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for all x, y ∈ C. Notice that the class of generalized hybrid mappings covers several
well-known mappings. For example, a (1,0)-generalized hybrid mapping is nonex-
pansive. It is nonspreading [10, 11] for α = 2 and β = 1, i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

It is also hybrid [18] for α = 3
2 and β = 1

2 , i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous; see [6]. The non-
linear ergodic theorem by Baillon [2] for nonexpansive mappings has been extended
to generalized hybrid mappings in a Hilbert space by Kocourek, Takahashi and Yao
[8]. The generalized hybrid mappings were extended by Maruyama, Takahashi and
Yao [13] as follows: A mapping T : C → C is called 2-generalized hybrid [13] if there
exist α1, α2, β1, β2 ∈ R such that

α2

∥∥T 2x− Ty
∥∥2 + α1 ∥Tx− Ty∥2 + (1− α1 − α2) ∥x− Ty∥2

≤ β2
∥∥T 2x− y

∥∥2 + β1 ∥Tx− y∥2 + (1− β1 − β2) ∥x− y∥2

for all x, y ∈ C. Very recently, the concept of 2-generalized hybrid mappings was
further extended by Kondo and Takahashi [12]. A mapping T : C → C is called
normally 2-generalized hybrid [12] if there exist α0, β0, α1, β1, α2, β2 ∈ R such that

α2∥T 2x− Ty∥2 + α1∥Tx− Ty∥2 + α0∥x− Ty∥2(1.3)

+ β2∥T 2x− y∥2 + β1∥Tx− y∥2 + β0∥x− y∥2 ≤ 0

for all x, y ∈ C, where
∑2

n=0 (αn + βn) ≥ 0 and α2 + α1 + α0 > 0. On the other
hand, we know the hybrid method by Nakajo and Takahashi [15] and the shrinking
projection methd by Takahashi, Takeuchi and Kubota [19]. By using these meth-
ods, Hojo, Kondo and Takahashi [3] proved the following theorems for normally
2-generalized hybrid mappings in a Hilbert space; see also [4].

Theorem 1.1 ([3]). Let H be a Hilbert space, let C be a nonempty, convex and
closed subset of H. Let S and T be commutative normally 2-generalized hybrid
mappings of C into itself such that F (S) ∩ F (T ) ̸= ∅. Let {xn} ⊂ C be a sequence
generated by x1 = x ∈ C and

yn = αnxn + (1− αn)
1

(n+1)2
∑n

k=0

∑n
l=0 S

kT lxn,

Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

where PCn∩Qn is the metric projection of H onto Cn∩Qn and {αn} ⊂ [0, 1] satisfies
0 ≤ αn ≤ a < 1 for some a ∈ R. Then, {xn} converges strongly to z0 = PF (S)∩F (T )x,
where PF (S)∩F (T ) is the metric projection of H onto F (S) ∩ F (T ).

Theorem 1.2 ([3]). Let H be a Hilbert space and let C be a nonempty, convex
and closed subset of H. Let S and T be commutative normally 2-generalized hybrid
mappings of C into itself such that F (S) ∩ F (T ) ̸= ∅. Let {un} be a sequence in
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C such that un → u. Let C1 = C and let {xn} ⊂ C be a sequence generated by
x1 = x ∈ C and

yn = αnxn + (1− αn)
1

(n+1)2
∑n

k=0

∑n
l=0 S

kT lxn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1un+1, ∀n ∈ N,

where PCn+1 is the metric projection of H onto Cn+1 and {αn} ⊂ [0, 1] is a sequence
such that lim infn→∞ αn < 1. Then, {xn} converges strongly to z0 = PF (S)∩F (T )u,
where PF (S)∩F (T ) is the metric projection of H onto F (S) ∩ F (T ).

In this paper, using the hybrid method defined, we first obtain a strong conver-
gence theorem for noncommutative two normally 2-generalized hybrid mappings in
a Hilbert space. Next, using the shrinking projection method, we prove another
strong convergence for the mappings in a Hilbert space. Using these results, we get
well-known and new strong convergence theorems by the hybrid method and the
shrinking projection method in a Hilbert space.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product ⟨ · , · ⟩ and
norm ∥ · ∥, respectively. We denote the strong convergence and the weak convergence
of {xn} to x ∈ H by xn → x and xn ⇀ x, respectively. In a Hilbert space, it is
known that

(2.1) 2⟨x− y, y⟩ ≤ ∥x∥2 − ∥y∥2 ≤ 2⟨x− y, x⟩
for all x, y ∈ H and

(2.2) ∥αx+ (1− α)y∥2 = α ∥x∥2 + (1− α) ∥y∥2 − α(1− α) ∥x− y∥2

for all x, y ∈ H and α ∈ R; see [17]. Furthermore, in a Hilbert space, we have that

(2.3) 2 ⟨x− y, z − w⟩ = ∥x− w∥2 + ∥y − z∥2 − ∥x− z∥2 − ∥y − w∥2

for all x, y, z, w ∈ H. We also have the following result from [13].

Lemma 2.1 ([13]). Let x, y, z ∈ H and a, b, c ∈ R such that a+ b+ c = 1. Then,

∥ax+ by + cz∥2

= a ∥x∥2 + b ∥y∥2 + c ∥z∥2 − ab ∥x− y∥2 − bc ∥y − z∥2 − ca ∥z − x∥2 .

Additionally, if a, b, c ∈ [0, 1], then

∥ax+ by + cz∥2 ≤ a ∥x∥2 + b ∥y∥2 + c ∥z∥2 .

Let H be a Hilbert space and let C be a nonempty subset of H. A mapping
T : C → H with F (T ) ̸= ∅ is called quasi-nonexpansive if

∥Tx− u∥ ≤ ∥x− u∥, ∀x ∈ C, u ∈ F (T ).

If C is closed and convex and T : C → H with F (T ) ̸= ∅ is quasi-nonexpansive,
then F (T ) is closed and convex; see Itoh and Takahashi [7]. For a nonempty, closed
and convex subset D of H, the nearest point projection of H onto D is denoted by
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PD, that is, ∥x− PDx∥ ≤ ∥x− y∥ for all x ∈ H and y ∈ D. Such a mapping PD

is called the metric projection of H onto D. We know that the metric projection
PD is firmly nonexpansive; ∥PDx− PDy∥2 ≤ ⟨PDx − PDy, x − y⟩ for all x, y ∈ H.
Furthermore, ⟨x − PDx, y − PDx⟩ ≤ 0 holds for all x ∈ H and y ∈ D; see [16, 17].
Using this inequality and (2.3), we have that

(2.4) ∥PDx− y∥2 + ∥PDx− x∥2 ≤ ∥x− y∥2, ∀x ∈ H, y ∈ D.

Let H be a Hilbert space and let C be a nonempty subset of H. A mapping
T : C → C is called normally 2-generalized hybrid [12] if it satisfies (1.3). We also
call such a mapping (α0, β0, α1, β1, α2, β2)-normally 2-generalized hybrid. If x = Tx
in (1.3), then for any y ∈ C,

α2∥x−Ty∥2 + α1∥x− Ty∥2 + α0∥x− Ty∥2

+ β2∥x− y∥2 + β1∥x− y∥2 + β0∥x− y∥2 ≤ 0

and hence

(α2 + α1 + α0)∥x− Ty∥2 ≤ −(β2 + β1 + β0)∥x− y∥2.
From

∑2
n=0 (αn + βn) ≥ 0, we have that

(α2 + α1 + α0)∥x− Ty∥2 ≤ −(β2 + β1 + β0)∥x− y∥2 ≤ (α2 + α1 + α0)∥x− y∥2.

Since α2 + α1 + α0 > 0, it follows that

(2.5) ∥x− Ty∥ ≤ ∥x− y∥, ∀x ∈ F (T ), y ∈ C.

Thus if T is a normally 2-generalized hybrid mapping and F (T ) ̸= ∅, then it is
quasi-nonexpansive; see also [12]. Furthermore, we have the following result for
normally 2-generalized hybrid mappings in a Hilbert space.

Lemma 2.2 ([12]). Let C be a nonempty, closed and convex subset of H, let T :
C → C be a normally 2-generalized hybrid mapping, and let {xn} be a sequence in
C satisfying xn − Txn → 0, T 2xn − xn → 0 and xn ⇀ v. Then, v ∈ F (T ).

For a sequence {Cn} of nonempty closed convex subsets of a Hilbert space H,
define s-LinCn and w-LsnCn as follows: x ∈s-LinCn if and only if there exists
{xn} ⊂ H such that {xn} converges strongly to x and xn ∈ Cn for all n ∈ N.
Similarly, y ∈w-LsnCn if and only if there exist a subsequence {Cni} of {Cn} and a
sequence {yi} ⊂ H such that {yi} converges weakly to y and yi ∈ Cni for all i ∈ N.
If C0 satisfies

(2.6) C0 =s-LinCn =w-LsnCn,

it is said that {Cn} converges to C0 in the sense of Mosco [14] and we write C0 =M-
limn→∞Cn. It is easy to show that if {Cn} is nonincreasing with respect to inclusion,
then {Cn} converges to ∩∞

n=1Cn in the sense of Mosco. For more details, see [14].
Tsukada [21] proved the following theorem.

Theorem 2.3 ([21]). Let H be a Hilbert space. Let {Cn} be a sequence of nonempty
closed convex subsets of H. If C0 =M-limn→∞Cn exists and nonempty, then for
each x ∈ H, {PCnx} converges strongly to PC0x, where PCn and PC0 are the mertic
projections of H onto Cn and C0, respectively.
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3. Strong convergence theorems by hybrid methods

In this section, using the hybrid method by Nakajo and Takahashi [15], we first
prove a strong convergence theorem for noncommutative normally 2-generalized
hybrid mappings in a Hilbert space.

Theorem 3.1. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let S, T : C → C be normally 2-generalized hybrid mappings such that
F (S) ∩ F (T ) ̸= ∅. Let {xn} ⊂ C be a sequence generated by x1 ∈ C and

yn = anxn + bn
(
γnS + (1− γn)T

)
xn + cn

(
δnS

2 + (1− δn)T
2
)
xn,

Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N,

where PCn∩Qn is the metric projection of H onto Cn∩Qn and a, b, c, d, e, f ∈ R and
{γn}, {δn}, {an}, {bn}, {cn} ⊂ [0, 1] satisfy the following:

0 < a ≤ γn ≤ b < 1, 0 < c ≤ δn ≤ d < 1,

an + bn + cn = 1 and 0 < e ≤ an, bn, cn ≤ f < 1, ∀n ∈ N.

Then {xn} converges strongly to z0 = PF (S)∩F (T )x1, where PF (S)∩F (T ) is the metric
projection of H onto F (S) ∩ F (T ).

Proof. Setting Sn = γnS + (1− γn)T and Tn = δnS
2 + (1− δn)T

2, we have that

yn = anxn + bnSnxn + cnTnxn

for all n ∈ N. Since

∥yn − z∥2 ≤ ∥xn − z∥2

⇐⇒∥yn∥2 − ∥xn∥2 − 2⟨yn − xn, z⟩ ≤ 0,

we have that Cn, Qn and Cn ∩ Qn are closed and convex for all n ∈ N. We next
show that Cn ∩ Qn is nonempty. Since S and T are quasi-nonexpansive, we have
that, for any q ∈ F (S) ∩ F (T ) and n ∈ N,

∥Snxn − q∥ = ∥γnSxn + (1− γn)Txn − q∥
≤ γn∥Sxn − q∥+ (1− γn)∥Txn − q∥
≤ γn∥xn − q∥+ (1− γn)∥xn − q∥
= ∥xn − q∥

and

∥Tnxn − q∥ = ∥δnS2xn + (1− δn)T
2xn − q∥

≤ δn∥S2xn − q∥+ (1− δn)∥T 2xn − q∥
≤ δn∥xn − q∥+ (1− δn)∥xn − q∥
= ∥xn − q∥.

Then we have that

∥yn − q∥ = ∥an (xn − q) + bn (Snxn − q) + cn (Tnxn − q)∥
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≤ an ∥xn − q∥+ bn ∥Snxn − q∥+ cn ∥Tnxn − q∥
≤ an ∥xn − q∥+ bn ∥xn − q∥+ cn ∥xn − q∥
= ∥xn − q∥ .

Thus we have q ∈ Cn and hence F (S) ∩ F (T ) ⊂ Cn for all n ∈ N. Next, we show
by induction that F (S) ∩ F (T ) ⊂ Cn ∩Qn for all n ∈ N. From F (S) ∩ F (T ) ⊂ Q1,
it follows that F (S) ∩ F (T ) ⊂ C1 ∩Q1. Suppose that F (S) ∩ F (T ) ⊂ Ck ∩Qk for
some k ∈ N. From xk+1 = PCk∩Qk

x1, we have that

⟨xk+1 − z, x1 − xk+1⟩ ≥ 0, ∀z ∈ Ck ∩Qk.

Since F (S) ∩ F (T ) ⊂ Ck ∩Qk, we also have

⟨xk+1 − q, x1 − xk+1⟩ ≥ 0, ∀q ∈ F (S) ∩ F (T ).

This implies F (S) ∩ F (T ) ⊂ Qk+1. So, we have F (S) ∩ F (T ) ⊂ Ck+1 ∩ Qk+1. By
induction, we have F (S) ∩ F (T ) ⊂ Cn ∩ Qn for all n ∈ N. This means that {xn}
is well-defined. Furthermore, since S and T are quasi-nonexpansive, we have from
[7] that F (S) ∩ F (T ) is closed and convex. So, there exists the mertic projection
PF (S)∩F (T ) of H onto F (S) ∩ F (T ).

Since xn = PQnx1 and xn+1 = PCn∩Qnx1 ∈ Qn, we have from (2.3) that

0 ≤ 2⟨x1 − xn, xn − xn+1⟩
= ∥x1 − xn+1∥2 − ∥x1 − xn∥2 − ∥xn − xn+1∥2(3.1)

≤ ∥x1 − xn+1∥2 − ∥x1 − xn∥2.
Thus we get that

∥x1 − xn∥2 ≤ ∥x1 − xn+1∥2.(3.2)

Furthermore, since xn = PQnx1 and q ∈ F (S) ∩ F (T ) ⊂ Qn, we have

∥x1 − xn∥ ≤ ∥x1 − q∥.(3.3)

We have from (3.2) and (3.3) that limn→∞ ∥x1−xn∥2 exists. This implies that {xn}
is bounded. Hence, {yn}, {Snxn} and {Tnxn} are also bounded. From (3.1), we
have

∥xn − xn+1∥2 ≤ ∥x1 − xn+1∥2 − ∥x1 − xn∥2

and hence

∥xn − xn+1∥ → 0.(3.4)

From xn+1 ∈ Cn, we have that ∥yn − xn+1∥ ≤ ∥xn − xn+1∥. From (3.4), we have
∥yn − xn+1∥ → 0. So, we get that

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥ → 0.(3.5)

Next, we verify that xn−Snxn → 0 and Tnxn−xn → 0. We obtain from Lemma
2.1 that, for any q ∈ F (S) ∩ F (T ) and n ∈ N,

∥yn − q∥2 = ∥an (xn − q) + bn (Snxn − q) + cn (Tnxn − q)∥2

= an ∥xn − q∥2 + bn ∥Snxn − q∥2 + cn ∥Tnxn − q∥2

− anbn ∥xn − Snxn∥2 − bncn ∥Snxn − Tnxn∥2 − cnan ∥Tnxn − xn∥2
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≤ ∥xn − q∥2 − anbn ∥xn − Snxn∥2 − bncn ∥Snxn − Tnxn∥2

− cnan ∥Tnxn − xn∥2

and hence

anbn ∥xn − Snxn∥2 + bncn ∥Snxn − Tnxn∥2 + cnan ∥Tnxn − xn∥2

≤ ∥xn − q∥2 − ∥yn − q∥2(3.6)

= (∥xn − q∥+ ∥yn − q∥)(∥xn − q∥ − ∥yn − q∥).
Since ∥xn − q∥− ∥yn − q∥ ≤ ∥xn − yn∥ → 0 and 0 < e ≤ an, bn, cn ≤ f < 1, we have
from (3.6) that

(3.7) xn − Snxn → 0 and Tnxn − xn → 0.

We also have from (2.1) that, for any q ∈ F (S) ∩ F (T ),

∥xn − q∥2 = ∥xn − Snxn + Snxn − q∥2

≤ ∥Snxn − q∥2 + 2⟨xn − Snxn, xn − q⟩
= ∥γnSxn + (1− γn)Txn − q∥2 + 2⟨xn − Snxn, xn − q⟩
= γn∥Sxn − q∥2 + (1− γn)∥Txn − q∥2

− γn(1− γn)∥Sxn − Txn∥2 + 2⟨xn − Snxn, xn − q⟩
≤ γn∥xn − z∥2 + (1− γn)∥xn − z∥2

− γn(1− γn)∥Sxn − Txn∥2 + 2⟨xn − Snxn, xn − q⟩
= ∥xn − z∥2 − γn(1− γn)∥Sxn − Txn∥2 + 2⟨xn − Snxn, xn − q⟩

and hence
γn(1− γn)∥Sxn − Txn∥2 ≤ 2⟨xn − Snxn, xn − q⟩.

Since xn − Snxn → 0, we have that Sxn − Txn → 0. Then we have that

∥xn − Sxn∥ = ∥xn − Snxn + Snxn − Sxn∥
≤ ∥xn − Snxn∥+ ∥Snxn − Sxn∥
= ∥xn − Snxn∥+ (1− γn)∥Txn − Sxn∥
→ 0.

We also have that ∥xn − Txn∥ → 0. Similarly, we have that

∥xn − q∥2 = ∥xn − Tnxn + Tnxn − q∥2

≤ ∥Tnxn − q∥2 + 2⟨xn − Tnxn, xn − q⟩
= ∥δnS2xn + (1− δn)T

2xn − q∥2 + 2⟨xn − Tnxn, xn − q⟩
= δn∥S2xn − q∥2 + (1− δn)∥T 2xn − q∥2

− δn(1− δn)∥S2xn − T 2xn∥2 + 2⟨xn − Tnxn, xn − q⟩
≤ δn∥xn − z∥2 + (1− δn)∥xn − z∥2

− δn(1− δn)∥S2xn − T 2xn∥2 + 2⟨xn − Tnxn, xn − q⟩
= ∥xn − z∥2 − δn(1− δn)∥S2xn − T 2xn∥2 + 2⟨xn − Tnxn, xn − q⟩
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and hence

δn(1− δn)∥S2xn − T 2xn∥2 ≤ 2⟨xn − Tnxn, xn − q⟩.
Since xn − Tnxn → 0, we have that S2xn − T 2xn → 0. Then we have that

∥xn − S2xn∥ = ∥xn − Tnxn + Tnxn − S2xn∥
≤ ∥xn − Tnxn∥+ ∥Tnxn − S2xn∥
= ∥xn − Tnxn∥+ (1− δn)∥T 2xn − S2xn∥
→ 0.

We also have that ∥xn − T 2xn∥ → 0.
Since {xn} is bounded, there exists a subsequence {xni} ⊂ {xn} such that xni ⇀

z∗. From Lemma 2.2, we have z∗ ∈ F (S) ∩ F (T ).
Put z0 = PF (S)∩F (T )x1. Since z0 = PF (S)∩F (T )x1 ∈ Cn ∩ Qn and xn+1 =

PCn∩Qnx1, we have that

(3.8) ∥x1 − xn+1∥ ≤ ∥x1 − z0∥.

Since ∥ · ∥ is weakly lower semicontinuous, from xni ⇀ z∗ we have that

∥x1 − z∗∥ ≤ lim inf
i→∞

∥x1 − xni∥ ≤ ∥x1 − z0∥.

From the definition of z0, we have z
∗ = z0. So, we obtain xn ⇀ z0. We finally show

that xn → z0. We have that

∥z0 − xn∥2 = ∥z0 − x1∥2 + ∥x1 − xn∥2 + 2⟨z0 − x1, x1 − xn⟩, ∀n ∈ N.

So, we have from (3.8) that

lim sup
n→∞

∥z0 − xn∥2 = lim sup
n→∞

(∥z0 − x1∥2 + ∥x1 − xn∥2 + 2⟨z0 − x1, x1 − xn⟩)

≤ lim sup
n→∞

(∥z0 − x1∥2 + ∥x1 − z0∥2 + 2⟨z0 − x1, x1 − xn⟩)

= ∥z0 − x1∥2 + ∥x1 − z0∥2 + 2⟨z0 − x1, x1 − z0⟩
= 0.

Thus we obtain limn→∞ ∥z0 − xn∥ = 0. Hence, {xn} converges strongly to z0. This
completes the proof. □

Next, we prove a strong convergence theorem by the shrinking projection method
[19] for noncommutative normally 2-generalized hybrid mappings in a Hilbert space.

Theorem 3.2. Let H be a real Hilbert space and let C be a nonempty, closed and
convex subset of H. Let S, T : C → C be normally 2-generalized hybrid mappings
such that F (S) ∩ F (T ) ̸= ∅. Let {un} be a sequence in C such that un → u. Let
C1 = C and let {xn} ⊂ C be a sequence generated by x1 ∈ C and

yn = anxn + bn
(
γnS + (1− γn)T

)
xn + cn

(
δnS

2 + (1− δn)T
2
)
xn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1un+1, ∀n ∈ N,
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where PCn+1 is the metric projection of H onto Cn+1 and a, b, c, d, e, f ∈ R and
{γn}, {δn}, {an}, {bn}, {cn} ⊂ [0, 1] satisfy the following:

0 < a ≤ γn ≤ b < 1, 0 < c ≤ δn ≤ d < 1,

an + bn + cn = 1 and 0 < e ≤ an, bn, cn ≤ f < 1, ∀n ∈ N.

Then {xn} converges strongly to z0 = PF (S)∩F (T )u, where PF (S)∩F (T ) is the metric
projection of H onto F (S) ∩ F (T ).

Proof. Setting Sn = γnS + (1− γn)T and Tn = δnS
2 + (1− δn)T

2, we have that

yn = anxn + bnSnxn + cnTnxn

for all n ∈ N. We shall show that Cn is closed and convex, and F (S) ∩ F (T ) ⊂ Cn

for all n ∈ N. It is obvious from assumption that C1 = C is closed and convex, and
F (S) ∩ F (T ) ⊂ C1. Suppose that Ck is closed and convex, and F (S) ∩ F (T ) ⊂ Ck

for some k ∈ N. We know that, for z ∈ Ck,

∥yk − z∥2 ≤ ∥xk − z∥2

⇐⇒∥yk∥2 − ∥xk∥2 − 2⟨yk − xk, z⟩ ≤ 0.

So, Ck+1 is closed and convex. By induction, Cn are closed and convex for all
n ∈ N. Furthermore, since S and T are quasi-nonexpansive, we have that, for any
q ∈ F (S) ∩ F (T ),

∥yk − q∥ = ∥ak (xk − q) + bk (Skxk − q) + ck (Tkxk − q)∥
≤ ak ∥xk − q∥+ bk ∥Skxk − q∥+ ck ∥Tkxk − q∥
≤ ak ∥xk − q∥+ bk ∥xk − q∥+ ck ∥xk − q∥
= ∥xk − q∥ .

Hence, we have q ∈ Ck+1. By induction, we have that F (S) ∩ F (T ) ⊂ Cn for all
n ∈ N. Since Cn is nonempty, closed and convex, there exists the metric projection
PCn of H onto Cn. Thus, {xn} is well-defined.

Define z0 = PF (S)∩F (T )u. Putting wn = PCnu, we have that

∥u− wn∥ ≤ ∥u− y∥

for all y ∈ Cn. Since z0 ∈ F (S) ∩ F (T ) ⊂ Cn, we have that

(3.9) ∥u− wn∥ ≤ ∥u− z0∥.

This means that {wn} is bounded. From wn = PCnu and wn+1 ∈ Cn+1 ⊂ Cn, we
have that

∥u− wn∥ ≤ ∥u− wn+1∥.
Thus {∥u−wn∥} is bounded and nondecreasing. Then the limit of {∥u−wn∥} exists.
Put limn→∞ ∥wn−u∥ = c. For any m,n ∈ N with m ≥ n, we have Cm ⊂ Cn. From
wm = PCmu ∈ Cm ⊂ Cn and (2.4), we have that

∥wm − PCnu∥2 + ∥PCnu− u∥2 ≤ ∥u− wm∥2.

This implies that

(3.10) ∥wm − wn∥2 ≤ ∥u− wm∥2 − ∥wn − u∥2 ≤ c2 − ∥wn − u∥2.
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Since c2 − ∥wn − u∥2 → 0 as n → ∞, we have that {wn} is a Caushy sequence. By
the completeness of C, there exists a point w0 ∈ C such that wn → w0.

Using Theorem 2.3, we can also prove that wn → w0. In fact, since {Cn} is a
nonincreasing sequence of nonempty, closed and convex subsets of H with respect
to inclusion, it follows that

(3.11) ∅ ̸= F (S) ∩ F (T ) ⊂ M- lim
n→∞

Cn =

∞∩
n=1

Cn.

Put C0 =
∩∞

n=1Cn. Then, by Theorem 2.3 we have that {wn} = {PCnu} converges
strongly to w0 = PC0u, i.e., wn = PCnu → w0.

Since the metric projection PCn is nonexpansive, it follows that

∥xn − w0∥ ≤ ∥xn − wn∥+ ∥wn − w0∥
= ∥PCnun − PCnu∥+ ∥wn − w0∥
≤ ∥un − u∥+ ∥wn − w0∥

and hence

(3.12) xn → w0.

To complete the proof, it is sufficient to show that z0 = PF (S)∩F (T )u = w0.
From (3.12), we have that

∥xn − xn+1∥ → 0.(3.13)

From xn+1 ∈ Cn+1, we also have that ∥yn − xn+1∥ ≤ ∥xn − xn+1∥. So, we get that
∥yn − xn+1∥ → 0. Using this, we have

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥ → 0.(3.14)

As in the proof of Theorem 3.1, we have that Sxn − xn → 0, Txn − xn → 0,
S2xn − xn → 0 and T 2xn − xn → 0. From (3.12), we also get that xn ⇀ w0.
From Lemma 2.2, we have w0 ∈ F (S) ∩ F (T ). Since z0 = PF (S)∩F (T )u ∈ Cn+1 and
xn+1 = PCn+1un+1, we have that

(3.15) ∥un+1 − xn+1∥ ≤ ∥un+1 − z0∥.

Thus we have that

∥u− w0∥ ≤ ∥u− z0∥
and hence z0 = w0. Therefore, {xn} converges strongly to z0. This completes the
proof. □

4. Applications

In this section, using Theorems 3.1 and 3.2, we get new strong convergence theo-
rems by the hybrid method and the shrinking projection method in a Hilbert space.

Theorem 4.1. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let T : C → C be a nonexpansive mapping such that F (T ) ̸= ∅. Let
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{xn} ⊂ C be a sequence generated by x1 ∈ C and
yn = anxn + bnTxn + cnT

2xn,

Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N,

where PCn∩Qn is the metric projection of H onto Cn ∩ Qn and {an}, {bn}, {cn} ⊂
[0, 1] and e, f ∈ N satisfy

an + bn + cn = 1 and 0 < e ≤ an, bn, cn ≤ f < 1, ∀n ∈ N.
Then {xn} converges strongly to z0 = PF (T )x1, where PF (T ) is the metric projection
of H onto F (T ).

Proof. Put S = T and γn = δn = 1
2 for all n ∈ N in Theorem 3.1, Furthermore,

since the class of nonexpansive mappings is contained in the class of normally 2-
generalized hybrid mappings, we obtain the desired result from Theorem 3.1. □
Theorem 4.2. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let S and T be nonexpansive and nonspreading mappings, respectively,
such that F (S) ∩ F (T ) ̸= ∅. Let {xn} ⊂ C be a sequence generated by x1 ∈ C and

yn = anxn + bn

(
γnSxn + (1− γn)Txn

)
+ cn

(
δnS

2xn + (1− δn)T
2xn

)
,

Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N,

where PCn∩Qn is the metric projection of H onto Cn∩Qn and a, b, c, d, e, f ∈ R and
{γn}, {δn}, {an}, {bn}, {cn} ⊂ [0, 1] satisfy the following:

0 < a ≤ γn ≤ b < 1, 0 < c ≤ δn ≤ d < 1,

an + bn + cn = 1 and 0 < e ≤ an, bn, cn ≤ f < 1, ∀n ∈ N.
Then {xn} converges strongly to z0 = PF (S)∩F (T )x1, where PF (S)∩F (T ) is the metric
projection of H onto F (S) ∩ F (T ).

Proof. Since the classes of nonexpansive mappings and nonspreading mappings are
contained in the class of normally 2-generalized hybrid mappings, we obtain the
desired result from Theorem 3.1. □

Using Theorem 3.1, we have the following strong convergence theorem for 2-
generalized hybrid mappings in a Hilbert space.

Theorem 4.3. Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let S, T : C → C be 2-generalized hybrid mappings such that
F (S) ∩ F (T ) ̸= ∅. Let {xn} ⊂ C be a sequence generated by x1 ∈ C and

yn = anxn + bn
(
γnS + (1− γn)T

)
xn + cn

(
δnS

2 + (1− δn)T
2
)
xn,

Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N,
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where PCn∩Qn is the metric projection of H onto Cn∩Qn and a, b, c, d, e, f ∈ R and
{γn}, {δn}, {an}, {bn}, {cn} ⊂ [0, 1] satisfy the following:

0 < a ≤ γn ≤ b < 1, 0 < c ≤ δn ≤ d < 1,

an + bn + cn = 1 and 0 < e ≤ an, bn, cn ≤ f < 1, ∀n ∈ N.

Then {xn} converges strongly to z0 = PF (S)∩F (T )x1, where PF (S)∩F (T ) is the metric
projection of H onto F (S) ∩ F (T ).

Proof. Since the class of 2-generalized hybrid mappings is contained in the class of
normally 2-generalized hybrid mappings, we obtain the desired result from Theorem
3.1. □

Similarly, using Theorem 3.2, we have the following results.

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let T : C → C be a nonexpansive mapping such that F (T ) ̸= ∅. Let
{xn} ⊂ C be a sequence generated by x1 ∈ C and

yn = anxn + bnTxn + cnT
2xn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn∩Qnx1, ∀n ∈ N,

where {an}, {bn}, {cn} ⊂ [0, 1] and e, f ∈ N satisfy

an + bn + cn = 1 and 0 < e ≤ an, bn, cn ≤ f < 1, ∀n ∈ N.

Then {xn} converges strongly to z0 = PF (T )x1, where PF (T ) is the metric projection
of H onto F (T ).

Theorem 4.5. Let H be a real Hilbert space and let C be a nonempty, closed and
convex subset of H. Let S and T be nonexpansive and hybrid mappings of C into
itselt, respectively, such that F (S) ∩ F (T ) ̸= ∅. Let {un} be a sequence in C such
that un → u. Let C1 = C and let {xn} ⊂ C be a sequence generated by x1 ∈ C and

yn = anxn + bn(γnSxn + (1− γn)Txn

)
+ cn(δnS

2xn + (1− δn)T
2xn

)
,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1un+1, ∀n ∈ N,

where PCn+1 is the metric projection of H onto Cn+1 and a, b, c, d, e, f ∈ R and
{γn}, {δn}, {an}, {bn}, {cn} ⊂ [0, 1] satisfy the following:

0 < a ≤ γn ≤ b < 1, 0 < c ≤ δn ≤ d < 1,

an + bn + cn = 1 and 0 < e ≤ an, bn, cn ≤ f < 1, ∀n ∈ N.

Then, {xn} converges strongly to z0 = PF (S)∩F (T )u, where PF (S)∩F (T ) is the metric
projection of H onto F (S) ∩ F (T ).

Proof. Since the classes of nonexpansive mappings and hybrid mappings are con-
tained in the class of generalized hybrid mappings, we obtain the desired result from
Theorem 3.2. □
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Theorem 4.6. Let H be a real Hilbert space and let C be a nonempty, closed and
convex subset of H. Let S, T : C → C be 2-generalized hybrid mappings such that
F (S) ∩ F (T ) ̸= ∅. Let {un} be a sequence in C such that un → u. Let C1 = C and
let {xn} ⊂ C be a sequence generated by x1 ∈ C and

yn = anxn + bn
(
γnS + (1− γn)T

)
xn + cn

(
δnS

2 + (1− δn)T
2
)
xn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1un+1, ∀n ∈ N,

where PCn+1 is the metric projection of H onto Cn+1 and a, b, c, d, e, f ∈ R and
{γn}, {δn}, {an}, {bn}, {cn} ⊂ [0, 1] satisfy the following:

0 < a ≤ γn ≤ b < 1, 0 < c ≤ δn ≤ d < 1,

an + bn + cn = 1 and 0 < e ≤ an, bn, cn ≤ f < 1, ∀n ∈ N.

Then {xn} converges strongly to z0 = PF (S)∩F (T )u, where PF (S)∩F (T ) is the metric
projection of H onto F (S) ∩ F (T ).
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