarantee real and negative roots k1 = ν1
and k2 = ν2 of the characteristic equation k2 + (l + m)k + m0 = 0 for (2.31). If
ν1 > ν2, ν = min{l0, −ν1}, then (2.31) and Lemma 2 of [4] allows us to write an
estimate

ρ(t) ≤ c8

{
exp(−νt) +

∫ t

t0

[φ3(s)]
2−ϵ exp(ν1(t− s))ds

}
.

Applying the L’Hopital’s rule to the rightmost term of the previous inequality, we
come to the final estimate: there exists a constant c9 > 0 such that

(2.32) ρ(t) ≤ c9

{
exp(−νt) + [φ3(t)]

2−ϵ
}
.

Combining (2.32) and (2.27), we conclude that there exists a constant c10 > 0 such
that

(2.33) R(t) ≤ c10

{
exp(−νt) + [φ3(t)]

2−ϵ
}
.

The above functions λ(t) and λ̄(t) and their properties permit to write the simple
inequalities (see [9], p. 266):

(2.34) 0 ≤ λ(s)− λ(t) ≤ λ′(s)(s− t), 0 ≤ λ̄(s)− λ̄(t) ≤ λ̄′(s)(s− t), s ≤ t.
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Returning now to (2.18), by (2.24), (2.32) – (2.34), one gets that there exists a
constant c11 > 0 such that for all t ≥ t0, forall τ ≥ t0, t ≤ τ and ϵ ∈ (0, 2):

r′′′t (t, τ) + φ1(τ)r
′′
t (t, τ) + φ2(τ)r

′
t(t, τ) + lmλ(τ)r(t, τ)

≤ c11

{
φ3(t)[h(t) + δ(t)] + λ′(t)(t− τ) + λ̄′(t)(t− τ)

+ exp(−νt) + [φ3(t)]
2−ϵ

}
= c11F (t, τ).(2.35)

As in [5], consider the cubic equation

k3 + φ1(τ)k
2 + φ2(τ)k + φψλ(τ) = 0.

Its roots are real negative numbers k1 = −l, k2 = −m and k3 = −λ(τ). By Lemma
1 of [5], we deduce from (2.35) the following estimate:

r(t, τ) ≤ c12

{
exp(−λ(τ)t)

+

∫ t

t0

F (u, τ) exp(−λ(τ)(t− u))du
}
, t ≥ t0, τ ≥ t0, t ≤ τ.

Hence, for t = τ we obtain

r(τ, τ) ≤ c12

{
exp(−λ(τ)τ)

+

∫ τ

t0

φ3(u)[h(u) + δ(u)] exp(−λ(τ)(τ − u))du

+

∫ τ

t0

λ′(u)(u− τ) exp(−λ(τ)(τ − u))du

+

∫ τ

t0

λ̄′(u)(u− τ) exp(−λ(τ)(τ − u))du

+

∫ τ

t0

exp(−νu) exp(−λ(τ)(τ − u))du

+

∫ τ

t0

[φ3(u)]
2−ϵ exp(−λ(τ)(τ − u))du

}
.(2.36)

Now we introduce additional assumptions:

(2.37) Γ1(t) = (tλ(t))′ > 0, Γ2(t) =
[
(tλ(t))′

]2
+ (tλ(t))′′ > 0 ∀t ≥ t0,

(2.38) lim
t→+∞

h(t) + δ(t)

α(t)

λ(t)

(tλ(t))′
= 0,

(2.39) lim
t→∞

[φ3(t)]
2−ϵ

(tλ(t))′
= 0, ϵ ∈ (0, 2),

(2.40) lim
t→+∞

λ′(t) + λ̄′(t)

Γ2(t)
= 0.
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Let us show that the right-hand side of the inequality (2.36) tends to zero as
τ → +∞. Really, by (2.7), limτ→∞ exp(−λ(τ)τ) = 0. The convergence∫ τ

t0

exp(−νu) exp(−λ(τ)(τ − u))du→ 0

is proved by the direct computation and by (2.7) again. In order to obtain some
sufficient conditions for convergence of the remaining terms, we use the L’Hopital’s
rule and decreasing property of λ(t). This leads to the following result: there exists
a > 0 such that∫ τ

t0

φ3(u)[h(u) + δ(u)] exp(λ(τ)(u− τ))du ≤ a
h(τ) + δ(τ)

α(τ)

λ(τ)

(τλ(τ))′
∀τ ≥ t0.

This integral tends to zero by (2.38). Next it is not difficult to verify that if (2.39)
is fulfilled, then ∫ τ

t0

[φ3(u)]
2−ϵ exp(−λ(τ)(τ − u))du→ 0.

Applying twice the L’Hopital’s rule, we assert that there exit constants a1 > 0 and
a2 > 0 such that ∫ τ

t0

λ′(u)(u− τ) exp(−λ(τ)(τ − u))du ≤ a1
λ′(τ)

Γ2(τ)

and ∫ τ

t0

λ̄′(u)(u− τ) exp(−λ(τ)(τ − u))du ≤ a2
λ̄′(τ)

Γ2(τ)
.

Convergence to zero of these integrals is defined by (2.40). Thus, the assumptions
(2.38)–(2.40) give us limτ→∞ r(τ, τ) = 0. Finally, taking into account (1.6), we get
the main result limt→∞ y(t) = x∗.

So, we have proved the following statement.

Theorem 2.1. Suppose that H is a real Hilbert space, operator A : H → H satisfies
(1.1), the equation (1.2) has a nonempty solution set, A and f in (1.2) are given
approximately such that the conditions a) and b) hold. Assume further that the
family of operators {A(t)} is continuous with respect to parameter t and inequality
(2.3) is fulfilled. Let functions φk(t), k = 1, 2, 3, be defined by the equalities (2.10).
Presume that (2.6)-(2.8) are valid, λ(t) and λ̄(t) are positive, twice continuously
differentiable, decreasing and convex from below functions, limit equalities (2.38)–
(2.40) and inequalities (2.26), (2.30), (2.37) are true. Then the Cauchy problem
(2.1), (2.2) defining a continuous regularized third-order method, is uniquely solvable
in the class of functions C3[t0,∞) with any elements y0, y

′
0 and y′′0 from H. If the

condition (2.4) is satisfied, then a solution y(t) of the problem (2.1), (2.2) strongly
converges to the normal solution of the equation (1.2) as t→ ∞.

We present examples of power functions satisfying the conditions of Theorem 2.1.
Let α(t) = t−α, λ(t) = t−λ, δ(t) = t−δ, h(t) = t−h, where α, λ, δ, h are the
positive numbers, α < λ, λ ∈ (0, 1). Then (tλ(t))′ = (1−λ)λ(t) and (2.38) coincides
with the classical convergence condition of the operator regularization method for
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monotone equations with approximate data (see, for instance, [2], p.118). So, we
come to conditions α < δ, α < h. The equality (2.39) has the form

lim
t→∞

[λ(t)]1−ϵ

[α(t)]2−ϵ = 0.

Hence, we obtain the following conditions for ϵ: ϵ ∈ (0, 1), λ(1 − ϵ) > α(2 − ϵ).
Inequalities (2.37) are fulfilled for all λ ∈ (0, 1) and at least for large enough t. The
condition (2.40) is true as α+λ < 1, λ ∈ (0, 1), α ∈ (0, 1). The set of α, λ, δ, h, ϵ,
satisfying the above conditions is nonempty, for example, α = 1/5, λ = 3/5, δ =
2/5, h = 3/5, ϵ = 1/3.

In order to obtain any estimate of the convergence rate of y(t) to x∗, it is necessary
to have an upper bound for ∥xα(t)−x∗∥. It can be an established under some strong
assumptions (see [2], p. 129; [8]).

Theorem 2.1 can be a proved by use of the technique of [1], [2], p. 363, [9], p.269.
For this we must construct two auxiliary Cauchy problems:

z′′t (t, τ) + φ1(τ)z
′′
t (t, τ) + φ2(τ)z

′
t(t, τ)

+ φ3(τ)[Az(t, τ) + α(τ)z(t, τ)− f ] = 0,(2.41)

(2.42) z(t0, τ) = y0, z′t(t0, τ) = y′0, z′′t (t0, τ) = y′′0 ,

and

z̃′′t (t, τ) + φ1(τ)z̃
′′
t (t, τ) + φ2(τ)z̃

′
t(t, τ)

+ φ3(τ)[A(t)z̃(t, τ) + α(τ)z̃(t, τ)− f(t)] = 0,(2.43)

(2.44) z̃(t0, τ) = y0, z̃′t(t0, τ) = y′0, z̃′′t (t0, τ) = y′′0 .

The convergences of ∥z(τ, τ) − xα(τ)∥, ∥z̃(τ, τ) − z(τ, τ)∥ and ∥z̃(τ, τ) − y(τ)∥ to
zero as τ → ∞ are established similarly to Theorem 2.1. The requirements for
power functions are the same as in Theorem 2.1. However, there is a need for the
implementation of inequalities of the form (2.5) for the solutions of the problems
(2.41)-(2.44).
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