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where ω (ωx, ωy, ωz) is the angular velocity vector. A, B, C are the principal
moments of inertia, b1, b2, b3 are constant values dependent on the velocity of the
reactive flow c and the length of the arm lm of the correspondent control torque,
bm = c · lm, m = 1, 2, 3.

The control variables are u1, u2, u3.
The value

∑
m(| um |) corresponds to the rate of fuel consumption, [kg/s]. The

sign of um corresponds to direct (+) or reversed (-) direction of the component of
the control torque.

The body-fixed axis z, (not the middle axis) corresponds to the axis of the initial
permanent rotation of the body.

The control functions are assumed to be constrained

| um |≤ um

For zero values of the control, the passive trajectory is initially just the self-
rotation (roll) around the z-axis .

The functional to be minimized is given by

(1.3) J =

∫ T

t0

∑
m

| um(t) | dt.

The integral is taken over the total non-fixed time of the transfer from the given
initial to the given end point in the inertial state space.

With a short pulse control of e.g. u1, a small change of the position of the
angular momentum will be achieved in the fixed frame, and a small change of the
angle between initial and final values of the angular momentum in the inertial frame
will be obtained as well.

For this operation, the control torque vector must be located into a close proxim-
ity of the plane containing the initial and final positions of the angular momentum,
K0 and KT . Next time the control pulse is given at the appropriate position to
catch the precessing system in an appropriate state, the deviation of the angular
momentum from the axis z will be compensated.

The difference of the angle between initial and final angular momenta in the
inertial frame will continue to change.

2. The twisting sliding mode maneuvering

These short control pulses must be given at the moments when the control torque
is approximately coinciding with the plane of two vectors: vector K and vector KT ,
and also with the plane ωy = 0.

The ergodic property (Arnold, 1989) of the two-periodic movement guarantees
this approximate coincidence.

On the figure (2) one can see the angle I between vectors K and KT that must
be zero at the end of the process, and angle S between positive direction x of the
control pulse and the plane containing vectors K and KT . Using variable K =| K |
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Figure 1. Angular momentum is changing by application of two
consecutive control pulses u1 > 0 and u1 < 0 in the plane containing
the current angular momentum K, the final angular momentum KT ,
the axis z and the vector of the direction of the control torque x. At
the moment of the control pulse ωy = 0. The small nutation angle d
is obtained as the deviation with the first control pulse.

Figure 2. Vectors K, KT , and angles S and I.

and angles I, S, the equations of this twisting mode process are

dK

dt
= b3u3,

dI

dt
= u1b1

cosS

K
+ u2b2

sinS

K
.(2.1)

Here K and I are the state variables and um,m = 1, 2, 3 are controls. Angle S is
also considered as a control.
In addition the state constraint is considered

KM ≤ K,

which means that the angular velocity ωz around axe z is bounded from below.
To simplify the calculations variables K, I are normalized according to transfor-

mations

k =
K

b3
, i = NI, N =

b3
b1
,
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assuming L = b2
b1
, and for certainty that L ≤ 1 Here 0 ≤ i ≤ Nπ. The state

equations now have form

dk

dt
= u3,

di

dt
=

u1cosS + Lu2sinS

k
(2.2)

3. Optimal control determination

Following Hamilton-Bellman-Jacobi formalism (Krotov, 1988, 1996) the nonlinear
PDE equation must be solved for the Krotov function V (t, k, i) and system (2.2) as
follows

sup
S,um,m=1,2,3

{Vku3 + Vi[(u1cosS + u2LsinS)/k] + Vt

−
∑
m

| um |)} = 0.(3.1)

Here Vk, Vi, Vt are the correspondent partial derivatives of the function V (t, k, i).
The figure (3) shows different regions of determination of the function V and

different behavior of the optimal trajectories. The function V is assumed to be not

Figure 3. Regions 1, 2, 3 in the state space k, i.

dependent of t and is sought in the form

V (i, k) = P · i+Q · k +D · ik + U,

where P,Q,D,U are unknown constants. Function V must be continuous on all the
borders of different regions. It is composed as a bundle of the first integrals of the
”passive” movement. The unknown constants P,Q,D,U are determined separately
for each region.

The regions are as follows:

1. kT ≤ k, 0 ≤ i ≤ 2

2. km ≤ k ≤ kT , 0 ≤ i ≤ 2

3. kM ≤ k, 2 ≤ i ≤ Nπ.
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The Krotov equation (3.1) with the assumptions on the function V can be repre-
sented by the system of three equations of the form

(3.2) sup
ui,S

[di(i, k, S)um− | ui |] = 0, m = 1, 2, 3.

Here one has

(3.3) d1 =
Vi

k
cosS, d2 =

Vi

k
LsinS, d3 = Vk.

It follows (Grigoriev and Ioslovich, 1985) that the inequalities must be satisfied

(3.4) | dm |≤ 1.

To switch on the pair of jets for u1 it requires that

(3.5) sup
S,i,k

| d1 |= 1.

Therefore the relation is found that
u1 = 0, u2 = 0, if | Vi |< 0,
and if | Vi |= 1 then
u2 = 0, sign(u1) = sign(VicosS), | cosS |= 1.
One always has for L < 1 that
supS,i,k | d2 |< supS,i,k | d1 |, thus always u2 = 0.

3.1. Case 1. kT ≤ k, 0 ≤ i ≤ 2.
For case 1 the coefficients of the function V are chosen as

P = −kT , Q = −1, D = 0, U = kT .

Thus function V is

V = −kT i− k + kT .

The Krotov equation is presented as only two inequalities:

| d1 |≤ 1, ; | d3 |≤ 1

taking into account that it has been shown that from supS,i,kd1 ≤ 1 it follows
| d2 |< 1 and thus u2 = 0. Here

d1 =
P +Dk

k
cosS =

−kT
k

cosS, d3 = Q+Di = −1.

It follows that in this region sign(u3) = −1 until kT ≤ k, and u1 = 0 until kT ≤ k.
When k = kT , one takes u3 = 0, and sign(u1) = −sign(cosS).
Thus along this line k decreases to kT and when k = kT then the value of i decreases
to zero.

3.2. Case 2. km ≤ k ≤ kT , 0 ≤ i ≤ 2. For case 2 the constants are chosen as
P = 0, Q = 1, D = −1, U = −kT . Thus function V has form

V = k − ik − kT .

It follows that

d1 =
Dk

k
cosS = −cosS, d3 = Q+Di = 1− i.
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Thus u2 = 0, sign(u1) = −sign(cosS), u3 = 0, if i > 0, and if i = 0, then
sign(u3) = 1.
It means that i decreases until zero, and then k increases until k = kT .

3.3. Case 3. kM ≤ k, 2 ≤ i ≤ Nπ. Here the constants are chosen

P = −kM , Q = −1, D = 0, U = 2kM − kT .

Thus function V has form V = −kM i− k + 2kM − kT . It follows that

d1 =
−kM
k

cosS, d3 = −1.

Thus u2 = 0, sign(u3) = −1, u1 = 0 if k > kM , and sign(u1) = −cosS if k = kM .
It means that first k decreases to minimal value k = kM , and then i decreases to
the border value i = 2 and enters to the region 2.
The continuity of the function V is easily verified.

4. Approximate time evaluation

During this cycling sliding mode optimal process the fuel consumption tends to
the optimum while time tends to infinity. The direct simulation performs some
difficulties because of multiple revolutions on any approximate solution. However
a reasonable evaluation of the time of the process can be done based of the ergodic
theory. First let us note that only the changing of the inclination of angular mo-
mentum leads to the sliding mode approximation and increasing time. Therefore
only this part of solution needs to be evaluated. This evaluation can be done as fol-
lows. According to the ergodic property of our passive (without control) dynamical
system, Arnold, 1989, for almost all trajectories the time average is equal to the
average over the space. Let say we designed an approximate-optimal system where
the control torque is switched on only inside the angle of plus/minus 10 degrees
around of the axis wy = 0 and plus/minus 10 degrees around the plane containing
vectors K0 and KT. The full state space is 360 · 360 degrees2 and the part of the
space for the working engines is (10+10)·(10+10)·2. Thus the ratio of the ”working
time” to the full time is approximately 1 to 162. It means that if the continuous
working time of pair of jets in order to change the inclination angle is 1min then
the total time of the approximately optimal process is 162min. This is not a short
time but not so critical in many cases.The percent of deviation from the optimum
can be evaluated to be less then 1− cos(10◦) which means less then 1.5%.

5. Conclusions

The optimal synthesis for minimal fuel consumption with control torque provided
by reactive jets in the class of two-periodic cyclic sliding modes in the “twisting
mode” regime is found. The initial permanent rotation is transferred to another
permanent rotation in the inertial frame while preserving minimal rotation and thus
artificial gravity. The optimal synthesis satisfies the Krotov’s sufficient conditions.
The Krotov function V (i, k) is found in explicit form. It has different forms in
three different regions and it is continuous and piece-wise smooth. The author is
convinced that no other method other than Krotov’s global optimality approach can
be used to solve this problem analytically or numerically. The optimal control is
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non-unique but conditions of optimality determine it the explicit form. Altogether
three regions of different solutions are described. The solution has properties of the
two-periodical cycling mode movement. This is a generalization of the cycling mode
solutions considered in Grigoriev and Ioslovich, 1985.
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