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By this way we obtain both new nonoscillation and stability results for more general
equations then in [10, 12].

The paper is organized as follows. Section 2 contains relevant definitions and
notations. In section 3 we obtain nonoscillation results. Section 4 deals with expo-
nential stability.

2. Preliminaries

We consider a scalar delay differential equation of the second order

(2.1) ẍ(t) +
m∑
k=1

ak(t)ẋ(gk(t)) +
l∑

k=1

bk(t)x(hk(t)) = 0,

for l ≤ m under the following assumptions:
(a1) ak, bk are Lebesgue measurable and locally essentially bounded functions,

0 < a0k ≤ ak(t) ≤ A0
k, k = 1, . . . , l, ak(t) ≥ 0, k = l + 1, . . . ,m,

0 ≤ b0k ≤ bk(t) ≤ B0
k, k = 1, . . . , l;

(a2) hk, gk are Lebesgue measurable functions,

0 ≤ τ0k ≤ t−hk(t) ≤ τk, 0 ≤ σ0
k ≤ t− gk(t) ≤ σk; 0 ≤ gk(t)−hk(t) ≤ δk, k = 1, . . . , l.

Let us consider together with (2.1) the initial value problem with a right hand
side

(2.2) (Lx)(t) := ẍ(t) +
m∑
k=1

ak(t)ẋ(gk(t)) +
l∑

k=1

bk(t)x(hk(t)) = f(t), t ≥ t0,

(2.3) x(t) = φ(t), ẋ(t) = ξ(t) t < t0; x(t0) = x0, ẋ(t0) = x
′
0.

for each t0 ≥ 0.
We also assume that the following hypothesis holds
(a3) f : [t0,∞) → R is a Lebesgue measurable locally essentially bounded func-

tion, φ, ξ : (−∞, t0) → R are Borel measurable bounded functions.

Definition 2.1. Suppose a function x : [t0,∞) → R is differentiable and ẋ is a
locally absolutely continuous function. Extend the functions x and ẋ for t ≤ t0 by
equalities (2.3). We say that so extended function x is a a solution of problem (2.2),
(2.3) if it satisfies equation (2.2) for almost every t ∈ [t0,∞) .

Definition 2.2. For each s ≥ 0 the solution X(t, s) of the problem

(2.4)
ẍ(t) +

m∑
k=1

ak(t)ẋ(gk(t)) +
l∑

k=1

bk(t)x(hk(t)) = 0, t ≥ s,

x(t) = 0, ẋ(t) = 0, t < s; x(s) = 0, ẋ(s) = 1,

is called the fundamental function of equation (2.1).

Remark 2.3. In the literature [3] the fundamental function is also called the Cauchy
function.
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We assume X(t, s) = 0, 0 ≤ t < s.
Let functions x1 and x2 be the solutions of the following problems

ẍ(t) +

m∑
k=1

ak(t)ẋ(gk(t)) +

l∑
k=1

bk(t)x(hk(t)) = 0, t ≥ t0;

x(t) = 0, ẋ(t) = 0, t < t0,

with the initial conditions x(t0) = 1, ẋ(t0) = 0 for x1 and x(t0) = 0, ẋ(t0) = 1 for
x2, respectively. Note that by Definition 2.2 x2(t) = X(t, t0).

Lemma 2.4. [3] Let (a1)-(a3) hold. Then there exists one and only one solution
of problem (2.2), (2.3) and it can be presented in the form

x(t) = x1(t)x0 + x2(t)x
′
0 +

∫ t

t0

X(t, s)f(s)ds

−
∫ t

t0

X(t, s)

[
m∑
k=1

ak(s)ξ(gk(s)) +

l∑
k=1

bk(s)φ(hk(s))

]
ds.

Definition 2.5. Eq. (2.1) is (uniformly) exponentially stable, if there exist M > 0,
µ > 0, such that the solution of problem (2.2),(2.3) with f = 0 and its derivative
have the estimate

max{|x(t)|, |ẋ(t)|} ≤ M e−µ(t−t0)

[
|x(t0)|+ |ẋ(t0)|+max{sup

t<t0
|ξ(t)|, sup

t<t0
|φ(t)|}

]
,

t ≥ t0,

where M and µ do not depend on t0, ξ, φ.

Definition 2.6. The fundamental function X(t, s) of (2.1) and its derivative on t
have an exponential estimate if there exist positive numbers K > 0, λ > 0, such
that

max{|X(t, s)|, |X ′
t(t, s)|} ≤ K e−λ(t−s), t ≥ s ≥ 0.

For the linear equation (2.1) with bounded delays ((a2) holds) the last two defi-
nitions are equivalent.

Under (a2) the exponential stability does not depend on values of equation pa-
rameters on any finite interval.

Let us introduce some function spaces on the semi-axis. Denote by L∞[t0,∞)
the space of all essentially bounded on [t0,∞) scalar functions and by C[t0,∞)
the space of all continuous bounded on [t0,∞) scalar functions with the supremum
norm. By ∥x∥ denote the norm of x in any of these spaces.

Lemma 2.7. [3] Suppose there exists t0 ≥ 0 such that for every f ∈ L∞[t0,∞) both
the solution x of the problem

(2.5) (Lx)(t) = f(t), t > 0; x(ξ) = ẋ(ξ) = 0, ξ ≤ t0

belongs to C[t0,∞) and its derivative ẋ belongs to L∞[t0,∞). Then equation (2.1)
is exponentially stable.
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Remark 2.8. Lemma 2.7 is true if we take instead of f ∈ L∞[t0,∞) all functions
from this space equal 0 on some fixed interval [t0, t0 + ϵ].

Lemma 2.9. [12] Suppose for equation (2.1) bk(t) ≥ 0, t − hk(t) ≤ τ, the funda-
mental function of (2.1) is positive X(t, s) > 0, t > s > t0. Then∫ t

t0+τ
X(t, s)

l∑
k=1

bk(s)ds ≤ 1.

Consider now a system of DDE of the first order

(2.6) ẋi(t) +

m∑
k=1

n∑
j=1

akij(t)x(h
k
ij(t)) = 0, i = 1, . . . , n

under the following conditions:
(A1) coefficients akij are Lebesgue measurable locally essentially bounded func-

tions;
(A2) delays hkij : [0,∞) → R are Lebesgue measurable functions, hkij(t) ≤ t,

lim
t→∞

hkij(t) = ∞, k = 1, · · · ,m, i, j = 1, · · · , n.
Denote X(t) = [x1(t), · · · , xn(t)]T , let Ak

ij be an n × n matrix with the only

nonzero entry akij . Then (2.6) can be rewritten in the vector form

(2.7) Ẋ(t) +

m∑
k=1

n∑
i,j=1

Ak
ij(t)X(hkij(t)) = 0.

The fundamental matrix C(t, s) of equation (2.7) will be called the fundamental
matrix of system (2.6).

Lemma 2.10. [1, Theorem 9.2] Suppose
a) akii(t) ≥ 0, akij(t) ≤ 0, i ̸= j, k = 1, · · · ,m, t ≥ t0, and

b) the fundamental functions Yi(t, s) of the scalar equations

(2.8) ẏ(t) +
m∑
k=1

akii(t)y(h
k
ii(t)) = 0, i = 1, · · · , n

are positive for t ≥ s ≥ t0.
Then for the fundamental matrix of the system (2.6) we have C(t, s) ≥ 0, t ≥

s ≥ t0.

Corollary 2.11. Suppose akii(t) ≥ 0, akij(t) ≤ 0, i ̸= j, t ≥ t0 and

(2.9)

∫ t

max{t0,mink hk
ii(t)}

m∑
k=1

akii(s)ds ≤
1

e
, i = 1, · · · , n.

Then the fundamental matrix of the system (2.6) satisfies the inequality C(t, s) ≥
0, t ≥ s ≥ t0.
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3. Nonoscillation Criteria

Denote a0 =
∑l

k=1 a
0
k, B0 =

∑l
k=1B

0
k.

Theorem 3.1. Assume that a20 ≥ 4B0 and the following condition holds for t ≥ t0:

(3.1)

∫ t

g0(t)

 m∑
j=1

e−
a0σ

0
j

2 aj(s) +
l∑

i=1

(
e−

a0σ
0
i

2
a0
2
δiai(s) + e−

a0τ
0
i

2
a20
4l

) ds ≤ 1

e

where g0(t) = mink gk(t), 1 ≤ k ≤ l.
Then the fundamental function X(t, s) of equation (2.1) is nonnegative: X(t, s) ≥

0, t ≥ s ≥ t0.

Proof. We will show that x(t) = X(t, t0) ≥ 0. The general case X(t, s) ≥ 0, t ≥ s ≥
t0 is considered similarly. From the definition of the fundamental function we have
x(t) = ẋ(t) = 0, t < t0, x(t0) = 0, ẋ(t0) = 1. We will transform equation (2.1) to a
system of two DDE equations of the first order. After the substitution

ẋ = −a0
2
x+ y, ẍ =

a20
4
x− a0

2
y + ẏ

equation (2.1) has a form

ẏ(t) = −a20
4
x(t) +

m∑
k=1

a0
2
ak(t)x(gk(t))−

l∑
k=1

bk(t)x(hk(t))

+
a0
2
y(t)−

m∑
k=1

ak(t)y(gk(t)).

Rewrite the previous equation

ẏ(t) = −a20
4
x(t)−

l∑
k=1

a0
2
ak(t)(x(hk(t))− x(gk(t))) +

l∑
k=1

(a0
2
ak(t)− bk(t)

)
x(hk(t))

+
m∑

k=l+1

a0
2
ak(t)x(gk(t)) +

a0
2
y(t)−

m∑
k=1

ak(t)y(gk(t)).

We continue transformations:

ẏ(t) =

l∑
k=1

(
a0
2
ak(t)−

a20
4l

− bk(t)

)
x(hk(t)−

l∑
k=1

a20
4l
(x(t)− x(hk(t)))

−
l∑

k=1

a0
2
ak(t)(x(hk(t))− x(gk(t))) +

m∑
k=l+1

a0
2
ak(t)x(gk(t))

+
a0
2
y(t)−

m∑
k=1

ak(t)y(gk(t)).

Hence

ẏ(t) = −
l∑

k=1

a20
4l

∫ t

hk(t)
ẋ(s)ds−

l∑
k=1

a0
2
ak(t)

∫ hk(t)

gk(t)
ẋ(s)ds
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+
l∑

k=1

(
a0
2
ak(t)−

a20
4l

− bk(t)

)
x(hk(t)) +

m∑
k=l+1

a0
2
ak(t)x(gk(t))

+
a0
2
y(t)−

m∑
k=1

ak(t)y(gk(t)).

Since ẋ = −a0
2 x+ y, then

(3.2) ẏ(t) =

l∑
k=1

a30
8l

∫ t

hk(t)
x(s)ds+

l∑
k=1

a20
4
ak(t)

∫ hk(t)

gk(t)
x(s)ds

+
l∑

k=1

(
a0
2
ak(t)−

a20
4l

− bk(t)

)
x(hk(t)) +

m∑
k=l+1

a0
2
ak(t)x(gk(t))

+
a0
2
y(t)−

m∑
k=1

ak(t)y(gk(t))−
l∑

k=1

a20
4l

∫ t

hk(t)
y(s)ds−

l∑
k=1

a0
2
ak(t)

∫ hk(t)

gk(t)
y(s)ds.

Denote X(t) = {x(t), y(t)}T , x(t) = y(t) = 0, t < t0, x(t0) = y(t0) = 1 the solution
of the system: equation (3.2) and the equation

(3.3) ẋ(t) = −a0
2
x(t) + y(t).

By Corollary 9 [6] there exist measurable functions h̃1k, h̃
2
k, g̃

1
k, g̃

2
k such that hk(t) ≤

h̃ik(t) ≤ t, gk(t) ≤ g̃ik(t) ≤ t, i = 1, 2 and∫ t

hk(t)
x(s)ds = (t− hk(t))x(h̃

1
k(t)),

∫ t

hk(t)
y(s)ds = (t− hk(t))y(h̃

2
k(t)),

∫ hk(t)

gk(t)
x(s)ds = (hk(t)− gk(t))x(g̃

1
k(t)),

∫ hk(t)

gk(t)
y(s)ds = (hk(t)− gk(t))y(g̃

2
k(t)).

Hence X(t) = {x(t), y(t)}T is a solution of (3.3) and the following equation

(3.4) ẏ(t) =
l∑

k=1

a30
8l
(t− hk(t))x(h̃

1
k(t)) +

l∑
k=1

a20
4
ak(t)(gk(t)− hk(t))x(g̃

1
k(t))

+

l∑
k=1

(
a0
2
ak(t)−

a20
4l

− bk(t)

)
x(hk(t)) +

m∑
k=l+1

a0
2
ak(t)x(gk(t))

+
a0
2
y(t)−

m∑
k=1

ak(t)y(gk(t))−
l∑

k=1

a20
4l
(t−hk(t))y(h̃

2
k(t))−

l∑
k=1

a0
2
ak(t)(gk(t)−hk(t))y(g̃

2
k(t)).

For system (3.3), (3.4) we will check conditions of Lemma 2.10. We have

a0
2
ak(t)−

a20
4l

− bk(t) ≥
a20
2l

− a20
4l

− B0

l
=

a20
4l

− B0

l
≥ 0.

Hence, condition a) of Lemma 2.10 holds.
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To check condition b) of the lemma, consider the equation

(3.5) ẏ(t) =
a0
2
y(t)−

m∑
k=1

ak(t)y(gk(t))−
l∑

k=1

a20
4l
(t− hk(t))y(h̃

2
k(t))

−
l∑

k=1

a0
2
ak(t)(gk(t)− hk(t))y(g̃

2
k(t)).

After a substitution y(t) = e
a0t
2 z(t) equation (3.5) has a form

(3.6) ż(t) = −
m∑
k=1

e−
a0(t−gk(t)

2 ak(t)z(gk(t))−
l∑

k=1

e−
a0(t−h̃2k(t)

2
a20
4l
(t− hk(t))z(h̃

2
k(t))

−
l∑

k=1

e−
a0(t−g̃2k(t)

2
a0
2
ak(t)(hk(t)− gk(t))z(g̃

2
k(t)).

Equation (3.5) is nonoscillatory if equation (3.6) is nonoscillatory. We have t −
g̃2k(t) ≥ t− gk(t) ≥ σ0

k, t− h̃2k(t) ≥ t− hk(t) ≥ τ0k ,

m∑
k=1

e−
a0(t−gk(t)

2 ak(t) +

l∑
k=1

e−
a0(t−h̃2k(t)

2
a20
4l
(t− hk(t))

+
l∑

k=1

e−
a0(t−g̃2k(t)

2
a0
2
ak(t)(hk(t)− gk(t))

≤
m∑
j=1

e−
a0σ

0
j

2 aj(s) +
l∑

i=1

(
e−

a0σ
0
i

2
a0
2
δiai(s) + e−

a0τ
0
i

2
a20
4l

)
.

Corollary 2.11 and condition (3.1) imply that equation (3.6) is nonoscillatory.
Hence equation (3.5) is nonoscillatory and then condition b) of Lemma 2.10 holds.
Therefore the fundamental matrix C(t, s) of the system (3.3), (3.4) is nonnegative.
Suppose now that x(t), x(t0) = 0, ẋ(t0) = 1, x(t) = 0, t < t0 is the solution of

(2.1). Hence X(t) = {x(t), y(t)}T , {x(t0), y(t0)}T = {0, 1}T , X(t) = 0, t < t0 is
a solution of system (3.3), (3.4). We have X(t) = C(t, t0){0, 1}T ≥ 0. Hence
x(t) ≥ 0. But x(t) = X(t, t0) where X(t, s) is the fundamental function of (2.1).
Then x(t) = X(t, t0) ≥ 0. By the same way we can show that X(t, s) ≥ 0 for any
s, t ≥ s ≥ t0.

The theorem is proven. □

Consider the equation with two delays

(3.7) ẍ(t) + a(t)ẋ(g(t)) + b(t)x(h(t)) = 0

where for a, b, g, h conditions (a1)-(a2) hold.

Corollary 3.2. Assume that for some t0 ≥ 0 and t ≥ t0

0 < a0 ≤ a(t) ≤ A0, 0 ≤ b0 ≤ b(t) ≤ B0, a
2
0 ≥ 4B0,

τ0 ≤ t− h(t) ≤ τ, σ0 ≤ t− g(t) ≤ σ, 0 ≤ g(t)− h(t) ≤ δ.
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If

(3.8)

∫ t

g(t)

[
e−

a0σ0
2 a(s)

(
1 +

a0δ

2

)
+ e−

a0τ0
2

a20τ

4

]
ds ≤ 1

e
,

then equation (3.7) has a nonnegative fundamental function.

Corollary 3.3. Assume that for some t0 ≥ 0 and t ≥ t0

0 < a0 ≤ a(t) ≤ A0, 0 ≤ b0 ≤ b(t) ≤ B0, a
2
0 ≥ 4B0, t− g(t) ≤ σ.

If ∫ t

g(t)
e−

a0σ0
2 a(s)

(
1 +

a0σ

2

)
ds ≤ 1

e
,

then equation

(3.9) ẍ(t) + a(t)ẋ(g(t)) + b(t)x(t) = 0

has a nonnegative fundamental function.

Corollary 3.4. Assume that for some t0 ≥ 0 and t ≥ t0

0 < a0 ≤ a(t) ≤ A0, 0 ≤ b(t) ≤ B0, a
2
0 ≥ 4B0, c(t) ≥ 0,∫ t

g(t)

(
a(s) + e−

a0σ
2 c(s)

)
ds ≤ 1

e
.

Then the fundamental function of the equation

(3.10) ẍ(t) + a(t)ẋ(t) + c(t)ẋ(g(t)) + b(t)x(t) = 0

is nonnegative.

4. Exponential Stability

Theorem 4.1. Assume the fundamental function X(t, s) of equation (2.1) is non-
negative,

∑m
k=1 bk(t) ≥ b0 > 0 and the first order equation

(4.1) ẏ(t) +
m∑
k=1

ak(t)y(gk(t)) = 0

is exponentially stable. Then equation (2.1) is exponentially stable.

Proof. We apply Lemma 2.7. Let f be an essentially bounded on [t0,∞) function
where f(t) = 0, t < τ = max{τk}, k = 1, . . . ,m and x is the solution of problem
(2.5). Then by Lemmas 2.4 and 2.9

x(t) =

∫ t

t0+τ
X(t, s)f(s)ds =

∫ t

t0+τ
X(t, s)

l∑
k=1

bk(s)
f(s)∑l

k=1 bk(s)
ds.

Hence |x(t)| ≤ ∥ f∑l
k=1 bk

∥[t0,∞). Then x is a bounded function on the interval [t0,∞).

We will prove that ẋ is also a bounded function. Denote y = ẋ. Then

(4.2) ẏ(t) +
l∑

k=1

ak(t)y(gk(t)) = f1(t)
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where f1(t) = f(t) −
∑m

k=1 bk(t)x(hk(t)). Since x and f are bounded functions on
the semi-axes, then f1 is also a bounded function. Equation (4.2) is exponentially
stable. Then the solution of (4.2) is a bounded on the semi-axes function. By
Lemma 2.7 equation (2.1) is exponentially stable. □

Corollary 4.2. Assume conditions of Corollary 3.2 hold, b(t) ≥ b0 > 0 and

(4.3) lim sup
t→∞

∫ t

g(t)
a(s)ds < 1 +

1

e

then equation (3.7) is exponentially stable.

Proof. By Corollary 3.2 the fundamental function of equation (3.7) is nonnegative.
Condition (4.3) implies [7] that the DDE of the first order

ẏ(t) + a(t)y(g(t)) = 0

is exponentially stable. By Theorem 4.1 equation (3.7) is exponentially stable. □

Corollary 4.3. Assume conditions of Corollary 3.3, condition (4.3) hold, b(t) ≥
b0 > 0 then equation (3.9) is exponentially stable.

Corollary 4.4. Assume conditions of Corollary 3.4 hold, b(t) ≥ b0 > 0 and

(4.4)

∫ t

g(t)
c(s)ds ≤ 1

e
,
1

β
e−g0 > ln

β2 + β

β2 + 1
,

where g0 = lim supt→∞
∫ t
g(t) a(s)ds, β = lim supt→∞

c(t)
a(t) . Then equation (3.10) is

exponentially stable.

Proof. Corollary 3.4 implies that the fundamental function of (3.10) is nonnegative.
By [7, Theorem 2] equation

ẏ(t) + a(t)y(t) + c(t)y(g(t)) = 0

is exponentially stable. Theorem 4.1 implies this corollary. □

We will now obtain exponential stability conditions for an equation (without
assumption that this equation is nonoscillatory.

Theorem 4.5. Assume that all conditions of Theorem 4.1 hold for the equation
(2.1) and

(4.5)

∥∥∥∥∥
∑l

k=1 ck∑l
k=1 bk

− 1

∥∥∥∥∥ < 1.

Then the following equation

(4.6) ẍ(t) +

m∑
k=1

ak(t)ẋ(gk(t)) +

l∑
k=1

ck(t)x(hk(t)) = 0

is exponentially stable.
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Proof. Consider for t ≥ t0 the problem

(4.7) (Lx)(t) = f(t), t > 0; x(t) = ẋ(t) = 0, t ≤ t0

with f ∈ L∞. Equation (4.7) one can rewrite in the form

ẍ(t) +

m∑
k=1

ck(t)ẋ(gk(t)) +

l∑
k=1

bk(t)x(hk(t))

= −
l∑

k=1

(ck(t)− bk(t))x(hk(t)) + f(t).

(4.8)

Denote X(t, s) ≥ 0 the fundamental function of equation (2.1). From (4.8) we have

x(t) = −
∫ t

t0

X(t, s)

l∑
k=1

(ck(s)− bk(s))x(hk(s))ds+ f1(t)

where f1(t) =
∫ t
t0
X(t, s)f(s)ds. Since equation (2.1) is exponentially stable then

f1 ∈ L∞. In the space L∞ denote the operator

(Hx)(t) = −
∫ t

t0

X(t, s)

l∑
k=1

(ck(s)− bk(s))x(hk(s))ds.

We have

|(Hx)(t)| ≤
∫ t

t0

X(t, s)
l∑

k=1

bk(s)

∣∣∣∣∣
∑l

k=1 ck∑l
k=1 bk

− 1

∣∣∣∣∣ |x(hk(s))|ds.
Lemma 2.9 implies that

∥H∥ ≤

∥∥∥∥∥
∑l

k=1 ck∑l
k=1 bk

− 1

∥∥∥∥∥ < 1.

Hence the solution x of problem (4.7) is a bounded on the semi-axes [t0,∞) function.
Similarly to the proof of Theorem 4.1 we can show that ẋ ∈ L∞. By Lemma 2.7
equation (4.6) is exponentially stable. □

Corollary 4.6. Assume that conditions of Corollary 3.3 hold, b(t) ≥ b0 > 0 and
instead of condition a20 ≥ 4B0 the ineaquality a20 ≥ 2B0 holds. then equation (3.9)
is exponentially stable.

.

Proof. By corollary 3.3 the equation

ẍ(t) + a(t)ẋ(g(t)) +
a20
4
x(h(t)) = 0

is exponentially stable. Condition a20 ≥ 2B0 implies that
∥∥ b

a20
4

−1
∥∥ < 1. By Theorem

4.5 equation (3.9) is exponentially stable. □
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Example 4.7. Consider the following equation

(4.9) ẍ(t) + ẋ(t− α| sin t|) + bx(t) = 0.

First find b and α for which equation (4.9) has a positive fundamental function.
If we take take σ = α, σ0 = 0 then conditions of Corollary 3.3 hold for 0 ≤ b ≤
0.25, α < 0.3.

Corollary 4.6 implies exponential stability of (4.9) for 0 < b ≤ 0.5, α < 0.3.
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