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Theorem 1.2 ([27, Proposition 3.2]). Let C be a nonempty closed convex subset
of a strictly convex real Banach space E with a uniformly Gâteaux differentiable
norm, T a nonspreading mapping of C into itself, and u an element of C such
that there exists a sequence {xn} in C which is weakly convergent to u and satisfies
∥xn − Txn∥ → 0 as n → ∞. Then u is an element of F(T ).

Theorem 1.3 ([27, Theorem 4.6]). Let C be a nonempty bounded closed convex
subset of a smooth, strictly convex, and reflexive real Banach space E and {Tα}α∈A
a commutative family of nonspreading mappings of C into itself. Then

∩
α∈AF(Tα)

is nonempty.

In particular, we know the following result on the asymptotic behavior of the
Mann iteration [30] for nonspreading mappings in Banach spaces.

Theorem 1.4 ([24, Theorem 4.1]). Let C be a nonempty closed convex subset of a
smooth, strictly convex, and reflexive real Banach space E, J the normalized duality
mapping of E into E∗, ΠC the generalized projection of E onto C, T a nonspreading
mapping of C into itself, {αn} a sequence in (0, 1] such that

∑∞
n=1 αn = ∞, and

both {xn} and {zn} sequences in C defined by x1 ∈ C and

xn+1 = ΠCJ
−1

(
(1− αn)Jxn + αnJTxn

)
;

zn =
1∑n

l=1 αl

n∑
k=1

αkTxk

for all n ∈ N. Then the following are equivalent.

(i) F(T ) is nonempty;
(ii) {xn} is bounded;
(iii) {zn} is bounded;
(iv) {zn} has a bounded subsequence.

In this case, each subsequential weak limit of {zn} belongs to F(T ).

In the special case where E is a real Hilbert space, a mapping T of a nonempty
subset C of E into itself is nonspreading if

2 ∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2(1.1)

for all x, y ∈ C. This condition is satisfied whenever T is firmly nonexpansive, i.e.,

∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩(1.2)

for all x, y ∈ C.
Motivated by (1.1) and (1.2), we say that a mapping T of a metric space (X, d)

into itself is

• metrically nonspreading if

2d(Tx, Ty)2 ≤ d(Tx, y)2 + d(Ty, x)2

for all x, y ∈ X;
• firmly metrically nonspreading if

2d(Tx, Ty)2 + d(Tx, x)2 + d(Ty, y)2 ≤ d(Tx, y)2 + d(Ty, x)2

for all x, y ∈ X.
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Every firmly metrically nonspreading mapping is obviously metrically nonspread-
ing. We can also see that every metrically nonspreading mapping with a fixed point
is quasinonexpansive and that every firmly metrically nonspreading mapping T of
X into itself with a fixed point satisfies

d(u, Tx)2 + d(Tx, x)2 ≤ d(u, x)2(1.3)

for all u ∈ F(T ) and x ∈ X. If X is a nonempty subset of a real Hilbert space, then

⟨x− y, z − w⟩ = 1

2

(
∥x− w∥2 + ∥y − z∥2 − ∥x− z∥2 − ∥y − w∥2

)
for all x, y, z, w ∈ X, where the left hand side is the inner product on the space. In
this case, T is firmly metrically nonspreading if and only if it is firmly nonexpansive.

Metrically nonspreading mappings and firmly metrically nonspreading mappings
are also called 1/2-nonexpansive mappings and firmly nonexpansive mappings by
Naraghirad, Wong, and Yao [32, Definition 4.6] and Khatibzadeh and Ranjbar [20,
Definition 3.5], respectively. The notion of α-nonexpansive mapping was first intro-
duced by Aoyama and Kohsaka [6, Definition 2.2] in the context of Banach spaces.

As we see in Sections 3 and 6, the metric projections onto nonempty closed con-
vex sets, the proximity mappings of proper lower semicontinuous convex functions,
and the resolvents of monotone operators satisfying range conditions in Hadamard
spaces are firmly metrically nonspreading. Thus the fixed point problem for such
mappings is closely related to convex analysis in Hadamard spaces.

The aim of this paper is to study the existence and approximation of fixed points
of metrically nonspreading mappings and firmly metrically nonspreading mappings
in Hadamard spaces. In particular, we obtain analogues of Theorems 1.1, 1.2, 1.3,
and 1.4 for metrically nonspreading mappings in Hadamard spaces. We finally apply
our results to monotone operators in Hadamard spaces.

2. Preliminaries

Throughout this paper, we denote by N and R the sets of all positive integers
and real numbers, respectively. The two dimensional Euclidean space and its norm
are denoted by R2 and | · |R2 , respectively. Unless otherwise specified, we denote by
X a metric space with a metric d. The set of all fixed points of a mapping T of X
into itself is denoted by F(T ). A mapping T of X into itself is said to be

• asymptotically regular if limn d(T
n+1x, Tnx) = 0 for all x ∈ X;

• nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X;
• quasinonexpansive if F(T ) is nonempty and d(u, Tx) ≤ d(u, x) for all u ∈
F(T ) and x ∈ X.

The product space X ×X and its element (x, y) are denoted by X2 and −→xy, re-
spectively. The quasilinearization ⟨·, ·⟩ on X2 introduced by Berg and Nikolaev [10]
is a real function on X2 ×X2 defined by

⟨−→xy,−→zw⟩ = 1

2

(
d(x,w)2 + d(y, z)2 − d(x, z)2 − d(y, w)2

)
(2.1)

for all −→xy,−→zw ∈ X2. If X is particularly a real Hilbert space, then

⟨−→xy,−→zw⟩ = ⟨x− y, z − w⟩
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for all x, y, z, w ∈ X. It is clear that

• ⟨−→xy,−→xy⟩ = d(x, y)2;
• ⟨−→xy,−→zw⟩ = ⟨−→zw,−→xy⟩ = −⟨−→yx,−→zw⟩;
• ⟨−→xp,−→zw⟩+ ⟨−→py,−→zw⟩ = ⟨−→xy,−→zw⟩;
• d(x, y)2 = d(x, z)2 + d(z, y)2 + 2 ⟨−→xz,−→zy⟩

for all x, y, z, w, p ∈ X.
A metric space X is said to be uniquely geodesic if for each x, y ∈ X, there exists

a unique mapping γ of [0, l] into X such that γ(0) = x, γ(l) = y, and

d
(
γ(s), γ(t)

)
= |s− t|

for all s, t ∈ [0, l], where l = d(x, y). The mapping γ is called a geodesic from x to
y and the point γ(αl) is denoted by (1− α)x⊕ αy for all α ∈ [0, 1]. A metric space
X is said to be a CAT(0) space if it is uniquely geodesic and the following CAT(0)
inequality

d
(
(1− α)x⊕ αy, (1− β)x⊕ βz

)
≤

∣∣(1− α)x̄+ αȳ −
(
(1− β)x̄+ βz̄

)∣∣
R2

holds whenever x, y, z ∈ X, x̄, ȳ, z̄ ∈ R2,

d(x, y) = |x̄− ȳ|R2 , d(y, z) = |ȳ − z̄|R2 , d(z, x) = |z̄ − x̄|R2 ,

and α, β ∈ [0, 1]. It follows from [10, Corollary 3] and [9, Theorem 1.3.3 (v)] that
a uniquely geodesic metric space X is a CAT(0) space if and only if the following
Cauchy–Schwarz inequality

|⟨−→xy,−→zw⟩| ≤ d(x, y)d(z, w)(2.2)

holds for all −→xy,−→zw ∈ X2.
It is obvious that if X is a CAT(0) space, then

• d(z, (1− α)x⊕ αy) ≤ (1− α)d(z, x) + αd(z, y);
• d(z, (1− α)x⊕ αy)2 ≤ (1− α)d(z, x)2 + αd(z, y)2 − α(1− α)d(x, y)2

for all x, y, z ∈ X and α ∈ [0, 1]. A complete CAT(0) space is called an Hadamard
space. Among typical examples of Hadamard spaces are nonempty closed convex
subsets of real Hilbert spaces, open unit balls of complex Hilbert spaces with hy-
perbolic metrics, and simply connected complete Riemannian manifolds with non-
positive sectional curvature; see [9, 11, 12] on geodesic metric spaces and CAT(0)
spaces for more details.

It is well known that if X is a CAT(0) space and T is a quasinonexpansive
mapping of X into itself, then F(T ) is closed and convex. Hence the fixed point set
of every metrically nonspreading mapping with a fixed point is closed and convex.

The concept of ∆-convergence, first introduced by Lim [29] and later applied
to the study of CAT(0) spaces by Kirk and Panyanak [23], is a generalization of
weak convergence in the context of Hilbert spaces to metric spaces. The asymptotic
center A

(
{xn}

)
of a sequence {xn} in a metric space X is defined by

A
(
{xn}

)
=

{
u ∈ X : lim sup

n
d(u, xn) = inf

y∈X
lim sup

n
d(y, xn)

}
,



METRICALLY NONSPREADING MAPPINGS IN HADAMARD SPACES 217

which coincides with the whole space X if {xn} is unbounded. The sequence {xn}
is said to be ∆-convergent to p ∈ X if

A
(
{xni}

)
= {p}

for each subsequence {xni} of {xn}, in which case p is said to be the ∆-limit of {xn}.
We denote by ω∆

(
{xn}

)
the set of all subsequential ∆-limits of {xn}. It is obvious

that if {xn} is ∆-convergent to p, then {xn} is bounded and ω∆

(
{xn}

)
= {p}.

The following lemmas are of fundamental importance.

Lemma 2.1 ([15, Proposition 7]; see also [9, Section 3.1]). The asymptotic center
of every bounded sequence in an Hadamard space is a singleton.

Lemma 2.2 ([23, Section 3]; see also [9, Proposition 3.1.2]). Every bounded sequence
in an Hadamard space has a ∆-convergent subsequence.

Lemma 2.3 ([21, Lemma 2.6]; see also [22, Proposition 3.1]). If {xn} is a bounded
sequence in an Hadamard space such that {d(z, xn)} is convergent for each z in
ω∆

(
{xn}

)
, then {xn} is ∆-convergent.

A subset C of a CAT(0) space X is said to be convex if (1 − α)x ⊕ αy ∈ C
whenever x, y ∈ C and α ∈ [0, 1]. A function f of X into (−∞,∞] is said to be
proper if f(p) is finite for some p ∈ X. It is also said to be convex if

f((1− α)x⊕ αy) ≤ (1− α)f(x) + αf(y)

whenever x, y ∈ X and α ∈ (0, 1). The set of all minimizers of a function f of X into
(−∞,∞] is denoted by argminX f or argminy∈X f(y). If argminX f is a singleton
{p} for some p ∈ X, we sometimes identify argminX f with p.

We know the following minimization theorem in Hadamard spaces.

Theorem 2.4 ([21, Theorem 4.1]). Let {zn} be a bounded sequence in an Hadamard
space X, {βn} a sequence of positive real numbers such that

∑∞
n=1 βn = ∞, and g

the real function on X defined by

g(y) = lim sup
n

1∑n
l=1 βl

n∑
k=1

βkd(y, zk)
2

for all y ∈ X. Then g is a continuous and convex function such that argminX g is
a singleton.

We also know the following lemmas.

Lemma 2.5 ([38, Lemma 11]). Let A be a bounded function of N × N into [0,∞)
such that A(n, n) = 0 for all n ∈ N and

2A(n+ 1,m+ 1) ≤ A(n+ 1,m) +A(n,m+ 1)

for all n,m ∈ N. Then limnA(n, n+ 1) = 0.

Lemma 2.6 ([25, Lemma 2.5]). Let I be a nonempty closed subset of R, {tn} a
bounded sequence in I, and f a nondecreasing and continuous real function on I.
Then

f

(
lim sup

n
tn

)
= lim sup

n
f(tn).
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3. Examples of metrically nonspreading mappings

In this section, we discuss some examples of metrically nonspreading mappings
and firmly metrically nonspreading mappings in Hadamard spaces.

Using (2.1) and (2.2), we readily obtain the following. We note that (3.1) is
equivalent to (1.2) when X is a nonempty subset of a real Hilbert space.

Lemma 3.1. Let X be a metric space and T a mapping of X into itself. Then T
is firmly metrically nonspreading if and only if

d(Tx, Ty)2 ≤
⟨−−−−−−→
(Tx)(Ty),−→xy

⟩
(3.1)

for all x, y ∈ X. If X is a CAT(0) space and T is firmly metrically nonspreading,
then T is nonexpansive.

The metric projections and the proximity mappings in Hadamard spaces are two
particularly important examples of firmly metrically nonspreading mappings.

Let X be an Hadamard space. If C is a nonempty closed convex subset of X,
then the metric projection PC of X onto C given by

PC(x) = argmin
y∈C

d(y, x)

for all x ∈ X is a well-defined nonexpansive mapping of X onto C and F(PC) = C;
see [9, 11] for more details. More generally, if f is a proper lower semicontinuous
convex function of X into (−∞,∞], then the proximity mapping Proxf of f given
by

Proxf (x) = argmin
y∈X

{
f(y) +

1

2
d(y, x)2

}
(3.2)

for all x ∈ X is a well-defined nonexpansive mapping ofX into itself and F(Proxf ) =
argminX f ; see [9, 16, 31]. It is also known [7, Proposition 3.3] that Proxf is firmly
nonexpansive, i.e.,

d(Proxf x,Proxf y) ≤ d
(
αx⊕ (1− α) Proxf x, αy ⊕ (1− α) Proxf y

)
for all α ∈ [0, 1] and x, y ∈ X. The proximity mappings in Hadamard spaces were
originally studied by Jost [16] and Mayer [31]; see also [8, 13, 14, 21] on minimiza-
tion algorithms based on the proximity mappings in Hadamard spaces. It follows
from [21, Corollary 3.2] and Lemma 6.1 that the following holds.

Example 3.2. If X is an Hadamard space, then the following hold.

(i) The metric projection PC of X onto a nonempty closed convex subset C is
firmly metrically nonspreading;

(ii) the proximity mapping Proxf of a proper lower semicontinuous convex func-
tion f of X into (−∞,∞] is firmly metrically nonspreading.

Motivated by [6, Example 2.4], we show the following result.

Example 3.3. Let X be a metric space, both S and T metrically nonspreading
mappings such that S(X) and T (X) are contained by a closed ball Br(a) for some
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a ∈ X and r > 0, δ a positive real number satisfying δ ≥
(
1 + 2

√
2
)
r, and U the

mapping of X into itself defined by

Ux =

{
Sx (x ∈ Bδ(a));

Tx (otherwise).

Then U is metrically nonspreading.

Proof. Let x, y ∈ X be given. If either x, y ∈ Bδ(a) or x, y ∈ X \ Bδ(a), then we
have

2d(Ux,Uy)2 ≤ d(Ux, y)2 + d(Uy, x)2

since both S and T are metrically nonspreading. If x ∈ Bδ(a) and y ∈ X \ Bδ(a),
then we have

d(Ux, y)2 + d(Uy, x)2

≥ d(Ux, y)2 = d(Sx, y)2 ≥
(
d(y, a)− d(Sx, a)

)2
> (δ − r

)2 ≥ 8r2

and
8r2 ≥ 2

(
d(Sx, a) + d(a, Ty)

)2 ≥ 2d(Sx, Ty)2 = 2d(Ux,Uy)2.

Hence we have

d(Ux, y)2 + d(Uy, x)2 > 2d(Ux,Uy)2.(3.3)

If x ∈ X \Bδ(a) and y ∈ Bδ(a), then we also obtain (3.3). Therefore, the mapping
U is metrically nonspreading. □
Remark 3.4. It follows from Lemma 3.1 and Example 3.3 that there exists a met-
rically nonspreading mapping which is not firmly metrically nonspreading. In fact,
let X be an unbounded Hadamard space. Then we have a ∈ X and δ > 0 such that
X \ Bδ(a) is nonempty. Let r be the same as in Example 3.3, both S and T the
metric projections of X onto {a} and the closed ball Br(a), respectively, and U the
mapping defined as in Example 3.3. Then it follows from Example 3.3 that U is
metrically nonspreading. On the other hand, U is discontinuous at any x ∈ X with
d(x, a) = δ. Lemma 3.1 implies that U is not firmly metrically nonspreading.

4. Fixed points of metrically nonspreading mappings

In this section, we study some fundamental properties of metrically nonspreading
mappings in Hadamard spaces.

Lemma 4.1. Let X be a metric space, T a metrically nonspreading mapping of X
into itself, and {xn} a sequence in X such that A

(
{xn}

)
= {p} for some p ∈ X. If

• lim supn d(xn, p) = lim supn d(Txn, p);
• lim supn d(xn, Tp) = lim supn d(Txn, Tp),

then p is an element of F(T ).

Proof. Since A
(
{xn}

)
= {p}, the sequence {xn} is bounded. In fact, if X is a

singleton, then {xn} is obviously bounded. In the other case, we have q ∈ X which
is distinct from p and hence

lim sup
n

d(xn, p) < lim sup
n

d(xn, q).
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This implies the boundedness of {xn}.
On the other hand, since T is metrically nonspreading, we have

2d(Txn, Tp)
2 ≤ d(Txn, p)

2 + d(Tp, xn)
2.

Taking the upper limit gives us that

2 lim sup
n

d(Txn, Tp)
2 ≤ lim sup

n
d(Txn, p)

2 + lim sup
n

d(Tp, xn)
2.

By assumptions, we have

2 lim sup
n

d(xn, Tp)
2 ≤ lim sup

n
d(xn, p)

2 + lim sup
n

d(xn, Tp)
2.(4.1)

Since {d(xn, Tp)2} is a bounded sequence in [0,∞), it follows from (4.1) and Lemma 2.6
that (

lim sup
n

d(xn, Tp)

)2

= lim sup
n

d(xn, Tp)
2

≤ lim sup
n

d(xn, p)
2 =

(
lim sup

n
d(xn, p)

)2

and hence
lim sup

n
d(xn, Tp) ≤ lim sup

n
d(xn, p).

It then follows from A
(
{xn}

)
= {p} that Tp = p. □

Using Lemma 4.1, we first obtain the following fixed point theorem for metrically
nonspreading mappings in Hadamard spaces. This result also follows from the
result [32, Lemma 4.7]. We note that the proof of [32, Lemma 4.7] is valid to the
case where 1− 2α ≥ 0.

Theorem 4.2. Let X be an Hadamard space and T a metrically nonspreading
mapping of X into itself. Then F(T ) is nonempty if and only if {Tnx} is bounded
for some x ∈ X.

Proof. Since the only if part is obvious, it is sufficient to prove the if part. Suppose
that {Tnx} is bounded for some x ∈ X and let {xn} be the sequence in X defined
by xn = Tnx for all n ∈ N. It then follows from Lemma 2.1 that A

(
{xn}

)
= {p}

for some p ∈ X. By the definition of {xn}, we have

lim sup
n

d(xn, y) = lim sup
n

d(Txn, y)

for all y ∈ X. Thus it follows from Lemma 4.1 that p is an element of F(T ). □
As a direct consequence of Theorem 4.2, we obtain the following corollary.

Corollary 4.3. Every metrically nonspreading mapping from a bounded Hadamard
space into itself has a fixed point.

We can also show the following common fixed point theorem.

Theorem 4.4. Let X be a bounded Hadamard space and {Tk}mk=1 a commutative
finite family of metrically nonspreading mappings of X into itself. Then

∩m
k=1F(Tk)

is nonempty.
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Proof. The proof is given by induction on m. Theorem 4.2 implies that the conclu-
sion holds if m = 1. Suppose that the conclusion holds for some m = l ∈ N and let
{Tk}l+1

k=1 be a commutative family of metrically nonspreading mappings of X into

itself. Then the set Y given by Y =
∩l

k=1F(Tk) is a nonempty closed convex sub-
set of X. Hence Y is an Hadamard space. We next show that Tl+1Y is contained
by Y . In fact, if v ∈ Y and k ∈ {1, 2, . . . , l}, then it follows from Tkv = v and
Tl+1Tk = TkTl+1 that

Tl+1v = Tl+1Tkv = TkTl+1v

and hence Tl+1v ∈ F(Tk). Thus Tl+1Y is a subset of Y . Accordingly, the restriction
of Tl+1 to the Hadamard space Y is a metrically nonspreading self mapping on Y .
Then Theorem 4.2 ensures that there exists u ∈ Y such that Tl+1u = u, and hence

u ∈
∩l+1

k=1F(Tk). Therefore, the set
∩l+1

k=1F(Tk) is nonempty. □

Using Lemma 4.1, we next obtain the following demiclosed principle for metrically
nonspreading mappings.

Theorem 4.5. Let X be a metric space, T a metrically nonspreading mapping of
X into itself, {xn} a sequence in X such that A

(
{xn}

)
= {p} for some p ∈ X and

d(Txn, xn) → 0 as n → ∞. Then p is an element of F(T ).

Proof. Since d(Txn, xn) → 0 as n → ∞, we have

lim sup
n

d(xn, y) = lim sup
n

d(Txn, y)

for all y ∈ X. Thus it follows from Lemma 4.1 that p is an element of F(T ). □

Using Lemma 2.5, we next show the asymptotic regularity of metrically non-
spreading mappings.

Lemma 4.6. Let X be a metric space and T a metrically nonspreading mapping of
X into itself such that F(T ) is nonempty. Then T is asymptotically regular.

Proof. Let x ∈ X be given. Since F(T ) is nonempty and T is quasinonexpansive,
{Tnx} is bounded. Let A be the bounded function of N× N into [0,∞) defined by

A(n,m) = d(Tnx, Tmx)2

for all n,m ∈ N. It is clear that A(n, n) = 0 for all n ∈ N. Since T is metrically
nonspreading, we have

2d(Tn+1x, Tm+1x)2 ≤ d(Tn+1x, Tmx)2 + d(Tm+1x, Tnx)2

and hence

2A(n+ 1,m+ 1) ≤ A(n+ 1,m) +A(n,m+ 1)

for all n,m ∈ N. It then follows from Lemma 2.5 that

d(Tnx, Tn+1x) =
√

A(n, n+ 1) → 0

as n → ∞. Therefore, the mapping T is asymptotically regular. □

We can directly show the asymptotic regularity for firmly metrically nonspreading
mappings as follows.
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Lemma 4.7. Let X be a metric space and T a firmly metrically nonspreading
mapping of X into itself such that F(T ) is nonempty. Then T is asymptotically
regular.

Proof. Let x ∈ X be given. By assumption, there exists u ∈ F(T ). Since T is firmly
metrically nonspreading, it follows from (1.3) that

d(u, Tn+1x)2 ≤ d(u, Tn+1x)2 + d(Tn+1x, Tnx)2 ≤ d(u, Tnx)2.

This implies that {d(u, Tnx)2} is convergent and hence

0 ≤ d(Tn+1x, Tnx)2 ≤ d(u, Tnx)2 − d(u, Tn+1x)2 → 0

as n → ∞. Consequently, the mapping T is asymptotically regular. □
Theorem 4.8. Let X be an Hadamard space and T a metrically nonspreading
mapping of X into itself such that F(T ) is nonempty. Then {Tnx} is ∆-convergent
to an element of F(T ) for all x ∈ X.

Proof. Let z be an element of ω∆

(
{Tnx}

)
. Then we have a subsequence {Tnix} of

{Tnx} which is ∆-convergent to z. In particular, we have

A
(
{Tnix}

)
= {z}.

Since F(T ) is nonempty, it follows from Lemma 4.6 that

d
(
T (Tnix), Tnix

)
= d(Tni+1x, Tnix) → 0

as i → ∞. Lemma 4.5 then ensures that z is an element of F(T ). It also follows
from d(z, Tn+1x) ≤ d(z, Tnx) that {d(z, Tnx)} is convergent. Thus the sequence
{d(z, Tnx)} is convergent for each z in ω∆

(
{Tnx}

)
. By Lemma 2.3, we conclude

that {Tnx} is ∆-convergent to some u ∈ X. Since

{u} = ω∆

(
{Tnx}

)
⊂ F(T ),

we conclude that u is an element of F(T ). □

5. Asymptotic behavior of the Mann iteration

In this section, we study the asymptotic behavior of sequences generated by the
Mann iteration [30] for metrically nonspreading mappings in Hadamard spaces.

Motivated by [24, Lemma 3.1], we first show the following equivalence.

Lemma 5.1. Let X be a metric space and T a mapping of X into itself. Then T
is metrically nonspreading if and only if

0 ≤ d(Ty, y)2 + 2
⟨−−−−−−→
(Tx)(Ty),

−−−→
(Ty)y

⟩
+ d(Ty, x)2 − d(Tx, Ty)2

for all x, y ∈ X.

Proof. Let x, y ∈ X be given. Then we have

d(Tx, y)2 + d(Ty, x)2 − 2d(Tx, Ty)2

= d(Tx, Ty)2 + d(Ty, y)2 + 2
⟨−−−−−−→
(Tx)(Ty),

−−−→
(Ty)y

⟩
+ d(Ty, x)2

− 2d(Tx, Ty)2
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= d(Ty, y)2 + 2
⟨−−−−−−→
(Tx)(Ty),

−−−→
(Ty)y

⟩
+ d(Ty, x)2 − d(Tx, Ty)2

and hence the result follows. □

Motivated by [24, Lemma 3.2], we next show that every metrically nonspreading
mapping is bounded on every bounded subset.

Lemma 5.2. Let X be a metric space and T a metrically nonspreading mapping of
X into itself. Then T (U) is bounded for each nonempty bounded subset U of X.

Proof. If the conclusion does not hold, then there exists a bounded sequence {xn}
such that {Txn} is unbounded. Fix p ∈ X. Since

d(Txk, Txl) ≤ d(Txk, p) + d(p, Txl) ≤ 2 sup
n

d(Txn, p)

for all k, l ∈ N and {Txn} is unbounded, we then have supn d(Txn, p) = ∞. This
implies that there exists a subsequence {Txni} of {Txn} such that {d(Txni , p)} is
divergent to ∞ as i → ∞. This gives us that

lim
i→∞

d(Txni , z) = ∞

for all z ∈ X. Let y ∈ X be given. It follows from Lemma 5.1 that

d(Txn, T y)
2

≤ d(Ty, y)2 + 2
⟨−−−−−−−→
(Txn)(Ty),

−−−→
(Ty)y

⟩
+ d(Ty, xn)

2

= d(Ty, y)2 +
(
d(Txn, y)

2 − d(Txn, T y)
2 − d(Ty, y)2

)
+ d(Ty, xn)

2

≤
(
d(Txn, y) + d(Txn, T y)

)
d(y, Ty) + d(Ty, xn)

2

≤
(
2d(Txn, T y) + d(Ty, y)

)
d(y, Ty) + d(Ty, xn)

2.

Letting i → ∞ in

d(Txni , T y) ≤
(
2 +

d(Ty, y)

d(Txni , T y)

)
d(y, Ty) +

d(xni , T y)
2

d(Txni , T y)

gives us a contradiction. Thus the set T (U) is bounded. □

We finally show the following result on the Mann iteration for metrically non-
spreading mappings.

Theorem 5.3. Let X be an Hadamard space, T a metrically nonspreading mapping
of X into itself, {αn} a sequence in (0, 1] such that

∑∞
n=1 αn = ∞, and {xn} a

sequence defined by x1 ∈ X and

xn+1 = (1− αn)xn ⊕ αnTxn

for all n ∈ N. Then the following hold.

(i) F(T ) is nonempty if and only if {xn} is bounded;
(ii) if F(T ) is nonempty and infn αn(1−αn) > 0, then {xn} is ∆-convergent to

an element of F(T ).
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Proof. We first show the only if part of (i). Suppose that F(T ) is nonempty and
fix u ∈ F(T ). Since T is quasinonexpansive, we have

d(u, xn+1) = d
(
u, (1− αn)xn ⊕ αnTxn

)
≤ (1− αn)d(u, xn) + αnd(u, Txn) ≤ d(u, xn)

and hence {d(u, xn)} is convergent. This implies that {xn} is bounded.
We next show the if part of (i). Suppose that {xn} is bounded and set

ωn =

n∑
l=1

αl

for all n ∈ N. Then it follows from Lemma 5.2 that {Txn} is bounded. Let g be
the real function on X defined by

g(y) = lim sup
n

1

ωn

n∑
k=1

αkd(y, Txk)
2

for all y ∈ X. It then follows from Theorem 2.4 that g has a unique minimizer
p ∈ X. By the definition of {xn}, we have

d(Tp, xk+1)
2 = d

(
Tp, (1− αk)xk ⊕ αkTxk

)2
≤ (1− αk)d(Tp, xk)

2 + αkd(Tp, Txk)
2

(5.1)

Since T is metrically nonspreading, we have

2d(Tp, Txk)
2 ≤ d(Tp, xk)

2 + d(Txk, p)
2.(5.2)

Using (5.1) and (5.2), we have

αkd(Tp, Txk)
2

≤ αkd(Txk, p)
2 + αk

(
d(Tp, xk)

2 − d(Tp, Txk)
2
)

= αkd(Txk, p)
2 + d(Tp, xk)

2 −
(
(1− αk)d(Tp, xk)

2 + αkd(Tp, Txk)
2
)

≤ αkd(Txk, p)
2 + d(Tp, xk)

2 − d(Tp, xk+1)
2.

Consequently, we have

n∑
k=1

αkd(Tp, Txk)
2 ≤

n∑
k=1

αkd(p, Txk)
2 +

(
d(Tp, x1)

2 − d(Tp, xn+1)
2
)

≤
n∑

k=1

αkd(p, Txk)
2 + d(Tp, x1)

2

and hence

1

ωn

n∑
k=1

αkd(Tp, Txk)
2 ≤ 1

ωn

n∑
k=1

αkd(p, Txk)
2 +

1

ωn
d(Tp, x1)

2.

Since ωn → ∞ as n → ∞, we obtain g(Tp) ≤ g(p). Since p is the unique minimizer
of g, we conclude that Tp = p.
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We finally show (ii). Suppose that F(T ) is nonempty and infn αn(1 − αn) > 0.
Fix v ∈ F(T ). Since X is a CAT(0) space, we have

d(v, xn+1)
2 = d

(
v, (1− αn)xn ⊕ αnTxn

)2
≤ (1− αn)d(v, xn)

2 + αnd(v, Txn)
2 − αn(1− αn)d(xn, Txn)

2

≤ d(v, xn)
2 − αn(1− αn)d(xn, Txn)

2.

This gives us that {d(v, xn)2} is convergent and hence

d(xn, Txn)
2 ≤ 1

infm αm(1− αm)

(
d(v, xn)

2 − d(v, xn+1)
2
)
→ 0

as n → ∞. Consequently, we obtain d(xn, Txn) → 0 as n → ∞. If z is an element
of ω∆

(
{xn}

)
, then there exists a subsequence {xni} of {xn} which is ∆-convergent

to z. Since

lim
i
d(xni , Txni) = 0,

Lemma 4.5 ensures that z is an element of F(T ). Hence ω∆

(
{xn}

)
is a subset of

F(T ). Thus, the sequence {d(z, xn)} is convergent for each z in ω∆

(
{xn}

)
. Then,

Lemma 2.3 implies that {xn} is ∆-convergent to some x∞ ∈ X. Since

{x∞} = ω∆

(
{xn}

)
⊂ F(T ),

we conclude that x∞ is an element of F(T ). □

6. Applications to monotone operators in Hadamard spaces

In this section, we obtain two corollaries of our results for the problem of finding
zero points of monotone operators in Hadamard spaces.

Before obtaining them, we first summarize the concepts of dual spaces and mono-
tone operators in CAT(0) spaces. These concepts were introduced by Ahmadi Kaka-
vandi and Amini [2]; see also Ahmadi Kakavandi [1] on related results.

Let X be a CAT(0) space and L̂(X) the real linear space of all Lipschitz con-

tinuous real functions on X. We denote by ∥ · ∥ the Lipschitz seminorm on L̂(X)
defined by

∥f∥ = sup

{
|f(p)− f(q)|

d(p, q)
: p, q ∈ X, p ̸= q

}
for all f ∈ L̂(X). In other words,

∥f∥ = min
{
λ ∈ [0,∞) : |f(p)− f(q)| ≤ λd(p, q) (∀p, q ∈ X)

}
for all f ∈ L̂(X). Then the following conditions

∥f∥ ≥ 0; ∥αf∥ = |α| ∥f∥ ; ∥f + g∥ ≤ ∥f∥+ ∥g∥

hold for all f, g ∈ L̂(X) and α ∈ R.
We can define an equivalence relation ∼ on L̂(X) by f ∼ g if ∥f − g∥ = 0. It is

clear that f ∼ g if and only if f − g is a constant function. We denote by [f ] the

equivalence class of f ∈ L̂(X) and let L(X) be the space defined by

L(X) = {[f ] : f ∈ L̂(X)}.
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The space L(X) is a real Banach space under the addition, the scalar multiplication,
and the norm given by

[f ] + [g] = [f + g], α[f ] = [αf ], ∥[f ]∥ = ∥f∥

for all [f ], [g] ∈ L(X) and α ∈ R; see [33, Proposition 2.4.1] for the proof of the
metric completeness of L(X).

We denote by α−→xy and −→xy the elements (α,−→xy) and (1,−→xy) in R×X2, respectively.

Then we define the mapping Φ of R×X2 into L̂(X) by

Φ(α−→xy)(p) = α ⟨−→xy,−→xp⟩

for all α−→xy ∈ R×X2 and p ∈ X. It is easy to see that

∥Φ(α−→xy)∥ = |α| d(x, y).

We also define a real function D̂ by

D̂
(
α−→xy, β−→zw

)
= ∥Φ(α−→xy)− Φ(β−→zw)∥(6.1)

for all α−→xy, β−→zw ∈ R×X2, which is a pseudometric on R×X2, that is,

• D̂(α−→xy, β−→zw) ≥ 0 and D̂(α−→xy, α−→xy) = 0;

• D̂(α−→xy, β−→zw) = D̂(β−→zw, α−→xy);
• D̂(α−→xy, β−→zw) ≤ D̂(α−→xy, γ−→uv) + D̂(γ−→uv, β−→zw)

hold for all α−→xy, β−→zw, γ−→uv ∈ R ×X2. We can define an equivalence relation ∼ on
R×X2 by

α−→xy ∼ β−→zw ⇐⇒ D̂(α−→xy, β−→zw) = 0.

We then have the following equivalence; see also [2, Lemma 2.1].

α−→xy ∼ β−→zw
⇐⇒ Φ(α−→xy) ∼ Φ(β−→zw)
⇐⇒ Φ(α−→xy)(p)− Φ(β−→zw)(p) = Φ(α−→xy)(q)− Φ(β−→zw)(q) (∀p, q ∈ X)

⇐⇒ α ⟨−→xy,−→xp⟩ − α ⟨−→xy,−→xq⟩ = β ⟨−→zw,−→zp⟩ − β ⟨−→zw,−→zq⟩ (∀p, q ∈ X)

⇐⇒ α ⟨−→xy,−→pq⟩ = β ⟨−→zw,−→pq⟩ (∀−→pq ∈ X2).

(6.2)

The dual space X∗ of X in the sense of Ahmadi Kakavandi and Amini [2] is the
metric space given by

X∗ = {[α−→xy] : α−→xy ∈ R×X2}
with the metric D defined by

D
(
[α−→xy], [β−→zw]

)
= D̂(α−→xy, β−→zw

)
[α−→xy], [β−→zw] ∈ X∗, where [α−→xy] denotes the equivalence class of α−→xy ∈ R×X2. The
origin 0 of X∗ is given by

0 = [−→aa],
where a is a fixed element of X. It is obvious that

0 = {0−→xy : x, y ∈ X} ∪ {α−→xx : α ∈ R, x ∈ X}.
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It is known [2, pp. 3451–3452] that if X is a closed convex subset of a real Hilbert
space H with a nonempty interior, then X is isometric to X∗. In particular, if
X = H, then the isometric bijection τ of H onto H∗ is given by

τ(x) = [(1, 0, x)]

for all x ∈ H. For each u∗ = [α−→xy] ∈ X∗, we define

⟨u∗,−→pq⟩ = α ⟨−→xy,−→pq⟩

for all −→pq ∈ X2. It follows from (6.2) that this is independent of the choice of α−→xy.
We next recall the concept of monotone operators in CAT(0) spaces. Let X be a

CAT(0) space and X∗ the dual space of X. Then an operator A : X → 2X
∗
is said

to be monotone if

⟨u∗,−→vu⟩ − ⟨v∗,−→vu⟩ ≥ 0

whenever u∗ ∈ Au an v∗ ∈ Av. A monotone operator A : X → 2X
∗
is said to satisfy

a range condition if for each x ∈ X, there exists z ∈ X such that

[−→zx] ∈ Az.

If A : X → 2X
∗
is a monotone operator satisfying a range condition, then the

resolvent JA of A defined by

JA(x) = {z ∈ X : [−→zx] ∈ Az}

for all x ∈ X is a single-valued mapping of X into itself. The zero point set A−1(0)
is defined by

A−1(0) =
{
u ∈ X : 0 ∈ Au

}
.

For a proper lower semicontinuous convex function f of a CAT(0) space X into
(−∞,∞], the subdifferential mapping ∂f : X → 2X

∗
of f in the sense of Ahmadi

Kakavandi and Amini [2, Definition 4.1] is defined by

∂f(x) =
{
u∗ ∈ X∗ : f(x) + ⟨u∗,−→xy⟩ ≤ f(y) (∀y ∈ X)

}
for all x ∈ X. It is known [2, Theorem 4.2] that if X is an Hadamard space, then
∂f : X → 2X

∗
is a monotone operator satisfying a range condition and

(∂f)−1(0) = {u ∈ X : f(u) = inf f(X)}.

It is also known [20, Proposition 5.3] that the resolvent J∂f of ∂f coincides with
the proximity mapping Proxf of f defined by (3.2).

We know the following fundamental result.

Lemma 6.1 ([20, Theorem 3.9]). Let X be a CAT(0) space, A : X → 2X
∗
a mono-

tone operator satisfying a range condition, and JA the resolvent of A. Then JA is a
firmly metrically nonspreading mapping of X into itself such that F(JA) = A−1(0).

For the sake of completeness, we give the proof.

Proof. Put T = JA. The definition of T gives us that

u = Tu ⇐⇒ 0 = [−→uu] ∈ Au

and hence F(T ) = A−1(0).
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We next show that T is firmly metrically nonspreading. Let x, y ∈ X be given.
By the definition of T , we have[−−−→

(Tx)x
]
∈ A(Tx) and

[−−−→
(Ty)y

]
∈ A(Ty).

The monotonicity of A implies that⟨[−−−→
(Tx)x

]
,
−−−−−−→
(Ty)(Tx)

⟩
−
⟨[−−−→

(Ty)y
]
,
−−−−−−→
(Ty)(Tx)

⟩
≥ 0

and hence ⟨−−−→
(Tx)x,

−−−−−−→
(Ty)(Tx)

⟩
−
⟨−−−→
(Ty)y,

−−−−−−→
(Ty)(Tx)

⟩
≥ 0.

By the definition of quasilinearization, we have

d(x, Ty)2 − d(Tx, Ty)2 − d(x, Tx)−
(
d(Ty, Tx)2 + d(y, Ty)2 − d(y, Tx)2

)
≥ 0

and hence

d(Tx, y)2 + d(Ty, x)2 − d(Tx, x)2 − d(Ty, y)2 ≥ 2d(Tx, Ty)2.

Therefore, the mapping T is firmly metrically nonspreading. □

Using Theorems 4.2, 4.8, and Lemma 6.1, we obtain the following corollary. The
part (ii) also follows from a more general result in [20, Theorem 4.3].

Corollary 6.2. Let X be an Hadamard space, A : X → 2X
∗
a monotone operator

satisfying a range condition, and JA the resolvent of A. Then the following hold.

(i) The set A−1(0) is nonempty if and only if {(JA)nx} is bounded for some
x ∈ X;

(ii) if A−1(0) is nonempty, then {(JA)nx} is ∆-convergent to an element of
A−1(0) for all x ∈ X.

Using Theorem 5.3 and Lemma 6.1, we obtain the following corollary.

Corollary 6.3. Let X be an Hadamard space, A : X → 2X
∗
a monotone operator

satisfying a range condition, JA the resolvent of A, {αn} a sequence in (0, 1] such
that

∑∞
n=1 αn = ∞, and {xn} a sequence defined by x1 ∈ X and

xn+1 = (1− αn)xn ⊕ αnJAxn

for all n ∈ N. Then the following conditions hold.

(i) The set A−1(0) is nonempty if and only if {xn} is bounded;
(ii) if A−1(0) is nonempty and infn αn(1− αn) > 0, then {xn} is ∆-convergent

to an element of A−1(0).
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[7] D. Ariza-Ruiz, L. Leuştean, and G. López-Acedo, Firmly nonexpansive mappings in classes of
geodesic spaces, Trans. Amer. Math. Soc. 366 (2014), 4299–4322.
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