
Applied Analysis and Optimization Yokohama Publishers

Copyright 2019C
ISSN 2189-1664 Online Journal  
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d. A complete simply connected Riemannian manifold with nonpositive sectional
curvature is called a Hadamard manifold. On such kind of manifolds, the following
result holds.

Proposition 1.2 ([15]). Let (M, ⟨·, ·⟩) be a Hadamard manifold, and p ∈ M . Then
the exponential mapping expp : TpM → M is a diffeomorphism. More than that, for
any two points p, q ∈ M , there exists a unique minimal geodesic which joins them.

A function f : M → R on a Riemannian manifold (M, ⟨·, ·⟩) is called geodesically
convex if f ◦ γ : R → R is a convex function for any geodesic γ in M , that is

(f ◦ γ)((1− t)a+ tb) ≤ t(f ◦ γ)(a) + (1− t)(f ◦ γ)(b) a, b ∈ R, t ∈ [0, 1].

In the sequel, we shall need the following property of the Hadamard manifolds
(which is, actually, a feature of the hyperbolic spaces, see [15]).

Proposition 1.3 ([15]). Let (M, ⟨·, ·⟩) be a Hadamard manifold, and d the geodesic
distance. Suppose γ1, γ2 are geodesics in M joining the points p1, q1, and p2, q2.
Then

d(γ1(λ), γ2(λ)) ≤ (1− λ)d(γ1(0), γ2(0)) + λd(γ1(1), γ2(1)), λ ∈ [0, 1].

Hence, the distance function on a Riemannian manifold is geodesically convex;
in particular, for any p ∈ M , the function d(·, p) : M → R is geodesically convex.

If (M, ⟨·, ·⟩) is a Riemannian manifold, it is said that ∆(p1, p2, p3) is a geodesic
triangle if it is formed by the vertices p1, p2, p3 and minimizing geodesics which
join these vertices.

One of the main tools we need is that of comparison triangles. The next lemma
states the existence of such triangles.

Lemma 1.4 ([2]). Let (M, ⟨, ·, ·⟩) be a Hadamard manifold, and ∆(p, q, r) a geodesic
triangle in it. Then there are p̃, q̃, r̃ ∈ R2 so that

d(p, q) = ∥p̃− q̃∥ , d(q, r) = ∥q̃ − r̃∥ , d(r, p) = ∥r̃ − p̃∥ .

We recall a property of the corresponding geodesic triangles which refers to parts
of the lengths of their edges, which is of crucial importance in the development of
our results.

Lemma 1.5 ([15]). Let (M, ⟨, ·, ·⟩) be a Hadamard manifold, ∆(p, q, r) a geodesic
triangle in it, and ∆(p̃, q̃, r̃) be the corresponding comparison triangle. Let z be a
point on the geodesic segment [p, q], and z̃ its comparison point on [p̃, q̃]. Then
d(z, r) ≤ ∥z̃ − r̃∥.

In the proof of our results, we need a specific type of convergence, namely the
Fejér convergence, see, for example, [10] and the references therein.

Definition 1.6. Let (X, d) be a metric space, and F a nonempty subset of X. A
sequence {xn} is called Fejér convergent to F if for each element p ∈ F , d(xn+1, p) ≤
d(xn, p), n ≥ 0.

Having in mind these helpful connections with the space R2, we need the following
property (which, in fact, is a feature of uniformly convex Banach spaces).
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Lemma 1.7 ([23, p. 484]). Let (R2, ∥·∥) be the usual Euclidean space, tn ∈ [a, b] ⊂
(0, 1), for all n ≥ 0. Presume that {xn} and {yn} are sequences in R2, such that

• lim supn→∞ ∥xn∥ ≤ r;
• lim supn→∞ ∥yn∥ ≤ r;
• lim supn→∞ ∥tnxn + (1− tn)yn∥ = r.
Then limn→∞ ∥xn − yn∥ = 0.

2. Convergence study

Consider that (M, ⟨·, ·, ⟩) is a Hadamard manifold, C a nonempty, closed, and
geodesically convex subset of M , and T : C → C is a nonexpansive mapping. {an},
{bn}, and {cn} are sequences from (0, 1).

The first part of the study is motivated by a numerical method proposed in [3].
Consider x0 ∈ C, and define

xn+1 = expzn an exp
−1
zn Tzn,

yn = expxn
bn exp

−1
xn

Txn,(2.1)

zn = expTxn
cn exp

−1
Txn

Tyn, n ≥ 0.

For n ≥ 0, consider
• γ1 : [0, 1] → M the geodesic which joins zn with Tzn.
• γ2 : [0, 1] → M the geodesic which joins xn with Txn,
• γ3 : [0, 1] → M the geodesic joining the points Txn with Tyn.
In the geodesics language, for a given value x0 ∈ C, the iteration procedure is

xn+1 = γ1(an),

yn = γ2(bn),

zn = γ3(cn), n ≥ 0.

With respect to this iterative process, we have the following convergence result.

Theorem 2.1. Let (M, ⟨·, ·⟩) be a Hadamard manifold, d the Riemannian distance,
and C a nonempty, closed, and geodesically convex subset of M . Suppose that
F , the set of fixed points of T , is nonempty, and that {an}, {cn} ⊂ (0, 1), and
bn ∈ [a, b] ⊂ (0, 1), n ≥ 0. Then the sequence generated by the iterative procedure
(2.1) converges to a fixed point of T .

Proof. Let p be a fixed point of the mapping T .
Having in mind that the Riemannian distance d is a convex function, we obtain

d(yn, p) = d(γ2(bn), p) ≤ (1− bn)d(xn, p) + bnd(Txn, p)

≤ (1− bn)d(xn, p) + bnd(xn, p)

= d(xn, p), n ≥ 0.(2.2)

Also, by the use of the same property, we obtain

d(zn, p) = d(γ3(cn), p) ≤ (1− cn)d(Txn, p) + cnd(Tyn, p)

≤ (1− cn)d(xn, p) + cnd(yn, p) ≤ d(xn, p), n ≥ 0.(2.3)
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Taking advantage of these two relations, the definition of the sequence {xn} and
the nonexpansivness of T , it follows

d(xn+1, p) = d(γ1(an), p) ≤ (1− an)d(zn, p) + and(Tzn, p)

≤ (1− an)d(zn, p) + and(zn, p)(2.4)

≤ d(xn, p), n ≥ 0.

We have obtained d(xn+1, p) ≤ d(xn, p), for n ≥ 0. Let r = limn→∞ d(xn, p).
By applying lim sup in inequalities (2.2) and (2.3), we obtain

(2.5)
lim supn→∞ d(yn, p) ≤ r,
lim supn→∞ d(zn, p) ≤ r.

Taking advantage of (2.4), we obtain

d(xn+1, p) ≤ d(zn, p), n ≥ 0.

Combining this inequality with relations (2.5), we get

r = lim
n→∞

d(xn+1, p) ≤ lim inf
n→∞

d(zn, p) ≤ lim sup
n→∞

d(zn, p) ≤ r.

It follows that limn→∞ d(zn, p) exists and equals r. Focusing now on d(yn, p), from
(2.3) we get

d(zn, p)− d(xn, p) ≤ cn(d(yn, p)− d(xn, p)) ≤ d(yn, p)− d(xn, p), n ≥ 0,

so
d(zn, p) ≤ d(yn, p), n ≥ 0.

This leads to r ≤ lim infn→∞ d(yn, p) ≤ r; furthermore r = limn→∞ d(yn, p).
Let n ≥ 0 be fixed, and the geodesic triangle ∆(xn, Txn, p) with the vertices

xn, Txn, and p. By Lemma 1.4, there exists a corresponding comparison triangle

∆(x̃n, T̃ xn, p̃). The corresponding comparison point of yn, which is a point on the

geodesic γ2 joining the points xn and Txn, is ỹn = (1 − bn)x̃n + bn ˜Txn. Using
Lemma 1.5, we obtain

d(yn, p) ≤ ∥ỹn − p̃∥ =
∥∥∥(1− bn)x̃n + bnT̃ xn − p̃

∥∥∥
≤ (1− bn) ∥x̃n − p̃∥+ bn

∥∥∥T̃ xn − p̃
∥∥∥

= (1− bn)d(xn, p) + bnd(Txn, p)

≤ d(xn, p), n ≥ 0.

Taking n → ∞, it follows

(2.6) r = lim
n→∞

∥∥∥(1− bn)(x̃− p̃) + bn(T̃ xn − p̃)
∥∥∥ .

The nonexpansiveness of the mapping T implies d(Txn, p) ≤ d(xn, p), and it
follows

lim sup
n→∞

∥∥∥T̃ xn − p̃
∥∥∥ = lim sup

n→∞
d(Txn, p) ≤ r.

This relation, together with the equalities limn→∞ ∥x̃n − p̃∥ = r and (2.6), com-

pel limn→∞

∥∥∥T̃ xn − x̃n

∥∥∥ = 0, after using Lemma 1.7. Eventually, we obtain that

limn→∞ d(Txn, xn) = 0.
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Relation (2.4) states that the sequence {xn} is Fejér convergent. Let x be a
cluster point of {xn}, and {xnk

} be a subsequence of it, which has the limit x.
Keeping in mind that

d(x, Tx) ≤ d(x, xnk
) + d(xnk

, Txnk
) + d(Txnk

, Tx)

≤ d(x, xnk
) + d(xnk

, Txnk
) + d(xnk

, x), k ≥ 0.

and considering k → ∞, we obtain that x is a fixed point of the mapping T . □

We continue our study with a process inspired by [9] and [21]. For x0 ∈ C, define

xn+1 = expTxn
an exp

−1
Txn

Tzn,

yn = expxn
bn exp

−1
xn

Txn,(2.7)

zn = expAxn
cn exp

−1
Axn

Tyn, n ≥ 0,

where Axn = xn, for all n ≥ 0, or Axn = Txn, for all n ≥ 0. Here {an}, {bn}, and
{cn} ⊂ (0, 1).

Let n ≥ 0, and denote by
• γ1 : [0, 1] → M the geodesic which joins Txn with Tzn.
• γ2 : [0, 1] → M the geodesic which joins xn with Txn,
• γ3 : [0, 1] → M the geodesic joining the points Axn with Tyn.
Using these tools, for a given value x0 ∈ C, the iteration procedure can be

described as

xn+1 = γ1(an),

yn = γ2(bn),

zn = γ3(cn), n ≥ 0.

We are ready now to state our result on this iteration procedure.

Theorem 2.2. Let (M, ⟨·, ·⟩) be a Hadamard manifold, d the Riemannian distance,
and C a nonempty, closed, and convex subset of M . Suppose that F , the set of
fixed points of T , is nonempty, and that {an}, {cn} ⊂ (0, 1), and bn ∈ [a, b] ⊂ (0, 1).
Then the sequence generated by the iteration process (2.7) is convergent to a fixed
point of T .

Proof. Let p be a fixed point of the mapping T .
As in Theorem 2.1, it can be shown that

d(yn, p) ≤ d(xn, p), n ≥ 0.(2.8)

Furthermore,

d(zn, p) = d(γ3(cn), p) ≤ (1− cn)d(Axn, p) + cnd(yn, p)

≤ (1− cn)d(xn, p) + cnd(yn, p) ≤ d(xn, p), n ≥ 0.(2.9)

By combining these relations with the definition of the sequence {xn} and the
nonexpansivness of T , we have

d(xn+1, p) = d(γ1(an), p) ≤ (1− an)d(Txn, p) + and(Tzn, p)

≤ (1− an)d(xn, p) + and(zn, p)(2.10)
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≤ d(xn, p), n ≥ 0.

We have proved that d(xn+1, p) ≤ d(xn, p), for n ≥ 0. Let r = limn→∞ d(xn, p).
By applying lim sup in inequalities (2.8) and (2.9), we obtain

(2.11)
lim supn→∞ d(yn, p) ≤ r,
lim supn→∞ d(zn, p) ≤ r.

Taking advantage of (2.10), we obtain

d(xn+1, p) ≤ (1− an)d(xn, p) + and(zn, p), n ≥ 0.

Furthermore,

d(xn+1, p)− d(xn, p) ≤ an(d(zn, p)− d(xn, p)) ≤ d(zn, p)− d(xn, p), n ≥ 0.

Therefore, d(xn+1, p) ≤ d(zn, p), n ≥ 0. Having in mind also relations (2.11), we
get

r = lim
n→∞

d(xn+1, p) ≤ lim inf
n→∞

d(zn, p) ≤ lim sup
n→∞

d(zn, p) ≤ r.

Therefore, limn→∞ d(zn, p) exists and its value is r. Moving now towards d(yn, p),
from (2.9) we get

d(zn, p)− d(xn, p) ≤ cn(d(yn, p)− d(xn, p)) ≤ d(yn, p)− d(xn, p), n ≥ 0,

that is

d(zn, p) ≤ d(yn, p), n ≥ 0.

It follows that r ≤ lim infn→∞ d(yn, p) ≤ r, so r = limn→∞ d(yn, p).
For n ≥ 0 fixed, consider the geodesic triangle ∆(xn, Txn, p) with the vertices xn,

Txn, and p. According to Lemma 1.4, there is a corresponding comparison triangle

∆(x̃n, T̃ xn, p̃). The corresponding comparison point of yn, a point on the geodesic

γ2, which joins the points xn and Txn, is ỹn = (1−bn)x̃n+bn ˜Txn. Applying Lemma
1.5, we are led to the following relations

d(yn, p) ≤ ∥ỹn − p̃∥ =
∥∥∥(1− bn)x̃n + bnT̃ xn − p̃

∥∥∥
≤ (1− bn) ∥x̃n − p̃∥+ bn

∥∥∥T̃ xn − p̃
∥∥∥

= (1− bn)d(xn, p) + bnd(Txn, p)

≤ d(xn, p), n ≥ 0.

If n → ∞, we can draw the conclusion that

(2.12) r = lim
n→∞

∥∥∥(1− bn)(x̃− p̃) + bn(T̃ xn − p̃)
∥∥∥ .

Having in mind the nonexpansiveness of the mapping T , we get d(Txn, p) ≤
d(xn, p), hence lim supn→∞

∥∥∥T̃ xn − p̃
∥∥∥ = lim supn→∞ d(Txn, p) ≤ r. Taking advan-

tage of this relation and also combining the fact that limn→∞ ∥x̃n − p̃∥ = r with

equality (2.12), by applying Lemma 1.7, we obtain limn→∞

∥∥∥T̃ xn − x̃n

∥∥∥ = 0, which

compels limn→∞ d(Txn, xn) = 0.
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Using relation (2.10) we obtain that the sequence {xn} is Fejér convergent. Let
x be a cluster point of {xn}, and {xnk

} be a subsequence of it, which has the limit
x. By taking k → ∞ in the following inequalities

d(x, Tx) ≤ d(x, xnk
) + d(xnk

, Txnk
) + d(Txnk

, Tx)

≤ d(x, xnk
) + d(xnk

, Txnk
) + d(xnk

, x), k ≥ 0,

we get Tx = x, and the theorem has been proved. □

The next proposed iteration procedure is motivated by [14], and [17], as in the
next lines; x0 ∈ C fixed.

xn+1 = expTyn an exp
−1
Tyn

Tzn,

yn = expxn
bn exp

−1
xn

Txn,(2.13)

zn = expyn cn exp
−1
yn An, n ≥ 0,

where {an}, {bn}, {cn} are control sequences in (0, 1), and An = xn, for all n ≥ 0,
or An = Tyn, for all n ≥ 0.

Plainly speaking, let us fix n ≥ 0. Denote by
• γ1 : [0, 1] → M the geodesic which joins Tyn with Tzn.
• γ2 : [0, 1] → M the geodesic which joins xn with Txn,
• γ3 : [0, 1] → M the geodesic joining the points yn with An.
If x0 ∈ C, in terms of geodesics, the above iteration scheme shows as

xn+1 = γ1(an),

yn = γ2(bn),

zn = γ3(cn), n ≥ 0.

We introduce now a convergence theorem with respect to this numerical algo-
rithm.

Theorem 2.3. Let (M, ⟨·, ·⟩) be a Hadamard manifold and C a nonempty, closed,
and convex subset of M , and d the Riemannian distance. Suppose that F , the set
of fixed points of T , is nonempty, and that {an}, {cn} ⊂ (0, 1), bn ∈ [a, b] ⊂ (0, 1).
Then the sequence generated by the iteration process (2.13) is convergent to a fixed
point of T .

Proof. Let p be a fixed point of the mapping T .
Similarly to the proof in Theorem 2.1, it can be proved that

d(yn, p) ≤ d(xn, p), n ≥ 0.(2.14)

Moving now on to the sequence {zn}, keeping in mind the previous relation and the
fact that T is nonexpansive, we get

d(zn, p) = d(γ3(cn), p) ≤ (1− cn)d(yn, p) + cnd(An, p)

≤ (1− cn)d(xn, p) + cnd(yn, p)

≤ d(xn, p), n ≥ 0.(2.15)

Using relations (2.14), and (2.15), we obtain

d(xn+1, p) = d(γ1(an), p) ≤ (1− an)d(Tyn, p) + and(Tzn, p)
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≤ (1− an)d(yn, p) + and(zn, p)(2.16)

≤ d(xn, p), n ≥ 0.

It follows that d(xn+1, p) ≤ d(xn, p), for n ≥ 0. Denote by r the limit of the
nonincreasing sequence {d(xn, p)}.

Having in mind again inequalities (2.14) and (2.15), we get

(2.17)
lim supn→∞ d(yn, p) ≤ r,
lim supn→∞ d(zn, p) ≤ r.

From relation (2.16), it follows that

d(xn+1, p) ≤ (1− an)d(yn, p) + and(zn, p), n ≥ 0,

therefore

d(xn+1, p)− d(yn, p) ≤ an(d(zn, p)− d(yn, p)) ≤ d(zn, p)− d(yn, p), n ≥ 0.

It follows that d(xn+1, p) ≤ d(zn, p), n ≥ 0. Since from (2.15) we also have that
d(zn, p) ≤ d(yn, p), n ≥ 0, we get that d(xn+1, p) ≤ d(yn, p), n ≥ 0. By applying
inequalities (2.17), it follows

r = lim
n→∞

d(xn+1, p) ≤ lim inf
n→∞

d(yn, p) ≤ lim sup
n→∞

d(yn, p) ≤ r.

Hence, limn→∞ d(yn, p) = r.
Following the footsteps of the proof of Theorem 2.1 and Theorem 2.2, it can be

seen that limn→∞ d(Txn, xn) = 0.
From (2.16) follows that {xn} is a Fejér convergent sequence. Let x be a cluster

point of {xn}, and {xnk
} be a subsequence with the limit x. Since

d(x, Tx) ≤ d(x, xnk
) + d(xnk

, Txnk
) + d(Txnk

, Tx)

≤ d(x, xnk
) + d(xnk

, Txnk
) + d(xnk

, x), k ≥ 0,

it follows that d(Tx, x) = 0, so x is a fixed point of the mapping T . □
We continue our study being inspired by a numerical method proposed in [18].

Let x0 ∈ C, {αn}, {βn}, {bn}, {An}, and {Bn} be sequences in (0, 1), such that
αn + βn < 1, n ≥ 0, and An +Bn < 1, n ≥ 0. Define

xn+1 = expxn
(αn + βn) exp

−1
xn

x̄n,

x̄n = expTzn

βn
αn + βn

exp−1
Tzn

Tyn

yn = expxn
bn exp

−1
xn

Txn,(2.18)

zn = expxn
(An +Bn) exp

−1
xn

z̄n,

z̄n = expTyn

Bn

An +Bn
exp−1

Tyn
Txn, n ≥ 0.

For n ≥ 0, consider
• γ1 : [0, 1] → M the geodesic which joins xn with x̄n,
• γ̄1 : [0, 1] → M the geodesic which joins Tzn with Tyn,
• γ2 : [0, 1] → M the geodesic which joins xn with Txn,
• γ3 : [0, 1] → M the geodesic joining the points xn with z̄n,
• γ̄3 : [0, 1] → M the geodesic joining the points Tyn with Txn.
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For a given value x0 ∈ C, the iteration procedure can be expressed by the use of
geodesics, as seen

xn+1 = γ1(αn + βn),

x̄n = γ̄1

(
βn

αn + βn

)
,

yn = γ2(bn),

zn = γ3(An +Bn),

z̄n = γ̄3

(
Bn

An +Bn

)
, n ≥ 0.

With respect to this iterative process, we have the following convergence result.
Here we have used the control sequences {αn}, {βn}, {an}, {bn}, {An}, and {Bn}
from the interval (0, 1), such that αn + βn < 1, n ≥ 0, and An +Bn < 1, n ≥ 0.

Theorem 2.4. Let (M, ⟨·, ·⟩) be a Hadamard manifold, d the Riemannian distance,
and C a nonempty, closed, and convex subset of M . Suppose that F , the set of fixed
points of T , is nonempty, and that bn ∈ [a, b] ⊂ (0, 1), n ≥ 0. Then the sequence
generated by the iterative procedure (2.18) converges to a fixed point of T .

Proof. Consider p a fixed point of the mapping T .
Analogously to the proof of Theorem 2.1, it can be proved that

d(yn, p) ≤ d(xn, p), n ≥ 0.(2.19)

Also, by the use of the same property, and the nonexpansiveness of the mapping T ,
we get

d(z̄n, p) ≤ An

An +Bn
d(Tyn, p) +

Bn

An +Bn
d(Txn, p)

≤ An

An +Bn
d(yn, p) +

Bn

An +Bn
d(xn, p)

≤ d(xn, p), n ≥ 0.

Furthermore,

d(zn, p) = d(γ3(An +Bn), p)

≤ (1−An −Bn)d(xn, p) + (An +Bn)d(z̄n, p) ≤ d(xn, p), n ≥ 0.(2.20)

Moreover, the nonexpansivness of T compels

d(x̄n, p) = d

(
γ̄1

(
βn

αn + βn

)
, p

)
≤ αn

αn + βn
d(Tzn, p) +

βn
αn + βn

d(Tyn, p)

≤ αn

αn + βn
d(zn, p) +

βn
αn + βn

d(yn, p)

≤ d(xn, p), n ≥ 0.(2.21)

This leads to

d(xn+1, p) = d(γ1(αn + βn), p) ≤ (1− αn − βn)d(xn, p) + (αn + βn)d(x̄n, p)
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≤ d(xn, p), n ≥ 0.(2.22)

We have obtained that d(xn+1, p) ≤ d(xn, p), n ≥ 0. Let r = limn→∞ d(xn, p).
Taking the superior limit in inequalities (2.19), (2.20), and (2.21), we get that

(2.23)

lim supn→∞ d(yn, p) ≤ r,
lim supn→∞ d(zn, p) ≤ r,
lim supn→∞ d(x̄n, p) ≤ r.
.

Having in mind relation (2.22), we obtain

d(xn+1, p)− d(xn, p)≤(αn + βn)(d(x̄n, p)− d(xn, p))≤d(x̄n, p)− d(xn, p), n ≥ 0,

hence d(xn+1, p) ≤ d(x̄n, p), for all n ≥ 0. Taking also into consideration relations
(2.23), it follows

r = lim
n→∞

d(xn+1, p) ≤ lim inf
n→∞

d(x̄n, p) ≤ lim sup
n→∞

d(x̄n, p) ≤ r.

It follows that limn→∞ d(x̄n, p) exists and equals r.
Taking into consideration relations (2.21), we have

d(x̄n, p)− d(zn, p)≤
bn

an + bn
(d(yn, p)− d(zn, p))≤d(yn, p)− d(zn, p), n ≥ 0,

hence d(x̄n, p) ≤ d(yn, p), for any n ≥ 0. Proceeding as previously, we obtain
r = limn→∞ d(yn, p), and also limn→∞ d(Txn, xn) = 0.

Relation (2.22) imposes the Fejér convergence of the sequence {xn}. Let x be a
cluster point of {xn}, and {xnk

} be a subsequence of it, which has the limit x. By
using the next relations

d(x, Tx) ≤ d(x, xnk
) + d(xnk

, Txnk
) + d(Txnk

, Tx)

≤ d(x, xnk
) + d(xnk

, Txnk
) + d(xnk

, x), k ≥ 0,

and taking k → ∞, we get that x is a fixed point of the mapping T . □
We move on now and propose an iteration process on Hadamard manifolds, mo-

tivated by [8]. We take x0 ∈ C, {αn}, {βn}, {bn}, {An}, and {Bn} sequences in
(0, 1) such that αn + βn < 1, n ≥ 0, An +Bn < 1, n ≥ 0. Consider

xn+1 = expzn(αn + βn) exp
−1
zn x̄n,

x̄n = expTzn

βn
αn + βn

exp−1
Tzn

Tyn

yn = expxn
bn exp

−1
xn

Txn,(2.24)

zn = expyn(An +Bn) exp
−1
yn z̄n,

z̄n = expTyn

Bn

An +Bn
exp−1

Tyn
Txn, n ≥ 0.

Let us fix n ≥ 0, and define the next geodesics.
• γ1 : [0, 1] → M the geodesic which joins zn with x̄n,
• γ̄1 : [0, 1] → M the geodesic which joins Tzn with Tyn,
• γ2 : [0, 1] → M the geodesic which joins xn with Txn,
• γ3 : [0, 1] → M the geodesic joining the points yn with z̄n,
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• γ̄3 : [0, 1] → M the geodesic joining the points Tyn with Txn.
For a given value x0 ∈ C, the ”geodesic” form of the above iteration is

xn+1 = γ1(αn + βn),

x̄n = γ̄1

(
βn

αn + βn

)
,

yn = γ2(bn),

zn = γ3(An +Bn),

z̄n = γ̄3

(
Bn

An +Bn

)
, n ≥ 0.

We state and prove a convergence result for the proposed scheme; the control
sequences are {αn}, {βn}, {an}, {bn}, {An}, and {Bn}, all from the interval (0, 1),
such that αn + βn < 1, n ≥ 0, and An +Bn < 0, n ≥ 0.

Theorem 2.5. Consider the Hadamard manifold (M, ⟨·, ·⟩), d the Riemannian dis-
tance, and C a nonempty, closed, and convex subset of M . Suppose that F , the set
of fixed points of T , is nonempty, and that bn ∈ [a, b] ⊂ (0, 1), n ≥ 0. Then the
sequence generated by the iterative procedure (2.24) converges to a fixed point of T .

Proof. Let p be a fixed point of the mapping T .
As previously,

d(yn, p) ≤ d(xn, p), n ≥ 0.(2.25)

Applying the convexity of the distance function d, and the nonexpansiveness of the
mapping T , it yields

d(z̄n, p) ≤ An

An +Bn
d(Tyn, p) +

Bn

An +Bn
d(Txn, p)

≤ An

An +Bn
d(yn, p) +

Bn

An +Bn
d(xn, p)

≤ d(xn, p), n ≥ 0.

Moreover,

d(zn, p) = d(γ3(An +Bn), p)

≤ (1−An −Bn)d(yn, p) + (An +Bn)d(z̄n, p) ≤ d(xn, p), n ≥ 0.

The nonexpansivness of T enables the next relations

d(x̄n, p) = d

(
γ̄1

(
βn

αn + βn

)
, p

)
≤ αn

αn + βn
d(Tzn, p) +

βn
αn + βn

d(Tyn, p)

≤ αn

αn + βn
d(zn, p) +

βn
αn + βn

d(yn, p)

≤ d(xn, p), n ≥ 0.

It follows that

d(xn+1, p)=d(γ1(αn + βn), p) ≤ (1− αn − βn)d(xn, p) + (αn + βn)d(x̄n, p)
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≤ d(xn, p), n ≥ 0.(2.26)

Therefore, d(xn+1, p) ≤ d(xn, p), for n ≥ 0. Let r = limn→∞ d(xn, p) be the limit of
this nonincreasing sequence.

As in the previous theorems, it can be proved that limn→∞ d(Txn, xn) = 0.
From (2.26), the sequence {xn} is Fejér convergent. Let x be a cluster point of

{xn}, and {xnk
} be a subsequence of it with the limit x. As

d(x, Tx) ≤ d(x, xnk
) + d(xnk

, Txnk
) + d(Txnk

, Tx)

≤ d(x, xnk
) + d(xnk

, Txnk
) + d(xnk

, x), k ≥ 0,

taking k → ∞, we obtain that Tx = x. □

Following the footsteps of [7], we introduce another iterative method, which might
be considered a four-step one. Let {an}, and {bn} be sequences in (0, 1). We take
x0 ∈ C, and

xn+1 = T (expyn an exp
−1
yn Tyn),

yn = T (expxn
bn exp

−1
xn

Txn), n ≥ 0.(2.27)

Consider n ≥ 0, and denote by
• γ1 : [0, 1] → M the geodesic which joins yn with Tyn,
• γ2 : [0, 1] → M the geodesic which joins xn with Txn.
For x0 ∈ C, let us express the iteration formulae in terms of geodesics.

xn+1 = Tγ1(an),

yn = Tγ2(bn), n ≥ 0.

Theorem 2.6. Let (M, ⟨·, ·⟩) be a Hadamard manifold and C a nonempty, closed,
and convex subset of M , and d the Riemannian distance. Suppose that F , the set
of fixed points of T , is nonempty, and that {an} ⊂ (0, 1), bn ∈ [a, b] ⊂ (0, 1), n ≥ 0.
Then the sequence generated by the iteration process (2.27) is convergent to a fixed
point of T .

Proof. Consider p a point from F .
Having in mind the nonexpansiveness of T , and the fact that d is a convex

function, we obtain

d(yn, p) = d(Tγ2(bn), p) ≤ d(γ2(bn), p)

≤ (1− bn)d(xn, p) + bnd(Txn, p)

≤ (1− bn)d(xn, p) + bnd(xn, p)

= d(xn, p), n ≥ 0.(2.28)

Taking advantage of the previous relation, we get

d(xn+1, p) = d(Tγ1(an), p) ≤ d(γ1(an), p)

≤ (1− an)d(yn, p) + and(Tyn, p)

≤ d(yn, p) ≤ d(xn, p), n ≥ 0.

It follows that d(xn+1, p) ≤ d(xn, p), for n ≥ 0. Denote r = limn→∞ d(xn, p).
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From (2.28), it follows that

(2.29) lim supn→∞ d(yn, p) ≤ r.

From relation (2.29), it follows that d(xn+1, p) ≤ d(yn, p), n ≥ 0, which, combined
with the above relation leads to

r = lim
n→∞

d(xn+1, p) ≤ lim inf
n→∞

d(yn, p) ≤ lim sup
n→∞

d(yn, p) ≤ r.

Therefore, there exists limn→∞ d(yn, p) = r.
The last part of the proof is similar to that of the previous theorem, that is why

we omit it. □

The last iteration method proposed here is motivated by [20]. For a start value
x0 ∈ C, and the control sequences {bn}, {cn} in the interval (0, 1), define

xn+1 = Tzn,

yn = expxn
bn exp

−1
xn

Txn,(2.30)

zn = T (expxn
cn exp

−1
xn

yn), n ≥ 0.

Consider n ≥ 0, and denote by
• γ2 : [0, 1] → M the geodesic which joins xn with Txn,
• γ3 : [0, 1] → M the geodesic which connects xn with yn.
Let x0 ∈ C. Then the iterative scheme can be written as follows.

xn+1 = Tzn,

yn = γ2(bn), ,

zn = Tγ3(cn), n ≥ 0.(2.31)

The next result assures the convergence of the proposed algorithm.

Theorem 2.7. Let (M, ⟨·, ·⟩) be a Hadamard manifold and C a nonempty, closed,
and convex subset of M , and d the Riemannian distance. Suppose that F , the set of
fixed points of T , is nonempty, and that bn ∈ [a, b] ⊂ (0, 1), cn ∈ (0, 1), n ≥ 0. Then
the sequence generated by the iteration process (2.30) converges to a fixed point of
T .

Proof. Let p be a point from F .
The definition of the sequence {yn} allows the following relations

d(yn, p) = d(γ2(bn), p) ≤ (1− bn)d(xn, p) + bnd(Txn, p)

≤ (1− bn)d(xn, p) + bnd(xn, p)

= d(xn, p), n ≥ 0.(2.32)

This inequalities lead us to

d(zn, p) ≤ (1− cn)d(xn, p) + cnd(yn, p)

≤ d(xn, p), n ≥ 0.

Furthermore,

d(xn+1, p) = d(Tzn, p) ≤ d(zn, p) ≤ d(xn, p), n ≥ 0.(2.33)
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It follows that

d(xn+1, p) ≤ d(zn, p) ≤ d(xn, p),

for n ≥ 0. Denote by r the limit of the nondecreasing sequence {d(xn, p)}. Also,
we get that {d(zn, p)} is convergent to r.

Inequalities (2.32) compel

d(zn, p)− d(xn, p) ≤ cn(d(yn, p)− d(xn, p)) ≤ d(yn, p)− d(xn, p), n ≥ 0.

Therefore, d(zn, p) ≤ d(yn, p), n ≥ 0. Keeping in mind that d(yn, p) ≤ d(xn, p),
n ≥ 0, we obtain that limn→∞ d(yn, p) = r.

The last part of the proof being analogous to the proof of the theorem regarding
the convergence of iteration (2.24), we skip it. □

3. Stability analysis

An important issue in studying the properties of an iteration scheme is its nu-
merical stability, namely deciding if small variations of the initial values considered
in the process lead to small changes in the numerical value of the approximated
fixed point. The notion of T-stability was first introduced by Harder and Hicks [5],
in the setting of normed spaces.

In the following, (M, ⟨·, ·⟩) is a Hadamard manifold, d is the geodesic distance,
and C is a nonempty, closed, and geodesically convex subset of M .

Definition 3.1 ([5]). Let {tn} be an arbitrary sequence in C. Consider an it-
eration process xn+1 = f(T, xn) converging to a unique fixed point p, and εn =
d(tn+1, f(T, tn)), n ≥ 0, where {tn} is a sequence from C. This procedure is called
T-stable (or stable with respect to T ), if the following equivalence holds

lim
n→∞

εn = 0 ⇔ lim
n→∞

tn = p

This time we need a stronger type of mappings instead of the nonexpansive ones,
namely the contraction mappings.

Our first result on stability is with regard to iteration (2.1).

Theorem 3.2. Let (M, ⟨·, ·⟩) be a Hadamard manifold, d the geodesic distance,
C be a nonempty, closed, and geodesically convex subset of M . T : C → C is a
contraction of constant k, with the fixed point p. Then iteration (2.1) is T-stable.

Proof. Consider that {xn} is the sequence obtained by applying the iteration pro-
cedure (2.1).

Having in mind the definition of the considered iteration procedure, the convexity
of d, and the form of the generalized contraction, we obtain

d(yn, p) ≤ (1− bn)d(xn, p) + bnd(Txn, p)

≤ (1− bn)d(xn, p) + kbnd(xn, p)

≤ d(xn, p), n ≥ 0.

Furthermore,

d(zn, p) ≤ (1− cn)d(Txn, p) + cnd(Tyn, p)

≤ k(1− cn)d(xn, p) + kcnd(yn, p)
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≤ kd(xn, p), n ≥ 0.

By using this inequality, and the convexity of d, it follows

d(xn+1, p) ≤ (1− an)d(zn, p) + and(Tzn, p)

≤ (1− an)d(zn, p) + kand(zn, p)

≤ d(zn, p) ≤ kd(xn, p), n ≥ 0.(3.1)

Let {tn} be an arbitrary sequence from C. Denote by f(T, tn) the iteration
scheme (2.1), and εn = d(tn+1, f(T, tn)), n ≥ 0. We are ready now to move on
to the stability analysis. First, we presume that limn→∞ εn = 0, and prove that
limn→∞ tn = p.

Keeping in mind inequality (3.1), the next inequalities hold true

d(tn+1, p) ≤ d(tn+1, f(T, tn)) + d(f(T, tn), p)

≤ εn + kd(tn, p), n ≥ 0.

Let l = lim supn→∞ d(tn, p). Since εn → 0, it follows that l = kl, therefore l = 0.
We have proved that limn→∞ tn = p.

Conversely, let us assume that limn→∞ tn = p; we prove that limn→∞ εn = 0.
The following relations hold true

εn = d(tn+1, f(T, tn))

≤ d(tn+1, p) + d(f(T, tn), p)

≤ d(tn+1, p) + kd(tn, p), n ≥ 0.

Taking into consideration the hypothesis, we get εn → 0, as n → ∞.
It has been proved that the process (2.1) is T-stable. □
We move on now to iterations of type (2.7), by stating the next result.

Theorem 3.3. Let (M, ⟨·, ·⟩) be a Hadamard manifold, d the geodesic distance, C be
a nonempty, closed, and geodesically convex subset of M . Consider that T : C → C
is a contraction on C, of constant k. Then process (2.7) is T-stable.

Proof. Let us denote the unique fixed point of the mapping T by p, and by {xn}
the sequence obtained by applying the iteration procedure (2.7).

The iteration procedure, combined with the convexity of d, and the form of the
generalized contraction, compel

d(yn, p) ≤ (1− bn)d(xn, p) + bnd(Txn, p)

≤ (1− bn)d(xn, p) + kd(xn, p)

≤ d(xn, p), n ≥ 0.

Taking advantage of the fact that T is also a contractive mapping, we obtain

d(zn, p) ≤ (1− cn)d(Axn, p) + cnd(Tyn, p)

≤ (1− cn)d(xn, p) + kcnd(yn, p)

≤ d(xn, p), n ≥ 0.

By using this inequality, we get

d(xn+1, p) ≤ (1− an)d(Txn, p) + and(Tyn, p)
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≤ k(1− an)d(xn, p) + kand(yn, p)

≤ kd(xn, p), n ≥ 0.(3.2)

Let {tn} be an arbitrary sequence from C. Denote by f(T, tn) the iteration
scheme (2.7), and εn = d(tn+1, f(T, tn)), n ≥ 0. Suppose that limn→∞ εn = 0.

Relation (3.2) imposes

d(tn+1, p) ≤ d(tn+1, f(T, tn)) + d(f(T, tn), p)

≤ εn + kd(tn, p), n ≥ 0.

We have obtained that {d(tn, p)} is a sequence in the same conditions as Theorem
3.2. Analogously, it follows d(tn, p) → 0.

Conversely, suppose that limn→∞ tn = p.
The following relations hold true

εn = d(tn+1, f(T, tn))

≤ d(tn+1, p) + d(f(T, tn), p)

≤ d(tn+1, p) + kd(tn, p), n ≥ 0.

Our assumption compels εn → 0, as n → ∞.
We have proved that iterations of type (2.7) are T-stable. □
Next, we refer to iterations of type (2.13).

Theorem 3.4. Consider (M, ⟨·, ·⟩) a Hadamard manifold, d the geodesic distance.
Let C be a nonempty, closed, and geodesically convex subset of M . Consider that
T : C → C is a contraction on C, with constant k. Then the iteration process (2.13)
is T-stable.

Proof. Consider that p is the unique fixed point of the mapping T , and {xn} is the
sequence obtained with the help of the iteration procedure (2.13).

The convexity of d, and the form of the generalized contraction, compel

d(yn, p) ≤ (1− bn)d(xn, p) + bnd(Txn, p)

≤ (1− bn)d(xn, p) + bnd(xn, p)

≤ d(xn, p), n ≥ 0.

Furthermore,

d(zn, p) ≤ (1− cn)d(yn, p) + cnd(An, p)

≤ (1− cn)d(xn, p) + cnd(xn, p)

= d(xn, p), n ≥ 0.

Having in mind the last two inequalities, we get

d(xn+1, p) ≤ (1− an)d(Tyn, p) + and(Tzn, p)

≤ k(1− an)d(yn, p) + kand(zn, p)

≤ kd(xn, p), n ≥ 0.

The rest of the proof is similar to those of Theorem 3.2, and Theorem 3.3, therefore
we omit it. □

With respect to process (2.18), we have obtained the next result.
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Theorem 3.5. Let (M, ⟨·, ·⟩) be a Hadamard manifold, d the geodesic distance, C be
a nonempty, closed, and geodesically convex subset of M . Consider that T : C → C
is a contraction of constant k. If αn + βn ∈ (A, 1) ⊂ (0, 1), for all n ≥ 0, then
(2.18) is T-stable.

Proof. Let us denote the unique fixed point of the mapping T by p, and by {xn}
the sequence obtained by applying the iteration procedure (2.18).

The iteration procedure, combined with the convexity of d, and the form of the
generalized contraction, compel

d(yn, p) ≤ (1− bn)d(xn, p) + bnd(Txn, p)

≤ (1− bn)d(xn, p) + kbnd(xn, p)

≤ d(xn, p), n ≥ 0.

By the nonexpansiveness of T , we obtain

d(zn, p) ≤ (1−An −Bn)d(xn, p) +And(Tyn, p) +Bnd(Txn, p)

≤ (1−An −Bn)d(xn, p) + kAnd(yn, p) + kBnd(xn, p)

≤ d(xn, p), n ≥ 0.

By using these inequalities, it follows

d(xn+1, p) ≤ (1− αn − βn)d(xn, p) + αnd(Tzn, p) + βnd(Tyn, p)

≤ (1− αn − βn)d(xn, p) + kαnd(zn, p) + kβnd(yn, p)

≤ (1− αn − βn)d(xn, p) + k(αn + βn)d(xn, p)

≤ k̄d(xn, p), n ≥ 0,(3.3)

where k̄ < 1.
Let {tn} be an arbitrary sequence from C. Denote by f(T, tn) the iteration

scheme (2.18), and εn = d(tn+1, f(T, tn)), n ≥ 0. Suppose that limn→∞ εn = 0.
A relation similar to (3.3) imposes

d(tn+1, p) ≤ d(tn+1, f(T, tn)) + d(f(T, tn), p)

≤ εn + k̄d(tn, p), n ≥ 0.

It follows that tn → p, as n → ∞.
Assume now that d(tn, p) → 0. It follows

εn = d(tn+1, f(T, tn))

≤ d(tn+1, p) + d(f(T, tn), p)

≤ d(tn+1, p) + k̄d(tn, p), n ≥ 0.

Our assumption compels εn → 0, as n → ∞. The proof is complete. □

With respect to process (2.24), we have obtained the next result.

Theorem 3.6. Consider that (M, ⟨·, ·⟩) is a Hadamard manifold, d the geodesic
distance, and C is a nonempty, closed, and geodesically convex subset of M . T : C →
C is a contraction of constant k. If αn + βn ∈ (A, 1) ⊂ (0, 1), for all n ≥ 0, then
the iterative process (2.24) is T-stable.
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Proof. Let p be the unique fixed point of the mapping T , and {xn} the sequence
obtained by applying the iteration procedure (2.24).

Keeping in mind the hypotheses of the theorem, it follows

d(yn, p) ≤ (1− bn)d(xn, p) + bnd(Txn, p)

≤ (1− bn)d(xn, p) + kbnd(xn, p)

≤ d(xn, p), n ≥ 0.

Moreover,

d(zn, p) ≤ (1−An −Bn)d(yn, p) +And(Tyn, p) +Bnd(Txn, p)

≤ (1−An −Bn)d(xn, p) + kAnd(yn, p) + kBnd(xn, p)

≤ d(xn, p), n ≥ 0.

Taking advantage of the previous inequalities, we obtain

d(xn+1, p) ≤ (1− αn − βn)d(zn, p) + αnd(Tzn, p) + βnd(Tyn, p)

≤ (1− αn − βn)d(zn, p) + kαnd(zn, p) + kβnd(yn, p)

≤ (1− αn − βn)d(xn, p) + k(αn + βn)d(xn, p), n ≥ 0.(3.4)

The inequality (3.4) being similar to that in (3.3), the rest of the proof follows
as in the case of that of Theorem 3.5. □

With respect to iteration (2.27), the following theorem holds true.

Theorem 3.7. Let (M, ⟨·, ·⟩) be a Hadamard manifold with d its geodesic dis-
tance, C be a nonempty, closed, and geodesically convex subset of M . Consider
that T : C → C is a contraction of constant k on C. Then procedure (2.27) is
T-stable.

Proof. Let p be the unique fixed point of T , and {xn} be the sequence obtained
after applying the iteration procedure (2.27).

From the hypotheses, we get

d(yn, p) = d(γ2(bn), p)

≤ (1− bn)d(xn, p) + bnd(xn, p)

≤ d(xn, p), n ≥ 0.

This inequality, combined with the monotone of φ compel

d(xn+1, p) = d(Tγ1(an), p) ≤ k(1− an)d(yn, p) + kand(Tyn, p)

≤ k(1− an)d(yn, p) + kand(yn, p)

≤ kd(xn, p), n ≥ 0.

The rest of the proof is similar to those of the previous theorems, therefore we
omit it. □

Furthermore, for process (2.30), we obtained the following result.

Theorem 3.8. Let C be a nonempty, closed, and geodesically convex subset of M ,
where (M, ⟨·, ·⟩) is a Hadamard manifold with d its geodesic distance. Consider that
T : C → C is a contraction on C of constant k. Then procedure (2.30) is T-stable.
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Proof. Let p be the unique fixed point of T , and {xn} be the sequence obtained by
using the iteration method (2.30).

The following relations hold true

d(yn, p) ≤ (1− bn)d(xn, p) + bnd(Txn, p))

≤ 1− bn)d(xn, p) + bnd(xn, p)

≤ d(xn, p), n ≥ 0.

Having in mind our assumptions, we get

d(zn, p) ≤ d(γ3(cn), p)

≤ (1− cn)d(xn, p) + cnd(yn, p)

≤ d(yn, p) ≤ d(xn, p), n ≥ 0.

We obtain

d(xn+1, p) = d(Tzn, p) ≤ kd(zn, p) ≤ kd(xn, p), n ≥ 0.

The rest of the proof is similar to those of Theorem 3.2, and Theorem 3.3, there-
fore we omit it. □

4. Data dependency analysis

The objective of this section is to develop data dependency issues related to
the proposed schemes. We shall mainly concentrate on the approximate mappings
study. Following [13], we give the following definition.

Definition 4.1. Consider that (M, ⟨·, ·⟩) is a Hadamard manifold, d its geodesic
distance, and C a nonempty, closed and convex subset of M . Let T , T̄ : C → C
be two mappings. The mapping T̄ is called an approximate mapping of T if there
exists ε > 0 such that d(Tx, T̄x) ≤ ε, for all x ∈ C.

Consider that T has a fixed point p, and T̄ has a fixed point p̄. A natural question
arises: does p̄ approximates p and, if it does, how good the approximation is? Also,
what means do we have in order to provide an estimate for d(p, p̄)?

In order to establish data dependency results, we need the next lemma.

Lemma 4.2 ([19]). Consider that {tn} is a sequence in (0, 1) so that
∑∞

n=0 tn = ∞,
and {sn}, {un} are nonnegative real number sequences, so that

sn+1 ≤ (1− tn)sn + tnun, n ≥ 0.

Then 0 ≤ lim supn→∞ sn ≤ lim supn→∞ un.

We start this part of our study by referring to the iterative method (2.1).

Theorem 4.3. Let (M, ⟨·, ·⟩) be a Hadamard manifold, d be the geodesic distance,
and C a nonempty, closed and convex subset of M . Let T : C → C be a contraction
mapping of constant k ∈ (0, 1) with the fixed point p, and T̄ : C → C be an approxi-
mate mapping of T , corresponding to ε > 0. Denote by {xn}, and {x̄n} the sequences
obtained by applying process (2.1) with respect to mappings T , and T̄ respectively.
Also, consider the control sequences {an}, {cn} ⊂ (0, 1), and bn ∈ [A,B] ⊂ (0, 1),
n ≥ 0. Then

d(p, p̄) ≤ ε

1− k
.
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Proof. The following relations hold true

d(Txn, T̄ x̄n) ≤ d(Txn, T x̄n) + d(T x̄n, T̄ x̄n)

≤ kd(xn, x̄n) + ε, n ≥ 0.

Analogously, it can be proved that

d(Tyn, T̄ ȳn) ≤ kd(yn, ȳn) + ε, n ≥ 0,(4.1)

d(Tzn, T̄ z̄n) ≤ kd(zn, z̄n) + ε, n ≥ 0.(4.2)

Let γ1 : [0, 1] → M be the geodesic which joins xn with Txn, for a fixed n ≥ 0,
and γ2 : [0, 1] → M the geodesic which connects x̄n with T̄ x̄n.

Moving on to the iteration scheme, we obtain

d(yn, ȳn) = d(γ1(bn), γ2(bn)) ≤ (1− bn)d(γ1(0), γ2(0)) + bnd(γ1(1), γ2(1))

≤ (1− bn)d(xn, x̄n) + bnd(Txn, T̄ x̄n)

≤ (1− bn)d(xn, x̄n) + bn(kd(xn, x̄n) + ε)

= (1− (1− k)bn)d(xn, x̄n) + εbn, n ≥ 0.(4.3)

Consider now γ3 as the geodesic which connects Txn with Tyn, and γ4 as the
geodesic joining¯̄xn with T̄ ȳn, for n ≥ 0 fixed. It follows

d(zn, z̄n) = d(γ3(cn), γ4(cn))

≤ (1− cn)d(γ3(0), γ4(0)) + cnd(γ3(1), γ4(1))

= (1− cn)d(Txn, T̄ x̄n) + cnd(Tyn, T̄ ȳn)

≤ (1− cn)
(
kd(xn, x̄n) + ε

)
+ cn

(
kd(yn, ȳn) + ε

)
≤ (1− cn)

(
kd(xn, x̄n) + ε

)
+cn

(
k(1− (1− k)bn)d(xn, x̄n) + kεbn + ε

)
= k(1− (1− k)bncn)d(xn, x̄n) + ε(1 + kbncn), n ≥ 0.(4.4)

Furthermore, denote by γ5, γ6 : [0, 1] → M the geodesics connecting zn with Tzn,
and z̄n with T̄ z̄n, respectively. By using relations (4.2), and (4.4), we obtain

d(xn+1, x̄n+1) = d(γ5(an), γ6(cn))

≤ (1− an)d(γ5(0), γ6(0)) + and(γ5(1), γ6(1))

= (1− an)d(zn, z̄n) + and(Tzn, T̄ z̄n)

≤ (1− an)d(zn, z̄n) + kand(zn, z̄n) + εan

=
(
1− (1− k)an

)
d(zn, z̄n) + εan

≤ k
(
1− (1− k)an

)(
1− (1− k)bncn

)
d(xn, x̄n)

+ε
((

1− (1− k)an
)
(1 + kbncn) + an

)
≤

(
1− (1− k)

(
1 + k(an + bncn)− k(1− k)anbncn

))
d(xn, x̄n)

+ε
(
1 + k(an + bncn)− k(1− k)anbncn

)
, n ≥ 0.

Applying Lemma 4.2 for tn = (1 − k)
(
1 + k(an + bncn) − k(1 − k)anbncn

)
, and

un = ε
1−k , it follows that d(p, p̄) ≤

ε
1−k . □
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With respect to iteration (2.7), consider first the case Axn = Txn, for all n ≥ 0,
which corresponds to iteration introduced in [9] for Banach spaces.

Theorem 4.4. Let (M, ⟨·, ·⟩) be a Hadamard manifold, d be the geodesic distance,
and C a nonempty, closed and convex subset of M . Let T : C → C be a contrac-
tion mapping of constant k ∈ (0, 1) with the fixed point p, and T̄ : C → C be an
approximate mapping of T , corresponding to ε > 0. Denote by {xn}, and {x̄n}
the sequences obtained by applying process (2.7) for Anxn = Txn, for all n ≥ 0,
with respect to mappings T , and T̄ respectively. Also, consider the control sequences
{an}, {cn} ⊂ (0, 1), and bn ∈ [A,B] ⊂ (0, 1), n ≥ 0. Then

d(p, p̄) ≤ ε

1− k
.

Proof. Let γ5 : [0, 1] → M , and γ6 : [0, 1] → M be the geodesics which join Txn with
Tzn, an T̄ x̄n with T̄ z̄n, respectively. In this case relations (4.1), (4.2), (4.3), and
(4.4) still hold true. Taking advantage of them, it follows

d(xn+1, x̄n+1) = d(γ5(an), γ6(an))

≤ (1− an)d(γ5(0), γ6(0)) + and(γ5(1), γ6(1))

= (1− an)d(Txn, T̄ x̄n) + and(Tzn, T̄ z̄n)

≤ k(1− (1− k)an − k(1− k)anbncn)d(xn, x̄n)

+ε(1 + kan + k2anbncn)

= (1− (1− k)(1 + kan + k2anbncn))d(xn, x̄n)

+ε(1 + kan + k2anbncn), n ≥ 0.

Taking tn = (1− k)
(
1+ kan + k2anbncn

)
, and un = ε

1−k , n ≥ 0 in Lemma 4.2, after

considering n → ∞, we get that d(p, p̄) ≤ ε
1−k , which completes the proof. □

We analyze now the case Axn = xn, n ≥ 0, in process (2.7), corresponding with
process in [21], as the next theorem shows.

Theorem 4.5. Consider the Hadamard manifold (M, ⟨·, ·⟩), d the geodesic distance,
and C a nonempty, closed and convex subset of M . Let T : C → C be a contrac-
tion mapping of constant k ∈ (0, 1) with the fixed point p, and T̄ : C → C be an
approximate mapping of T , corresponding to ε > 0. Denote by {xn}, and {x̄n} the
sequences obtained by applying process (2.7) for An = Txn, for all n ≥ 0, with re-
spect to mappings T , and T̄ respectively. Also, consider the control sequences {an},
{cn} ⊂ (0, 1), and bn ∈ [A,B] ⊂ (0, 1), n ≥ 0. Then

d(p, p̄) ≤ ε

1− k
.

Proof. Relations (4.1), (4.2), and (4.3) from Theorem 4.3 are still valid.
Let γ3 be the geodesic connecting xn with Tyn, and γ4 the geodesic connecting

x̄n with T̄ ȳn, n ≥ 0.
Keeping in mind inequalities (4.1) and (4.3), it follows

d(zn, z̄n) = d(γ3(cn), γ4(cn))

≤ (1− cn)d(γ3(0), γ4(0)) + cnd(γ3(1), γ4(1))

= (1− cn)d(xn, x̄n) + cnd(Tyn, T̄ ȳn)
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≤
(
1− (1− k)cn − k(1− k)bncn

)
d(xn, x̄n)

+εcn(kbn + 1), n ≥ 0.(4.5)

Now consider γ5 and γ6 the geodesics joining Txn with Tzn, and T̄ x̄n with T̄ z̄n,
for n ≥ 0 taken. Taking advantage of (4.2) and (4.5), it follows

d(xn+1, x̄n+1) = d(γ5(an), γ6(an))

≤ (1− an)d(Txn, T̄ x̄n) + and(Tzn, T̄ z̄n)

≤ (1− an)
(
kd(xn, x̄n) + ε

)
+ an

(
kd(zn, z̄n) + ε

)
≤ k

(
1− (1− k)ancn − k(1− k)anbncn

)
d(xn, x̄n)

+ε(1 + kancn + k2anbncn)

≤
(
1− (1− k)

(
1 + kancn + k2anbncn

))
+ε(1 + kancn + k2anbncn), n ≥ 0.

Considering tn = (1− k)(1 + kancn + k2anbncn), and un = ε
1−k , Lemma 4.2 implies

the conclusion of the theorem. □

Looking now at iteration (2.13), in the case when An = Tyn, n ≥ 0, we are in
the position to state the next theorem.

Theorem 4.6. Assume that (M, ⟨·, ·⟩) is a Hadamard manifold, d is its geodesic
distance, and C a nonempty, closed and convex subset of M . Consider T : C → C
a contraction mapping of constant k ∈ (0, 1) with the fixed point p, and T̄ : C → C
an approximate mapping of T , corresponding to ε > 0. {xn}, and {x̄n} are the
sequences obtained by applying iteration (2.13) for An = yn, for all n ≥ 0, with
respect to mappings T , and T̄ respectively. Also, consider the control sequences
{an}, {cn} ⊂ (0, 1), and bn ∈ [A,B] ⊂ (0, 1), n ≥ 0. Then

d(p, p̄) ≤ ε

1− k
.

Proof. Inequalities (4.1), (4.2), and (4.3) from Theorem 4.3 still hold true.
Let γ3 be the geodesic joining yn with Tyn, and by γ4 the geodesic connecting ȳn

with T̄ ȳn, n ≥ 0.
Using (4.3) and (4.1) from Theorem 4.3, it follows

d(zn, z̄n) = d(γ3(cn), γ4(cn))

≤ (1− cn)d(γ3(0), γ4(0)) + cnd(γ3(1), γ4(1))

= (1− cn)d(yn, ȳn) + cnd(Tyn, T̄ ȳn)

= (1− cn)
((

1− (1− k)bn
)
d(xn, x̄n) + εbn

)
(4.6)

+cn

(
k
(
1− (1− k)bn

)
d(xn, x̄n) + ε(1 + kbn)

)
≤

(
1− (1− k)bn

)(
1− (1− k)cn

)
d(xn, x̄n)

+ε(bn + cn − (1− k)bncn), n ≥ 0.

Having also in mind (4.2) from Theorem 4.3, we obtain

d(Tzn, T̄ z̄n) ≤ kd(zn, z̄n) + ε
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≤ k
(
1− (1− k)bn

)(
1− (1− k)cn

)
d(xn, x̄n)

+ε(1 + kbn + kcn − k(1− k)bncn), n ≥ 0.(4.7)

Let γ5 and γ6 be the geodesics which connect Txn with Tzn, and T̄ x̄n with T̄ z̄n,
for n ≥ 0 given. The use of (4.1) from Theorem 4.3, and (4.7) implies

d(xn+1, x̄n+1) = d(γ5(an), γ6(an))

≤ (1− an)d(Tyn, T̄ ȳn) + and(Tzn, T̄ z̄n)

≤ k
(
1− (1− k)bn

)(
1− (1− k)ancn

)
d(xn, x̄n)

+ε(1 + kbn + kancn − k(1− k)anbncn)

=
(
1− (1− k)

(
1 + kbn + kancn

−k(1− k)anbncn
))

d(xn, x̄n)

+ε
(
1 + kbn + kancn − k(1− k)anbncn

)
, n ≥ 0.

Considering tn = (1− k)
(
1+ kbn+ kancn− k(1− k)anbncn

)
, and un = ε

1−k , Lemma
4.2 implies the conclusion of the theorem. □

We move forward by analyzing the case An = xn, n ≥ 0, in the iteration process
(2.13). For the sake of computation, here (1− cn) and cn changed places.

Theorem 4.7. Let (M, ⟨·, ·⟩) be a Hadamard manifold, d be its geodesic distance,
and C a nonempty, closed and convex subset of M . Consider T : C → C a con-
traction mapping of constant k ∈ (0, 1) with the fixed point p, and T̄ : C → C an
approximate mapping of T , corresponding to ε > 0. {xn}, and {x̄n} are the se-
quences obtained by applying iteration (2.13) for Axn = yn, for all n ≥ 0, with
respect to mappings T , and T̄ respectively. Also, consider the control sequences
{an}, {cn} ⊂ (0, 1), and bn ∈ [A,B] ⊂ (0, 1), n ≥ 0. Then

d(p, p̄) ≤ ε

1− k
.

Proof. In the proof we will use inequalities (4.1), (4.2), and (4.3) from Theorem 4.3,
which are still valid.

Denote by γ3 the geodesic connecting xn with yn, and by γ4 the geodesic con-
necting x̄n with ȳn, n ≥ 0.

Using (4.3), we obtain

d(zn, z̄n) = d(γ3(cn), γ4(cn))

≤ (1− cn)d(γ3(0), γ4(0)) + cnd(γ3(1), γ4(1))

= (1− cn)d(xn, x̄n) + cnd(yn, ȳn)

= (1− cn)d(xn, x̄n) + cn

((
1− (1− k)bn

)
d(xn, x̄n) + εbn

)
=

(
1− (1− k)bncn

)
d(xn, x̄n) + εbncn, n ≥ 0.

Combining this inequality with (4.2) from Theorem 4.3, we get

d(Tzn, T̄ z̄n) ≤ kd(zn, z̄n) + ε

≤ k
(
1− (1− k)bncn

)
d(xn, x̄n) + ε(1 + kbncn), n ≥ 0.(4.8)
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Let γ5 and γ6 be the geodesics which connect Txn with Tzn, and T̄ x̄n with T̄ z̄n,
for n ≥ 0 given. The use of (4.1) from Theorem 4.3, and (4.8) implies

d(xn+1, x̄n+1) = d(γ5(an), γ6(an))

≤ (1− an)d(Tyn, T̄ ȳn) + and(Tzn, T̄ z̄n)

≤ (1− an)
(
k
(
1− (1− k)bn

)
d(xn, x̄n) + ε(1 + kbn)

)
+an

(
k
(
1− (1− k)bncn

)
d(xn, x̄n) + ε(1 + kbncn)

)
≤ k

(
1− (1− k)bn + (1− k)anbn − (1− k)anbncn

)
d(xn, x̄n)

+ε(1 + kbn − kanbn + kanbncn)

=
(
1− (1− k)

(
1 + kbn − kanbn + kanbncn

))
d(xn, x̄n)

+ε(1 + kbn − kanbn + kanbncn), n ≥ 0.

Considering tn = (1 − k)(1 + kbn − kanbn + kanbncn), and un = ε
1−k , Lemma 4.2

implies the conclusion of the theorem. □

We respect to the iterative method (2.27), we state the next theorem.

Theorem 4.8. Let (M, ⟨·, ·⟩) be a Hadamard manifold, d be its geodesic distance,
and C a nonempty, closed and convex subset of M . Consider T : C → C a contrac-
tion mapping of constant k ∈ (0, 1) with the fixed point p, and T̄ : C → C an ap-
proximate mapping of T , corresponding to ε > 0. {xn}, and {x̄n} are the sequences
obtained by applying iteration (2.27), with respect to mappings T , and T̄ respec-
tively. Also, consider the control sequences {an} ⊂ (0, 1), and bn ∈ [A,B] ⊂ (0, 1),
n ≥ 0. Then

d(p, p̄) ≤ ε

1− k
.

Proof. Considering that the steps of the proof are similar to those in the previous
theorems, we give only the main computational elements.

The following relations hold true

d(yn, ȳn) ≤ k
(
1− (1− k)bn

)
d(xn, x̄n) + ε(1 + kbn), n ≥ 0.

Furthermore,

d(xn+1, x̄n+1) ≤ k2
(
1− (1− k)an

)(
1− (1− k)bn

)
d(xn, x̄n)

+ε
(
1 + k − kan + k2an + k2bn − k2anbn + k3anbn

)
≤

(
1− (1− k)

(
1 + k + k2an + k2bn − k2(1− k)anbn

))
d(xn, x̄n)

+ε
(
1 + k + k2an + k2bn − k2(1− k)anbn

)
, n ≥ 0.

Considering tn = (1 − k)(1 + k + k2an + k2bn − k2(1 − k)anbn), and un = ε
1−k ,

Lemma 4.2 implies the conclusion of the theorem. □

We end up with an analysis of the data dependency regarding scheme (2.30), as
follows.
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Theorem 4.9. Let (M, ⟨·, ·⟩) be a Hadamard manifold, d be its geodesic distance,
and C a nonempty, closed and convex subset of M . Consider T : C → C a contrac-
tion mapping of constant k ∈ (0, 1) with the fixed point p, and T̄ : C → C an ap-
proximate mapping of T , corresponding to ε > 0. {xn}, and {x̄n} are the sequences
obtained by applying iteration (2.30), with respect to mappings T , and T̄ respec-
tively. Also, consider the control sequences {an} ⊂ (0, 1), and bn ∈ [A,B] ⊂ (0, 1),
n ≥ 0. Then

d(p, p̄) ≤ ε

1− k
.

Proof. Considering that the steps of the proof are similar to those in the previous
theorems, we give only the main computational elements.

The following relations hold true

d(zn, z̄n) ≤ k
(
1− (1− k)bncn

)
d(xn, x̄n) + ε(1 + kbncn), n ≥ 0.

Furthermore,

d(xn+1, x̄n+1) ≤ k2
(
1− (1− k)bncn

)
d(xn, x̄n) + ε

(
1 + k + k2bncn

)
≤

(
1− (1− k)

(
1 + k + k2bncn

))
d(xn, x̄n)

+ε
(
1 + k + k2bncn

)
, n ≥ 0.

Considering tn = (1− k)(1 + k + k2bncn), and un = ε
1−k , Lemma 4.2 implies the

conclusion of the theorem. □

5. Conclusions

In this work, in the setting of Hadamard manifolds, we have studied some three-
step iteration schemes for the determination of fixed points for mappings with ade-
quate properties. Convergence properties have been stated and proved for the nine
processes studied. Also, stability results in the same framework of manifolds are
presented. A data dependency study is also performed.
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[8] V. Karakaya, K. Doğan, F. Gürsoy and M. Ertürk, Fixed point of a new three-step iteration

algorithm under contractive-like operators over normed spaces, Abstr. Appl. Anal. 2013 (2013),
Article ID 560258.
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