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This delta-function multiplies the state variable of the game with a continuous co-
efficient, meaning that the impulse depends on the game’s state variable. Moreover,
the momentum of the delta-function’s impulse is not specified. Thus, the impulse
in the dynamics of the game also depends on this momentum. In this paper, we
consider the impulse momentum as an additional control of the minimizing player
(the minimizer). Minimum guaranteed outcome of the considered game is derived.
Minimum guaranteeing minimizer’s strategy is designed. To obtain these results, a
matrix differential Riccati equation with a state-dependent impulse is considered.
We solve this equation, based on the definition of the solution to a nonlinear differ-
ential equation with a state-dependent impulse, proposed in [6]. Using the solution
of the Riccati equation, the above mentioned minimum guaranteed game’s outcome
and minimum guaranteeing minimizer’s strategy are obtained.

The theoretical results of this paper are applied to solution of a planar pursuit-
evasion differential game with hybrid pursuer’s dynamics. In [10, 11, 12, 14], various
given duration planar pursuit-evasion games with bounded controls of the players
and hybrid dynamics of one/both players were studied. In these works, the cost
functional, to be minimized by the pursuer and maximized by the evader, is the
miss distance (the final distance between the players). The solutions of these games
yield the optimal order of the possible dynamics, the optimal switch time momentum
from one dynamics to another and the optimal feedback bang-bang control for each
player. However, such a type of the feedback control produces as a rule sliding
modes, resulting in a control chattering which is extremely undesirable in practical
implementations. In the present paper, we consider the planar pursuit-evasion in
the frame of a given duration linear-quadratic differential game. The cost functional
in this game is a sum of two addends. The first one is the square of the miss distance.
The second addend is the integral of the linear combination of the squares of the
players’ controls with a positive coefficient for the pursuer and a negative coefficient
for the evader. There are no geometric constraints imposed on the players’ controls.
The pursuer’s dynamics is hybrid. Namely, the pursuer can change a parameter
of its dynamics (the time constant) once during the game using a given set of
two possible values of this parameter. Time momentum of such a changing is an
additional pursuer’s control. The objective of the pursuer is to minimize the cost
functional, while the evader tries to maximize it. This game is reduced to a game
of a lower dimension dynamics with a state-dependent impulse. Momentum of this
impulse is the switch momentum from one value of the time constant to the other
in the pursuer dynamics. For this game, the minimum guaranteed outcome and
the minimum guaranteeing pursuer’s strategy are obtained. This strategy consists
of the switch momentum and the state-feedback pursuer’s control. The latter is a
linear function of the state variables. Therefore, it does not yield a sliding mode
and is chattering-free. In a real-life situation, such a control allows to decrease
the pursuer’s control expenditure and to avoid a damage to the pursuer during the
game.
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2. Problem statement

The dynamics of the game is described by the following system

dx(t)

dt
= A1(t)x(t) +

[
A21(t) +A22(t)δ(t− tim)

]
y(t)

+Bu,1(t)u(t) +Bv,1(t)v(t), x(0) = x0,(2.1)

(2.2)
dy(t)

dt
= A3(t)y(t) +Bu,2(t)u(t), y(0) = y0,

where t ∈ [0, tf ], (tf > 0 is a given time instant); x(t) ∈ En and y(t) ∈ Em are
state variables; u(t) ∈ Er and v(t) ∈ Es are controls of the players; δ(t − tim) is
the Dirac delta-function with the impulse momentum at t = tim, (tim ∈ (0, tf )),
which is not given in advance; A1(t), A21(t), A22(t), A3(t), Bu,1(t), Bv,1(t), Bu,2(t)
are given matrices of corresponding dimensions; x0 ∈ En and y0 ∈ Em are given
vectors; Eq is the q-dimensional real Euclidean space.

The cost functional of the game is

J
(
u, v, tim

)
= zT (tf )Fz(tf ) +

∫ tf

0

[
zT (t)D(t)z(t)

+uT (t)Ru(t)u(t)− vT (t)Rv(t)v(t)
]
dt,(2.3)

where z(t) = col
(
x(t), y(t)

)
; F , D(t), Ru(t), Rv(t) are given symmetric matrices of

corresponding dimensions, and F ≥ 0, D(t) ≥ 0, Ru(t) > 0, Rv(t) > 0, t ∈ [0, tf ].
The cost functional (2.3) is minimized by a proper choice of the pair

(
tim, u

)
and

it is maximized by a proper choice of v.
We solve the game (2.1)-(2.2),(2.3) from the minimizing player (the minimizer)

viewpoint. Namely, we look for the minimum guaranteed game outcome in the
form:

(2.4) Ju
△
= min

tim∈(0,tf )
min
u

max
v

J
(
u, v, tim

)
,

where the players’ controls are of state-feedback forms u = u(x, y, t), v = v(x, y, t).
The classes of the controls v(x, y, t) and u(x, y, t), in which the corresponding max-
imization and minimization are carried out, are defined in the next section.

3. Main definitions

In what follows, we assume:
A1. The matrix A22(t) is continuous in the interval [0, tf ], while the other time-
dependent matrices of the coefficients in the game (2.1)-(2.2),(2.3) are piecewise
continuous in the interval [0, tf ].

Let us denote z
△
= col(x, y), x ∈ En, y ∈ Em; z0

△
= col(x0, y0), x0 ∈ En, y0 ∈ Em.

Consider the set U of all functions u = u(z, t) : En+m × [0, tf ] → Er, which are
measurable w.r.t. t ∈ [0, tf ] for any fixed z ∈ En+m and satisfy the local Lipschitz
condition w.r.t. z ∈ En+m uniformly in t ∈ [0, tf ]. Also, consider the set V of all
functions v = v(z, t) : En+m × [0, tf ] → Es with the same properties.
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For any given tim ∈ (0, tf ), u(z, t) ∈ U and v(z, t) ∈ V, consider the following two
initial-value problems:

dx1(t)

dt
= A1(t)x1(t) +A21(t)y1(t)

+Bu,1(t)u(z1(t), t) +Bv,1(t)v(z1(t), t), x1(0) = x0,(3.1)

dy1(t)

dt
= A3(t)y1(t) +Bu,2(t)u(z1(t), t), y1(0) = y0,(3.2)

where t ∈ [0, tim], z1(t) = col
(
x1(t), y1(t)

)
,

and

dx2(t)

dt
= A1(t)x2(t) +A21(t)y2(t)

+Bu,1(t)u(z2(t), t) +Bv,1(t)v(z2(t), t),

x2(tim) = x1(tim − 0) +A22(tim)y1(tim − 0),

(3.3)

dy2(t)

dt
= A3(t)y2(t) +Bu,2(t)u(z2(t), t),

y2(tim) = y1(tim − 0),

(3.4)

where t ∈ [tim, tf ], z2(t) = col
(
x2(t), y2(t)

)
.

Definition 3.1. For any given tim ∈ (0, tf ), u(z, t) ∈ U and v(z, t) ∈ V, the
following pair of function

(
x(t; tim), y(t; tim)

)
, t ∈ [0, tf ] is called the solution of the

initial-value problem (2.1)-(2.2) with u(t) = u(z, t), v(t) = v(z, t):

(3.5)
(
x(t; tim), y(t; tim)

)
=


(
x1(t; tim), y1(t; tim)

)
, t ∈ [0, tim),(

x2(t; tim), y2(t; tim)
)
, t ∈ [tim, tf ],

where
(
x1(t; tim), y1(t; tim)

)
, t ∈ [0, tim] and

(
x2(t; tim), y2(t; tim)

)
, t ∈ [tim, tf ] are

the solutions of the initial-value problems (3.1)-(3.2) and (3.3)-(3.4), respectively.

Definition 3.2. By UV , we denote the set of all pairs
(
u(z, t), v(z, t)

)
such that

the following conditions are valid:

(i) u(z, t) ∈ U , v(z, t) ∈ V;
(ii) the initial-value problem (2.1)-(2.2) for u(t) = u(z, t), v(t) = v(z, t) and

any z0 ∈ En+m, tim ∈ (0, tf ) has the unique piecewise continuous solution
zuv(t; z0, tim) = col

(
xuv(t; z0, tim), yuv(t; z0, tim)

)
in the interval [0, tf ];

(iii) u
(
zuv(t; z0, tim), t

)
∈ L2[0, tf ;E

r];

(iv) v
(
zuv(t; z0, tim), t

)
∈ L2[0, tf ;E

s].

The set UV is called a set of all admissible pairs of the players’ state-feedback
controls in the game (2.1)-(2.2),(2.3).

For a given u(z, t) ∈ U , consider the sets Fv

(
u(z, t)

) △
= {v(z, t) ∈ V :

(
u(z, t), v(z, t)

)
∈

UV } and Hu
△
= {u(z, t) ∈ U : Fv

(
u(z, t)

)
̸= ∅}.

Now, we can rewrite the equation (2.4) in the following more precise form.
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Definition 3.3. The value

(3.6) J∗
u

△
= inf

tim∈(0,tf )
inf

u∈Hu

sup
v∈Fv(u)

J
(
u, v, tim)

is called the minimum guaranteed outcome in the game (2.1)-(2.2),(2.3). If there
exist a value t∗im ∈ (0, tf ) and a function u∗(z, t) ∈ Hu such that

(3.7) sup
v∈Fv(u∗)

J
(
u∗(z, t), v, t∗im) = J∗

u ,

then the pair
(
t∗im, u

∗(z, t)
)
is called a minimum guaranteeing minimizer’s strategy.

In what follows, the game (2.1)-(2.2),(2.3),(3.6)-(3.7) is called the Original Dif-
ferential Game (ODG).

4. Solution of the ODG

4.1. Saddle point of the game (2.1)-(2.2),(2.3) with a given tim. Let tim ∈
(0.tf ) be any given. Also, for a given v(z, t) ∈ V, consider the sets Fu

(
v(z, t)

) △
=

{u(z, t) ∈ U :
(
u(z, t), v(z, t)

)
∈ UV } and Hv

△
= {v(z, t) ∈ V : Fu

(
v(z, t)

)
̸= ∅}.

If the following equality is fulfilled:

(4.1) sup
v∈Hv

inf
u∈Fu(v)

J(u, v, tim) = inf
u∈Hu

sup
v∈Fv(u)

J(u, v, tim)

in the game (2.1)-(2.2),(2.3) with any given tim, then

(4.2) J0(tim)
△
= sup

v∈Hv

inf
u∈Fu(v)

J(u, v, tim) = inf
u∈Hu

sup
v∈Fv(u)

J(u, v, tim)

is called the value of this game, while a pair
(
u0(z, t), v0(z, t)

)
, for which

(4.3) J
(
u0(z, t), v0(z, t), tim

)
= J0(tim),

is called a state-feedback saddle point in this game.

4.1.1. Matrix differential Riccati equation with impulse. Consider the block matrices
A(t, tim), Bu(t) and Bv(t) of the dimensions (n + m) × (n + m), (n + m) × r and
(n+m)× s, respectively:

(4.4) A(t, tim) =

(
A1(t) A21(t) +A22(t)δ(t− tim)
0 A3(t)

)
,

(4.5) Bu(t) =

(
Bu,1(t)
Bu,2(t)

)
, Bv(t) =

(
Bv,1(t)
0

)
.

Using these matrices, consider the terminal-value problem for the matrix differential
Riccati equation with respect to a symmetric matrix-valued function P (t)

dP (t)

dt
= −P (t)A(t, tim)−AT (t, tim)P (t)

+P (t)
(
Su(t)− Sv(t)

)
P (t)−D(t), P (tf ) = F,(4.6)
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where t ∈ [0, tf ],

(4.7) Su(t) = Bu(t)R
−1
u (t)BT

u (t) =

(
Su,1(t) Su,2(t)
ST
u,2(t) Su,3(t)

)
,

(4.8) Sv(t) = Bv(t)R
−1
v (t)BT

v (t) =

(
Sv,1(t) 0
0 0

)
,

and
Su,1(t) = Bu,1(t)R

−1
u BT

u,1(t), Su,2(t) = Bu,1(t)R
−1
u BT

u,2(t),

Su,3(t) = Bu,2(t)R
−1
u BT

u,2(t), Sv,1(t) = Bv,1(t)R
−1
v BT

v,1(t).

Let us partition the matrices D(t), F and P (t) into blocks as:

(4.9) D(t) =

(
D1(t) D2(t)
DT

2 (t) D3(t)

)
, F =

(
F1 F2

F T
2 F3

)
,

(4.10) P (t) =

(
P1(t) P2(t)
P T
2 (t) P3(t)

)
,

where the blocks D1(t), F1 and P1(t) are of the dimension n× n, the blocks D2(t),
F2 and P2(t) are of the dimension n×m, the blocks D3(t), F3 and P3(t) are of the
dimension m×m.

Substitution of the block representations for the matrices A(t, tim), Su(t), Sv(t),
D(t), F and P (t) converts the terminal-value problem (4.6) to the following equiv-
alent terminal-value problem for the set of three Riccati-type matrix differential
equations:

dP1(t)

dt
= −P1(t)A1(t)−AT

1 (t)P1(t)

+P1(t)
(
Su,1(t)− Sv,1(t)

)
P1(t) + P2(t)S

T
u,2(t)P1(t)

+P1(t)Su,2(t)P
T
2 (t) + P2(t)Su,3(t)P

T
2 (t)−D1(t),

(4.11)

dP2(t)

dt
= −P1(t)

[
A21(t) +A22(t)δ(t− tim)

]
− P2(t)A3(t)

−AT
1 (t)P2(t) + P1(t)

(
Su,1(t)− Sv,1(t)

)
P2(t)

+P2(t)S
T
u,2(t)P2(t) + P1(t)Su,2(t)P3(t)

+P2(t)Su,3(t)P3(t)−D2(t),

(4.12)

dP3(t)

dt
= −P T

2 (t)
[
A21(t) +A22(t)δ(t− tim)

]
− P3(t)A3(t)

−
[
AT

21(t) +AT
22(t)δ(t− tim)

]
P2(t)−AT

3 (t)P3(t)

+P T
2 (t)

(
Su,1(t)− Sv,1(t)

)
P2(t) + P3(t)S

T
u,2(t)P2(t)

+P T
2 (t)Su,2(t)P3(t) + P3(t)Su,3(t)P3(t)−D3(t),

(4.13)
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(4.14) P1(tf ) = F1, P2(tf ) = F2, P3(tf ) = F3.

It is clear that the terminal-value problem (4.11)-(4.13),(4.14) is equivalent to the
terminal-value problem (4.6).

4.1.2. Solution of the problem (4.6). Consider the following (n + m) × (n + m)-
matrices:

(4.15) A1(t) =

(
A1(t) A21(t)
0 A3(t)

)
,

(4.16) A2(t) =

(
0 A22(t)
0 0

)
.

Due to (4.4),(4.15)-(4.16),

(4.17) A(t, tim) = A1(t) +A2(t)δ(t− tim), t ∈ [0, tf ].

Using the matrix (4.15), we consider the following terminal-value problem with
respect to a symmetric matrix-valued function Pr(t) in the interval [tim, tf ]:

dPr(t)

dt
= −Pr(t)A1(t)−AT

1 (t)Pr(t)

+Pr(t)
(
Su(t)− Sv(t)

)
Pr(t)−D(t), Pr(tf ) = F.(4.18)

Assume that this problem has the solution Pr(t), t ∈ [tim, tf ].
Now, using the matrix (4.16), we consider the following initial-value problem with

respect to a symmetric matrix-valued function ∆P (θ) in the interval [0, 1]:

d∆P (θ)

dθ
= −∆P (θ)A2(tim)−AT

2 (tim)∆P (θ),

∆P (0) = Pr(tim + 0).

(4.19)

This problem has the unique solution ∆P (θ), θ ∈ [0, 1].
Let us obtain this solution. For this purpose, we partition the solutions Pr(t) and

∆P (θ) of the problems (4.18) and (4.19), respectively, into blocks as:

(4.20) Pr(t) =

(
Pr,1(t) Pr,2(t)
P T
r,2(t) Pr,3(t)

)
,

(4.21) ∆P (θ) =

(
∆P,1(θ) ∆P,2(θ)
∆T

P,2(θ) ∆P,3(θ)

)
,

where the blocks Pr,1(t), ∆P,1(θ) are of the dimension n × n, the blocks Pr,2(t),
∆P,2(θ) are of the dimension n × m, and the blocks Pr,3(t), ∆P,3(θ) are of the
dimension m×m.

Using the block representations (4.20) and (4.21), we convert the problem (4.19)
to the following initial-value problem with respect to the blocks ∆P,1(θ), ∆P,2(θ)
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and ∆P,2(θ) of the matrix ∆P (θ):

d∆P,1(θ)

dθ
= 0, θ ∈ [0, 1],

d∆P,2(θ)

dθ
= −∆P,1(θ)A22(tim), θ ∈ [0, 1],

d∆P,3(θ)

dθ
= −∆T

P,2(θ)A22(tim)−AT
22(tim)∆P,2(θ), θ ∈ [0, 1],

∆P,1(0) = Pr,1(tim + 0),

∆P,2(0) = Pr,2(tim + 0),

∆P,3(0) = Pr,2(tim + 0).

(4.22)

Solving this problem, we directly obtain the blocks of the matrix ∆P (θ)

∆P,1(θ) = Pr,1(tim + 0), θ ∈ [0, 1],

∆P,2(θ) = Pr,2(tim + 0)− Pr,1(tim + 0)A22(tim)θ, θ ∈ [0, 1],

∆P,3(θ) = Pr,3(tim + 0)

−P T
r,2(tim + 0)A22(tim)θ −AT

22(tim)Pr,2(tim + 0)θ

+AT
22(tim)Pr,1(tim + 0)A22(tim)θ

2, θ ∈ [0, 1].

(4.23)

In addition to the problems (4.18) and (4.19), we consider the following terminal-
value problem with respect to a symmetric matrix-valued function Pl(t) in the
interval [0, tim]:

dPl(t)

dt
= −Pl(t)A1(t)−AT

1 (t)Pl(t)

+Pl(t)
(
Su(t)− Sv(t)

)
Pl(t)−D(t), Pl(tim) = ∆P (1).(4.24)

Assume that this problem has the solution Pl(t), t ∈ [0, tim].
Based on the results of [6] and using the solutions of the problems (4.18), (4.19)

and (4.24), we define the solution of the problem (4.6).

Definition 4.1. For any given tim ∈ (0, tf ), the following function P (t; tim) is called
the solution of the terminal-value problem (4.6) in the interval [0, tf ]:

(4.25) P (t; tim) =

 Pr(t), t ∈ (tim, tf ],

Pl(t), t ∈ [0, tim].

4.1.3. Saddle-point solvability of the game (2.1)-(2.2),(2.3) with a given tim.

Theorem 4.2. Let for a given tim ∈ (0, tf ), the terminal-value problem (4.6) has
the solution (4.25). Then, for this tim, the equality (4.1) is fulfilled in the game
(2.1)-(2.2),(2.3). The value of this game is

(4.26) J0(tim) = zT0 P (0; tim)z0.
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Moreover, the state-feedback saddle point of this game also exists and has the form

u0(z, t) = u0(z, t; tim)
△
= −R−1

u (t)BT
u (t)P (t; tim)z,

v0(z, t) = v0(z, t; tim)
△
= R−1

v (t)BT
v (t)P (t; tim)z,

z ∈ En+m, t ∈ [0, tf ].

(4.27)

Proof. First of all, let us note the following. Since the vector-valued functions
u0(z, t) and v0(z, t) are linear with respect to z with piecewise continuous matrix-
valued coefficients, then u0(z, t) ∈ U , v0(z, t) ∈ V. Moreover, due to Definition 3.1,
the initial-value problem (2.1)-(2.2) with u(t) = u0(z, t), v(t) = v0(z, t) and any z0
has the unique solution, and this solution is a piecewise continuous vector-valued
function of t ∈ [0, tf ]. Therefore, due to Definition 3.2,

(
u0(z, t), v0(z, t)

)
∈ UV ,

and the sets Fu

(
v0(z, t)

)
, Fv

(
u0(z, t)

)
, Hu, Hv are nonempty.

Let
(
u(z, t), v(z, t)

)
be any given element of the set UV .

Consider the Lyapunov-like function

(4.28) V
(
z(t; tim), t

) △
= zT (t; tim)P (t; tim)z(t; tim),

where z(t; tim) = col
(
x(t; tim), y(t; tim)

)
; the pair

(
x(t; tim), y(t; tim)

)
is the solution

(3.5) of the problem (2.1)-(2.2) with u(t) = u(z, t), v(t) = v(z, t).
The function V

(
z(t; tim), t

)
can be rewritten in the form

(4.29) V
(
z(t; tim), t

)
=

 V1

(
z1(t; tim), t

)
, t ∈ [0, tim),

V2

(
z2(t; tim), t

)
, t ∈ (tim, tf ],

where

V1

(
z1(t; tim), t

)
= zT1 (t; tim)Pl(t)z1(t; tim),

z1(t; tim) = col
(
x1(t; tim), y1(t; tim)

)
,

(4.30)

V2

(
z2(t; tim), t

)
= zT2 (t; tim)Pr(t)z2(t; tim),

z2(t; tim) = col
(
x2(t; tim), y2(t; tim)

)
.

(4.31)

Remember that z1(t; tim) and z2(t; tim) are the solutions of the initial-value problems
(3.1)-(3.2) and (3.3)-(3.4), respectively.

Using the initial conditions in (3.3)-(3.4) and the terminal condition in (4.24),
one can show by a routine algebra that

(4.32) V1(z1(t; tim), t)
∣∣
t=tim−0

− V2(z2(t; tim), t)
∣∣
t=tim+0

= 0.
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Let us calculate dV1

(
z1(t; tim), t

)
/dt, t ∈ [0, tim). We have

dV1

(
z1(t; tim), t

)
dt

=

(
dz1(t; tim)

dt

)T

Pl(t)z1(t; tim)

+zT1 (t; tim)
dPl(t)

dt
z1(t; tim) + zT1 (t; tim)Pl(t)

(
dz1(t; tim)

dt

)
.

(4.33)

Since z1(t; tim) is the solution of the initial-value problem (3.1)-(3.2), then using the
equations (4.4) and (4.5), we obtain

dz1(t; tim)

dt
= A(t, tim)z1(t; tim) +Bu(t)u1(t; tim)

+Bv(t)v1(t; tim), t ∈ [0, tim),

(4.34)

where

(4.35) u1(t; tim) = u
(
z1(t; tim), t

)
, v1(t; tim) = v

(
z1(t; tim), t

)
.

Substitution of the expressions for dPl(t)/dt and dz1(t; tim)/dt (see the equations
(4.24) and (4.34)) into (4.33) yields after a routine rearrangement

dV1

(
z1(t; tim), t

)
dt

= uT1 (t; tim)B
T
u (t)Pl(t)z1(t; tim)

+vT1 (t; tim)B
T
v (t)Pl(t)z1(t; tim)

+zT1 (t; tim)Pl(t)Su(t)Pl(t)z1(t; tim)

−zT1 (t; tim)Pl(t)Sv(t)Pl(t)z1(t; tim)

−zT1 (t; tim)D(t)z1(t; tim)

+zT1 (t; tim)Pl(t)Bu(t)u1(t; tim)

+zT1 (t; tim)Pl(t)Bv(t)v1(t; tim),

t ∈ [0, tim).

(4.36)

Using (4.7)-(4.8) and (4.27), we can rewrite the equation (4.36) in the form

dV1

(
z1(t; tim), t

)
dt

=
(
u1(t; tim)− u01(t; tim)

)T
Ru(t)

(
u1(t; tim)− u01(t; tim)

)
−
(
v1(t; tim)− v01(t; tim)

)T
Rv(t)

(
v1(t; tim)− v01(t; tim)

)
−uT1 (t; tim)Ru(t)u1(t; tim) + vT1 (t; tim)Rv(t)v1(t; tim)

−zT1 (t; tim)D(t)z1(t; tim), t ∈ [0, tim),

(4.37)

where

u01(t; tim) = u0
(
z1(t; tim), t; tim

)
,

v01(t; tim) = v0
(
z1(t; tim), t; tim

)
.

(4.38)
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Quite similarly to (4.37)-(4.38), we obtain

dV2

(
z2(t; tim), t

)
dt

=
(
u2(t; tim)− u02(t; tim)

)T
Ru(t)

(
u2(t; tim)− u02(t; tim)

)
−
(
v2(t; tim)− v02(t; tim)

)T
Rv(t)

(
v2(t; tim)− v02(t; tim)

)
−uT2 (t; tim)Ru(t)u2(t; tim) + vT2 (t; tim)Rv(t)v2(t; tim)

−zT2 (t; tim)D(t)z2(t; tim), t ∈ (tim, tf ],

(4.39)

where

u2(t; tim) = u
(
z2(t; tim), t

)
,

v2(t; tim) = v
(
z2(t; tim), t

)
,

(4.40)

u02(t; tim) = u0
(
z2(t; tim), t; tim

)
,

v02(t; tim) = v0
(
z2(t; tim), t; tim

)
.

(4.41)

Integrating the equation (4.37) from t = 0 to t = tim, we obtain

V1

(
z1(t; tim), t

)
|t=tim−0 − V1

(
z1(0; tim), 0

)
=

∫ tim

0

[(
u1(t; tim)− u01(t; tim)

)T
Ru(t)

(
u1(t; tim)− u01(t; tim)

)
−
(
v1(t; tim)− v01(t; tim)

)T
Rv(t)

(
v1(t; tim)− v01(t; tim)

)]
dt

−
∫ tim

0

[
zT1 (t; tim)D(t)z1(t; tim) + uT1 (t; tim)Ru(t)u1(t; tim)

−vT1 (t; tim)Rv(t)v1(t; tim)
]
dt.

(4.42)

Similarly, integrating the equation (4.39) from t = tim to t = tf , we have

V2

(
z2(tf ; tim), tf

)
− V2

(
z2(t; tim), t

)
|t=tim+0

=

∫ tf

tim

[(
u2(t; tim)− u02(t; tim)

)T
Ru(t)

(
u2(t; tim)− u02(t; tim)

)
−
(
v2(t; tim)− v02(t; tim)

)T
Rv(t)

(
v2(t; tim)− v02(t; tim)

)]
dt

−
∫ tf

tim

[
zT2 (t; tim)D(t)z2(t; tim) + uT2 (t; tim)Ru(t)u2(t; tim)

−vT2 (t; tim)Rv(t)v2(t; tim)
]
dt.

(4.43)

Adding the equations (4.42) and (4.43), and using the terminal condition in (4.18)
and the equations (2.3),(3.5),(4.25),(4.26)-(4.27),(4.28)-(4.31), (4.32),(4.35),(4.38),
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(4.40),(4.41), we obtain

J
(
u(t; tim), v(t; tim)

)
= zT0 P (0; tim)z0

+

∫ tf

0

[(
u(t; tim)− u0(t; tim)

)T
Ru(t)

(
u(t; tim)− u0(t; tim)

)
−
(
v(t; tim)− v0(t; tim)

)T
Rv(t)

(
v(t; tim)− v0(t; tim)

)]
dt,

(4.44)

where

(4.45) u(t; tim) = u
(
z(t; tim), t

)
, v(t; tim) = v

(
z(t; tim), t

)
, t ∈ [0, tf ],

(4.46) u0(t; tim) = u0
(
z(t; tim), t

)
, v0(t; tim) = v0

(
z(t; tim), t

)
, t ∈ [0, tf ].

Now, the equations (4.44)-(4.46), along with the positive definiteness of the matri-
ces Ru(t), Rv(t), t ∈ [0, tf ], directly yield the fulfilment of the condition (4.1) for
u(z, t) = u0(z, t), v(z, t) = v0(z, t). The latter, along with the equations (4.2)-(4.3)
and (4.26)-(4.27), proves the theorem. □

4.2. Obtaining the minimum guaranteed outcome and the minimum guar-
anteeing minimizer’s strategy in the ODG.

Theorem 4.3. Let for any tim ∈ (0, tf ), the problem (4.6) has the solution (4.25).
Then, J∗

u = inftim∈(0,tf ) J
0(tim). Moreover, if there exists t∗im ∈ (0, tf ) such that

J0(t∗im) = inftim∈(0,tf ) J
0(tim), then the pair

(
t∗im, u

0(z, t; t∗im)
)
constitutes the mini-

mum guaranteeing minimizer’s strategy in the ODG.

Proof. The statements of the theorem directly follow from the equations (3.6) and
(3.7), and Theorem 4.2. □

5. Linear-quadratic pursuit-evasion game with hybrid pursuer’s
dynamics

5.1. Formulation of initial game. In this section, the above obtained theoretical
results are applied to solution of some pursuit-evasion game. Namely, we consider
an engagement between two flying vehicles, a pursuer (an interceptor) and an evader
(a target). It is well known that in a small vicinity of the collision course a nonlinear
three-dimensional motion of the vehicles can be linearized and decoupled into two
planar motions in perpendicular planes (see e.g. [8, 13]). Due to this observation, in
what follows, we consider the linear planar model of the engagement. In Fig. 1, the
planar engagement geometry is shown. The points (xp, yp) and (xe, ye) are current
coordinates of the pursuer and the evader, respectively; Vp and Ve are constant
magnitudes of the velocity vectors of the pursuer and the evader, respectively; ap, ae
are their lateral accelerations; φp, φe are the respective angles between the velocity
vectors and the X-axis (the initial line of sight).

In the linear model, the duration of the engagement is tf = R0/Vc, where R0

is a known initial distance between the vehicles and Vc is the closing speed of the
engagement. Thus, in the case of the first-order dynamics of the pursuer and the
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Figure 1. Engagement geometry

evader, the set of linear differential equations, modeling the engagement, has the
following form [13]:

(5.1)
dx(t)

dt
= Ax(t) + bup(t) + cue(t), x(0) = x0, t ∈ [0, tf ],

where x(t) = col
(
x1(t), x2(t), x3(t), x4(t)

)
is the state vector; up(t) and ue(t) are

scalar controls (the acceleration commands in y-direction) of the pursuer and the
evader, respectively; x0 = col

(
x10, x20, x30, x40

)
is a given vector;

(5.2) A =


0 1 0 0
0 0 1 −1
0 0 −1/τe 0
0 0 0 −1/τp

 ,

(5.3) b = col(0, 0, 0, 1/τp), c = col(0, 0, 1/τe, 0),

x1(t) = ye(t) − yp(t) is the relative separation of the vehicles normal to the initial
line of sight (the X-axis); x2(t) is the relative velocity of the vehicles normal to
the initial line of sight; x3(t) and x4(t) are the lateral accelerations of the evader
and the pursuer, respectively, both normal to the initial line of sight; τe, τp are the
respective time constants.

Consider the differential game with the dynamics (5.1) and the cost functional

(5.4) J (up, ue) = x21(tf ) +

∫ tf

0

[
αu2p(t)− βu2e(t)

]
dt,

where α > 0 and β > 0 are given constants.
The cost functional (5.4) is minimized by the pursuer (by up(t)) and maximized

by the evader (by ue(t)) along trajectories of (5.1).
In what follows, we assume that the evader’s time constant τe is fixed. The

pursuer has two values τp,1 and τp,2 of the time constant on its disposal, and the
pursuer can change its time constant from τp,1 to τp,2 (or from τp,2 to τp,1) once
during the game at a non-prescribed in advance time momentum tsw ∈ (0, tf ).
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5.2. Game with impulsive dynamics. Let us choose some order of the pursuer’s
time constant values

(5.5) τp =

 τp,i1 , t ∈ [0, tsw),

τp,i2 , t ∈ [tsw, tf ],

where i1, i2 ∈ {1, 2}.
Let us introduce the variable

Z(t) = x1(t) + (tf − t)x2(t)

+τ2eΨ
(
(tf − t)/τe

)
x3(t)− τ2pΨ

(
(tf − t)/τp

)
x4(t),(5.6)

where

(5.7) Ψ(ξ)
△
= exp(−ξ) + ξ − 1 > 0, ξ > 0.

From (5.6)-(5.7), one can observe two important features of Z(t). First,

(5.8) Z(tf ) = x1(tf ).

Second, due to the switch (5.5) in the pursuer’s time constant, the variable Z(t)
has a finite break at t = tsw:

(5.9) ∆Z
△
= Z(tsw)− Z(tsw − 0) = γ(tsw)x4(tsw),

where

(5.10) γ(t) = τ2p,i1Ψ
(
(tf − t)/τp,i1

)
− τ2p,i2Ψ

(
(tf − t)/τp,i2

)
.

Using Z(t) as a new state variable and taking into account its features (5.8) and
(5.9), we can transform the game (5.1),(5.4) to a new pursuit-evasion game of a
lower dimension but with impulsive dynamics

dZ(t)

dt
= −h(t, τp)up(t) + h(t, τe)ue(t)

+γ(t)δ(t− tsw)x4(t), Z(0) = Z0, t ∈ [0, tf ],(5.11)

(5.12)
dx4(t)

dt
=

up(t)− x4(t)

τp
, x4(0) = x40, t ∈ [0, tf ],

where τp is given by (5.5) with an unspecified tsw ∈ (0, tf );

(5.13) h(t, τ) = τΨ
(
(tf − t)/τ

)
;

(5.14) Z0 = x10 + tfx20 + τ2eΨ
(
tf/τe

)
x30 − τ2pΨ

(
tf/τp

)
x40.

The cost functional in the new game has the form

(5.15) J(up, ue, tsw) = Z2(tf ) +

∫ tf

0

[
αu2p(t)− βu2e(t)

]
dt.

The cost functional (5.15) is minimized by a proper choice of the pair
(
tsw, up

)
and

maximized by a proper choice of ue.
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Like in the theoretical results of the previous sections, we solve the game (5.11)-
(5.12),(5.15) from the minimizer’s (pursuer’s) viewpoint. Namely, we look for the
minimum guaranteed outcome of this game

(5.16) J∗
p

△
= inf

tsw∈(0,tf )
inf

up∈Hup

sup
ue∈Fue (up)

J
(
up, ue, tsw),

and the minimum guaranteeing pursuer’s strategy
(
t∗sw, u

∗
p(z, t)

)
,
(
t∗sw ∈ (0, tf ), u

∗
p(z, t) ∈

Hup

)
:

(5.17) sup
ue∈Fue (u

∗
p)
J
(
u∗p(z, t), ue, t

∗
sw) = J∗

p .

In (5.16)-(5.17), z = col(Z, x4), and Hup and Fue(up) are the sets of the pursuer’s
and evader’s state-feedback controls similar to the sets Hu and Fv(u) of the mini-
mizer’s and maximizer’s state-feedback controls defined in Section 3.

5.3. Solution of the impulsive dynamics game (5.11)-(5.17). First, let us
obtain the solution of the problem (4.18), corresponding to the game (5.11)-(5.17).
This solution can be represented in the form

(5.18) Pr(t) =

(
Pr,1(t) Pr,2(t)
Pr,2(t) Pr,3(t)

)
,

where Pr,j(t), (j = 1, 2, 3) are scalar functions.
Due to this representation, the problem (4.18), corresponding to the game (5.11)-

(5.17), can be rewritten in the following form:

dPr,1(t)

dt
= H1,i2(t)P

2
r,1(t)− 2H2,i2(t)Pr,1(t)Pr,2(t)

+H3,i2P
2
r,2(t), t ∈ [tsw, tf ],(5.19)

dPr,2(t)

dt
= − 1

τp,i2
Pr,2(t) +H1,i2(t)Pr,1(t)Pr,2(t)−H2,i2(t)P

2
r,2(t)

−H2,i2(t)Pr,1(t)Pr,3(t) +H3,i2Pr,2(t)Pr,3(t), t ∈ [tsw, tf ],(5.20)

dPr,3(t)

dt
= − 2

τp,i2
Pr,3(t) +H1,i2(t)P

2
r,2(t)

−2H2,i2(t)Pr,2(t)Pr,3(t) +H3,i2P
2
r,3(t), t ∈ [tsw, tf ],(5.21)

(5.22) Pr,1(tf ) = 1, Pr,2(tf ) = 0, Pr,3(tf ) = 0,

where

H1,i2(t) =
h2(t, τp,i2)

α
− h2(t, τe)

β
,

H2,i2(t) =
h(t, τp,i2)

ατp,i2
, H3,i2 =

1

ατ2p,i2
.

(5.23)
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It is verified directly by a routine algebra, that the solution of the problem (5.19)-
(5.21),(5.22) is:

Pr,1(t) =

(
1 +

∫ tf

t
H1,i2(σ)dσ

)−1

,

Pr,k(t) = 0, k = 2, 3, t ∈ [tsw, tf ].

(5.24)

To provide the existence of this solution for any tsw ∈ (0, tf ), in what follows we
assume:
(A2) For given τp,1, τp,2, tf , α, β, order {i1, i2}, the following inequality is valid∫ tf

t
H1,i2(σ)dσ ̸= −1, t ∈ (0, tf ).

The solution of the problem (4.19), corresponding to the game (5.11)-(5.17), has
the form (4.21) where, by virtue of (4.23) and (5.24), the scalar blocks are

∆P,1(θ) = Pr,1(tsw), ∆P,2(θ) = −Pr,1(tsw)γ(tsw)θ,

∆P,3(θ) = Pr,1(tsw)γ
2(tsw)θ

2, θ ∈ [0, 1],(5.25)

γ(t) is given in (5.10), Pr,1(t) is given in (5.24).
Proceed to solution of the problem (4.24) corresponding to the game (5.11)-(5.17).

To solve this problem, we introduce into the consideration several matrices.
First of all, let us note that the matrix A1(t), t ∈ [0, tsw) in this game has the

form

(5.26) A1(t) = A1,i1
△
=

(
0 0
0 − 1/τp,i1

)
.

Thus,

(5.27) exp
(
−A1,i1(t− tsw)

)
=

(
1 0
0 exp

(
(t− tsw)/τp,i1

) )
.

Also, consider the matrices

(5.28) ∆P (1) = Pr,1(tsw)

(
1 − γ(tsw)

−γ(tsw) γ2(tsw)

)
,

(5.29) Sp,e(t) =

(
H1,i1(t) −H2,i1(t)

−H2,i1(t) H3,i1

)
,

Γ(t) = I2 −
∫ t

tsw

exp
(
−A1,i1(σ − tsw)

)
Sp,e(σ) exp

(
−A1,i1(σ − tsw)

)
dσ∆P (1),

(5.30)
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where t ∈ [0, tsw], I2 is the 2-dimensional identity matrix;

H1,i1(t) =
h2(t, τp,i1)

α
− h2(t, τe)

β
,

H2,i1(t) =
h(t, τp,i1)

ατp,i1
, H3,i1 =

1

ατ2p,i1
.

(5.31)

In what follows, we assume:
(A3) For given τp,1, τp,2, tf , α, β, order {i1, i2} and any tsw ∈ (0, tf ), the matrix
Γ(t) is invertible for all t ∈ [0, tsw].

Due to this assumption, the solution of the problem (4.24), corresponding to the
game (5.11)-(5.17), is
(5.32)

Pl(t) = exp
(
−A1,i1(t− tsw)

)
∆P (1)

(
Γ(t)

)−1
exp

(
−A1,i1(t− tsw)

)
, t ∈ [0, tsw].

Remark 5.1. Note, that the positive semi-definiteness of the matrix Sp,e(t) for
both, τp,i1 = τp,1, τp,i1 = τp,2, and any t ∈ [0, tf ] is a sufficient condition for the
validity of the assumption A3. In such a case, the assumption A2 also is fulfilled.

Consider the value

(5.33) J0
p,e(tsw)

△
=

(
Z0, x40

)
Pl(0)col

(
Z0, x40

)
,

and the pursuer’s state-feedback control

(5.34) u0p(Z, x4, t; tsw)
△
=


(
h(t,τp,i1 )

α ,− 1
ατp,i1

)
Pl(t)col

(
Z, x4

)
, t ∈ [0, tsw),(

h(t,τp,i2 )

α ,− 1
ατp,i2

)
Pr(t)col

(
Z, x4

)
, t ∈ [tsw, tf ],

where the matrix Pr(t) is given by the equations (5.18),(5.24), while the matrix
Pl(t) is given by the equations (5.27)-(5.32).

Based on Theorems 4.2 and 4.3, we obtain the following assertion.

Theorem 5.2. Let the assumptions A2 and A3 be valid. Then, J∗
p =

inftsw∈(0,tf ) J
0
p,e(tsw). Moreover, if there exists t∗sw ∈ (0, tf ) such that J0

p,e(t
∗
sw)

= inftsw∈(0,tf ) J
0
p,e(tsw), then the pair

(
t∗sw, u

0
p(Z, x4, t; t

∗
sw)

)
constitutes the min-

imum guaranteeing pursuer’s strategy in the impulsive dynamics pursuit-evasion
game (5.11)-(5.17).

Remark 5.3. If for both orders of the pursuer’s time constant values there ex-
ist the minimum guaranteeing pursuer’s strategies in the game (5.11)-(5.17), then
the pursuer can choose that order and the corresponding strategy, for which the
minimum guaranteed outcome of the game is smaller.

6. Conclusions

In the paper, a finite horizon zero-sum linear-quadratic differential game with
impulsive dynamics was considered. The value of the impulse depends on its mo-
mentum and on values of some game’s state coordinates at this momentum. The
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momentum of the impulse is not prescribed, and it is at the disposal of the mini-
mizing player (the minimizer). Thus, this momentum is an additional minimizer’s
control. This game was treated from the minimizer’s viewpoint. Namely, the mini-
mum guaranteed outcome of the game was derived, and the minimum guaranteeing
minimizer’s strategy (impulse momentum, state-feedback control) was designed.
These results are based on the solution of a terminal-value problem for a matrix
differential Riccati equation with a state-dependent impulse, obtained in this pa-
per. Then, a given duration planar pursuit-evasion differential game with hybrid
pursuer’s dynamics and quadratic cost functional was considered. The pursuer can
switch from one dynamics to the other once during the game. Using a new state
variable (the zero-effort miss distance), this game was reduced to a lower dimension
linear-quadratic pursuit-evasion game with impulsive dynamics. The value of the
impulse depends on the switch momentum of the pursuer’s dynamics and on the
value of the pursuer’s lateral acceleration at this momentum. This new pursuit-
evasion game was solved by application of the theoretical results obtained earlier in
the paper for the general game.
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