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STRONG CONVERGENCE THEOREMS BY HYBRID METHODS
FOR NONCOMMUTATIVE NORMALLY 2-GENERALIZED
HYBRID MAPPINGS IN HILBERT SPACES

WATARU TAKAHASHI, CHING-FENG WEN*, AND JEN-CHIH YAOf

ABSTRACT. In this paper, using the hybrid method defined by Nakajo and Taka-
hashi [15], we first obtain a strong convergence theorem for noncommutative
two normally 2-generalized hybrid mappings in a Hilbert space. Next, using the
shrinking projection method defined by Takahashi, Takeuchi and Kubota [19],
we prove another strong convergence for the mappings in a Hilbert space. Using
these results, we get well-known and new strong convergence theorems by the
hybrid method and the shrinking projection method in a Hilbert space.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty subset of H. Let T
be a mapping of C' into H. We denote by F(T) the set of fixed points of T, i.e.,
F(T)={2€C:Tz=z}. Amapping T : C — H is said to be nonezpansive if
Tz — Ty|| < ||z —y| for all z,y € C. It is well-known that if C' is a bounded,
closed and convex subset of H and T' : C — C is nonexpansive, then F(T) is
nonempty. Furthermore, from Baillon [2] we know the first nonlinear ergodic the-
orem for nonexpansive mappings in a Hilbert space. Let C' be a nonempty, closed
and convex subset of H and let T': C' — C' be a nonexpansive mapping such that
F(T) is nonempty. Then for any = € C,

1 n—1
Spx = - ];)Tkx

converges weakly to an element z € F/(T).

In 2010, Kocourek, Takahashi and Yao [8] defined a broad class of nonlinear
mappings in a Hilbert space: Let C' be a nonempty subset of H. A mapping
T :C — H is called generalized hybrid [8] if there exist «, 5 € R such that

(1.1) o|Ta = Ty|* + (1 - a)llz — Ty|* < Bl|Tz — y|* + (1 = B) |z — y”

for all z,y € C. Such a mapping T is called («, [)-generalized hybrid. We also
know the following: For A\ € R, a mapping U : C — H is called \-hybrid [1] if

(1.2) Uz — Uyl* < [lz =yl +2(1 = \){z — Uz,y — Uy)
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for all z,y € C. Notice that the class of generalized hybrid mappings covers several
well-known mappings. For example, a (1,0)-generalized hybrid mapping is nonex-
pansive. It is nonspreading [10, 11] for « = 2 and § =1, i.e.,

2|Tx — Ty < | Tz —y|* + | Ty — z|?, Va,yeC.

It is also hybrid [18] for a = % and 8 = %, ie.,

3| Tx — Tyl* < ||z — yl® + 1T — y|* + | Ty — 2l*, Vz,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [6]. The non-
linear ergodic theorem by Baillon [2] for nonexpansive mappings has been extended
to generalized hybrid mappings in a Hilbert space by Kocourek, Takahashi and Yao
[8]. The generalized hybrid mappings were extended by Maruyama, Takahashi and
Yao [13] as follows: A mapping T : C' — C'is called 2-generalized hybrid [13] if there
exist a1, a9, 81, B2 € R such that

2
ag ||T?2z — Ty|” + o | Tz — Tyl|> + (1 — a1 — ag) ||z — Ty|)?

< Bo || % — y||* + 81 | Tz — y|> + (1 = B1 — B2) = — y?

for all x,y € C. Very recently, the concept of 2-generalized hybrid mappings was
further extended by Kondo and Takahashi [12]. A mapping 7' : C' — C is called
normally 2-generalized hybrid [12] if there exist g, fo, a1, f1, @2, B2 € R such that

(1.3) 2| 7%z — Ty|? + an|| Tz — Ty|* + aollz — Tyl
+ Bl T — yl* + Bul|Tz — y)|* + Bollz —ylI* < 0

for all z,y € C, where Ei:o (an + Bn) > 0 and as + a1 + ag > 0. On the other
hand, we know the hybrid method by Nakajo and Takahashi [15] and the shrinking
projection methd by Takahashi, Takeuchi and Kubota [19]. By using these meth-
ods, Hojo, Kondo and Takahashi [3] proved the following theorems for normally
2-generalized hybrid mappings in a Hilbert space; see also [4].

Theorem 1.1 ([3]). Let H be a Hilbert space, let C' be a mnonempty, convex and
closed subset of H. Let S and T be commutative normally 2-generalized hybrid
mappings of C into itself such that F(S)NF(T) # 0. Let {x,,} C C be a sequence
generated by x1 = x € C and

Yn = T + (1 = ) gy 2jicg Lio ST,
Cn={2€C:|lyn — 2|l < [lzn — 2[l},
Qn=1{2€C:{(xy—z,x—1x,) >0},
LTn41 = PCnﬁanv Vn €N,

where Pc, g, is the metric projection of H onto Cr, NQy, and {a,} C [0, 1] satisfies

0<a, <a<1forsomeacR. Then, {x,} converges strongly to 20 = Pp(g)nr(T)7,
where Pp(s)npr) is the metric projection of H onto F/(S) N F(T).

Theorem 1.2 ([3]). Let H be a Hilbert space and let C' be a nonempty, convexr
and closed subset of H. Let S and T be commutative normally 2-generalized hybrid
mappings of C into itself such that F(S)NF(T) # 0. Let {u,} be a sequence in
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C such that up, — u. Let C1 = C and let {x,} C C be a sequence generated by
r1=x € C and

Yn = QpZp + (1 — a")ﬁ Y k0 2o Sk,
Cny1=1{2€Cy: lyn — 2| < ||z — 2|},
Tn+1 = PCn+1un+1a Vn € Na

where Pg, ., is the metric projection of H onto Cpy1 and {a,} C [0,1] is a sequence
such that liminf, o oy, < 1. Then, {z,} converges strongly to 2o = Pp(s)np (1)U,
where Pr(s)np(r) 18 the metric projection of H onto F(S) N F(T).

In this paper, using the hybrid method defined, we first obtain a strong conver-
gence theorem for noncommutative two normally 2-generalized hybrid mappings in
a Hilbert space. Next, using the shrinking projection method, we prove another
strong convergence for the mappings in a Hilbert space. Using these results, we get
well-known and new strong convergence theorems by the hybrid method and the
shrinking projection method in a Hilbert space.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product (-, -) and
norm || - ||, respectively. We denote the strong convergence and the weak convergence
of {x,,} to x € H by =, — z and z,, — =z, respectively. In a Hilbert space, it is
known that

(2.1) 2(z —y,y) < llzl” = llyl* < 2(z — y, 2)
for all z,y € H and
(2.2) laz + (1 = a)yl® = al|® + (1 = ) y[* = (1 - a) |z - y|*

for all z,y € H and « € R; see [17]. Furthermore, in a Hilbert space, we have that

2
I

(2.3) 2(x —y, 2 —w) = o —wl* +ly — 2| — llz — 2[|* — |ly — |

for all ,y, z,w € H. We also have the following result from [13].
Lemma 2.1 ([13]). Let z,y,z € H and a,b,c € R such that a +b+ c = 1. Then,
laz + by + cz||?
= allzl* + byl + c||2l* — ablz — y|* = be ||y — 2[1* = ca |z — =||*.
Additionally, if a,b,c € [0,1], then
laz + by + cz)|* < allz|* + b lyl* + ¢ 1]

Let H be a Hilbert space and let C' be a nonempty subset of H. A mapping
T :C — H with F(T) # 0 is called quasi-nonexpansive if
| Tz —u|| < ||z —u|, VYzxel, ucF(T).

If C is closed and convex and T : C — H with F(T) # () is quasi-nonexpansive,
then F(T') is closed and convex; see Itoh and Takahashi [7]. For a nonempty, closed
and convex subset D of H, the nearest point projection of H onto D is denoted by
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Pp, that is, ||t — Ppz|| < ||l — y|| for all x € H and y € D. Such a mapping Pp
is called the metric projection of H onto D. We know that the metric projection
Pp is firmly nonexpansive; ||Ppz — Ppyl||*> < (Ppz — Ppy,x — y) for all z,y € H.
Furthermore, (z — Ppxz,y — Ppz) < 0 holds for all z € H and y € D; see [16, 17].
Using this inequality and (2.3), we have that

(2.4) 1Ppx = y|* + ||Ppx — z||* < ||z —y|?, VaeH, yeD.

Let H be a Hilbert space and let C' be a nonempty subset of H. A mapping
T : C — C is called normally 2-generalized hybrid [12] if it satisfies (1.3). We also
call such a mapping («, Bo, a1, 81, 2, B2)-normally 2-generalized hybrid. If x = Tx
n (1.3), then for any y € C,

asllz=Ty|* + a1z — Ty||* + aollx — Tyl|?
+ Ballz — ylI* + Billz — yll* + Bolle — ylI> <0
and hence
(a2 + a1+ ag)||lz = Ty[|> < —(B2+ B + Bo)ll= — ]|
From Zi:o (an + Bn) > 0, we have that

(a2 + o1 + ag)llz — Ty|* < (B2 + B1+ Bo)llz — ylI*> < (a2 + a1 + )|z — yl|*.
Since oo + a1 + ag > 0, it follows that
(2.5) |z =Tyl < |lz—yll, VzeF(T), yeC.

Thus if 7" is a normally 2-generalized hybrid mapping and F(T') # (), then it is
quasi-nonexpansive; see also [12]. Furthermore, we have the following result for
normally 2-generalized hybrid mappings in a Hilbert space.

Lemma 2.2 ([12]). Let C' be a nonempty, closed and convex subset of H, let T :
C — C be a normally 2-generalized hybrid mapping, and let {x,} be a sequence in
C satisfying x, — Tx, — 0, T?x, — 2, — 0 and x, — v. Then, v € F (T).

For a sequence {C),} of nonempty closed convex subsets of a Hilbert space H,
define s-Li,C, and w-Ls,C, as follows: z €s-Li,C,, if and only if there exists
{zn,} C H such that {x,} converges strongly to x and z, € C, for all n € N.
Similarly, y €w-Ls,C,, if and only if there exist a subsequence {Cy,} of {C,} and a
sequence {y;} C H such that {y;} converges weakly to y and y; € Cy,, for all i € N.
If Cy satisfies

(2.6) Cy =s-Li,,Cy, =w-Ls,,Cy,

it is said that {C),} converges to Cp in the sense of Mosco [14] and we write Cy =M-
lim,, o Cy,. It is easy to show that if {C), } is nonincreasing with respect to inclusion,
then {C,} converges to N2 ;C), in the sense of Mosco. For more details, see [14].
Tsukada [21] proved the following theorem.

Theorem 2.3 ([21]). Let H be a Hilbert space. Let {Cy} be a sequence of nonempty
closed convex subsets of H. If Co =M-lim,,_~ C, exists and nonempty, then for
each v € H, {Pc,x} converges strongly to Pc,x, where Pc, and Pg, are the mertic
projections of H onto C, and Cy, respectively.
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3. STRONG CONVERGENCE THEOREMS BY HYBRID METHODS

In this section, using the hybrid method by Nakajo and Takahashi [15], we first
prove a strong convergence theorem for noncommutative normally 2-generalized
hybrid mappings in a Hilbert space.

Theorem 3.1. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let S, T : C' — C be normally 2-generalized hybrid mappings such that
F(S)NF(T)#0. Let {z,} C C be a sequence generated by x1 € C' and

Yn = AnTp + bn(’ynS +(1- ’yn)T)xn + cn(énS2 +(1- 5n)T2):1:n,
Cn={2€C:|lyn — 2[| < |lzn — 2[},
Qn={z€C:{(xy,—z,x—xy,) >0},
Tnt1 = Po,ng,r1, Vn €N,
where Po,ng, 15 the metric projection of H onto C,,NQy and a,b,c,d,e, f € R and
{7}, {0} {an}, {bn}, {cn} C [0,1] satisfy the following:
0<a<y,<b<l, 0<ec<i, <d<1,
an+bp+c,=1 and 0<e<ap,b,c, < f<1l, VneN.
Then {x,} converges strongly to zy = Prsynr(r)T1, where Pp(synp(r) @5 the metric
projection of H onto F(S)N F(T).
Proof. Setting Sy, = 7,8 + (1 — v,)T and T, = 6,52 + (1 — 8,)T?, we have that
Yn = AnTn + by SpTn + cnThy
for all n € N. Since
lyn = 201> < llzn — 2|
= lynll® = l[2al® = 2(yn — 24, 2) <0,

we have that C,,, @, and C, N @Q,, are closed and convex for all n € N. We next
show that C,, N @, is nonempty. Since S and T are quasi-nonexpansive, we have
that, for any ¢ € F'(S)N F(T) and n € N,

[Sn@n — qll = (ST + (1 — ) Txn — q||
< Wl[Szn — qll + (1 = ) [[Tzn — qf
< llen =gl + (1= yn)llzn — g
= ||z — 4|
and
|Tnzn —qll = ||5n52xn +(1- 5n)T2$n il
< 511”523371 —ql+(1- 5n)HT2xn il
< Onllwn — qll + (1 = 6n)|l2n — 4l
= || —ql|-
Then we have that
lyn —all = llan (zn — ) + bn (Spzn — @) + cn (Tnzn — 9|
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an |[zn — qll + by | Snzn — gl + cn (| Tozn — 4|

an [|zn = qll + bn 20 — gl + cn llzn — 4|

lzn —qll -

Thus we have ¢ € C), and hence F(S) N F(T) C C, for all n € N. Next, we show
by induction that F'(S) N F(T) C C,, N Qy, for all n € N. From F(S)NF(T) C Q1,

it follows that F'(S) N F(T) C Cy N Q1. Suppose that F(S) N F(T) C Cr N Qy, for
some k € N. From z;4+1 = Po,ng,*1, we have that

<
<

(Th41 — 2,21 — Tpq1) 20, Vz € Cp N Q.
Since F(S)N F(T) C Cr N Qy, we also have
(Tp41 — ¢, 21 —x41) >0, Vge F(S)NF(T).

This implies F'(S) N F(T) C Qr+1. So, we have F(S)NF(T) C Cry1 N Qk41. By
induction, we have F(S) N F(T) C C, N Qy, for all n € N. This means that {z,}
is well-defined. Furthermore, since S and T are quasi-nonexpansive, we have from
[7] that F(S) N F(T) is closed and convex. So, there exists the mertic projection
PF(S)ﬁF(T) of H onto F(S)NF(T).

Since z, = Pg,x1 and p41 = Pc,nQ, 21 € Qn, we have from (2.3) that

0 <2(x1 —xn,Tn — Tpt1)
(3.1) = llz1 = @nall® = llo1 = zall? = lon — 2|2
< oy = @nall® = o1 — @,
Thus we get that
(3-2) lz1 = @l < llo1 = @npa].
Furthermore, since z, = Pg,x1 and ¢ € F(S) N F(T) C @y, we have
(3.3) |21 — 20| < |lz1 —q]|-

We have from (3.2) and (3.3) that lim,,_, |21 — 2, ||? exists. This implies that {x,}
is bounded. Hence, {y,}, {Snzn} and {T,,z,} are also bounded. From (3.1), we
have

20 = g1 |? < |21 — 2pga||® = 21 — 20|
and hence

(3.4) |2n — ni1] — 0.

From z,41 € Cy, we have that ||y, — zpy1|| < [|2n — 2pyal|. From (3.4), we have
|y — Tnt1]| = 0. So, we get that

(3.5) lyn — 2ol < lyn — Totall + [T — 20l = 0.

Next, we verify that x, — Sy, — 0 and Tz, — x,, — 0. We obtain from Lemma
2.1 that, for any ¢ € F(S)N F(T) and n € N,

||yn - Q||2 = ||an (l'n - Q) + bp (Snxn - Q) +cp (Tnl'n - Q)H2
= ap ||zn — qHQ + bn [|Snn — qH2 + cn || Tnzn — CIHQ

- anbn ||«77n - SnmnH2 - bncn HSnxn - Tn$n||2 — Cpln HTnxn - anz
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< Nl = qll* = anbn |20 — Spznl|* = bocn [|Spn — Townl|?
— cpap || Ty — az:n||2
and hence
by |20 — Snan||® 4 bncn |Snn — Tnanl|* + cnan | Tnzn — )
(3.6) < e = qll* = llyn — gll?
= ([lzn = qll + [lyn — al)([n = all = [lyn — al))-

Since ||z — ¢l = |yn — ¢l < ||zn —ynll = 0 and 0 < e < ay, by, ¢, < f < 1, we have
from (3.6) that

(3.7) Tn — Spxn — 0 and Thz, — 2, — 0.
We also have from (2.1) that, for any ¢ € F'(S) N F(T),
|z = qll* = |20 — S + Snwn — q|?
< |[Sntn — (]H2 + 2(zn — Snn, Tn — q)
= [[Szp + (1 — yn)T2n — QHQ + 2(xp — SnTn, Tn — q)
= Ynl|S2p — QHZ + (=)l T2n — QHQ
— (L = ¥[S0 — Tan|® + 2(wn — Sntrn, Tn — q)
< Mnllzn — 2”2 + (1 =) [|zn — ZHZ
— (L =) 1820 — Txp||® 4 2(xn — Spn, , — q)
= ||z — 2”2 = (1 = v) |5z — Tmn”2 + 2(zn — SnTn, T — q)
and hence
V(1 = )| Sy — Taan2 < 2xy, — Spxp, Ty — q).
Since x, — S,r, — 0, we have that Sx,, — Tz, — 0. Then we have that
|zn — Sxn|| = ||2n — SnTn + Snxn — Sxy||
< ||zn — Snanll + |Snwn — Soa|
= [|zn — Span| + (1 — W) T2n — Syl
— 0.
We also have that ||z, — T'z,| — 0. Similarly, we have that
(e QHQ = [|zn — Than + Thxy — CIH2
< | Tnan — ql* + 2(zn — Tn@n, 20 — @)
= HénS'zxn +(1- 5n)T233n - QHQ + 2@y — TnTn, Tn — q)
= 0nl|S%2n — ql|* + (1 = 8,) | T2 — q?
— 6 (1 = 6p)|1S%2n — T?an||* + 2(zn, — Tyn, 0 — q)
< Onllzn — Z||2 + (1= dn)llzn — Z||2
— 6 (1 = 6n)1S%2n — T2 ||* + 2(zn, — Tyn, 0 — q)
= ||lzn — 2|2 = 6, (1 — 8,)15%2,, — T?2p || + 2(x), — Ty, 0 — q)
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and hence
on(1— 5n)\|52xn — TQ.I‘nHQ < 2xy — Thn, Tn — Q).
Since =, — Tz — 0, we have that S%z,, — T%x,, — 0. Then we have that
zn — S%znl| = |20 — Tpan + Ty — S22,
< Nzn = Tnznll + | Tnzn — S22, ||
= ||lzn — Tpzn|| + (1 — 6,)|| T2z, — S22,

— 0.

We also have that ||z, — T?z,| — 0.

Since {z,} is bounded, there exists a subsequence {z,,} C {x,} such that z,, —
z*. From Lemma 2.2, we have z* € F(S)N F(T).

Put 2y = PF(S)DF(T)xl- Since zy = PF(S)DF(T)CQ € C,NQyp and xp41 =
Pc,nq,r1, we have that

(3.8) 21 = Zpga || < [lzy — 2o]-
Since || - || is weakly lower semicontinuous, from x,, — z* we have that

lz1 = 2%l < liminf {lzy — 25, || < flz1 = zo]l-

From the definition of 2y, we have z* = z3. So, we obtain z,, — z5. We finally show
that x,, — zg. We have that

20 — znl|? = |20 — z1]]> + |21 — 20 |® + 2(20 — 21,21 — zn), Yn €N,
So, we have from (3.8) that
limsup ||z — @,||* = limsup(||zo — 21||* + |21 — onl|* + 2(20 — 71,21 — @)
n—00 n—0o0
< limsup(||zo — z1|* + ||z1 — 20||* + 2(20 — =1, 21 — x,))
n—oo
= |lz0 — 21)1* + llo1 — 20/ + 2(z0 — 21, 21 — 20)
= 0.

Thus we obtain lim, .« ||2z0 — || = 0. Hence, {z,,} converges strongly to zy. This
completes the proof. O

Next, we prove a strong convergence theorem by the shrinking projection method
[19] for noncommutative normally 2-generalized hybrid mappings in a Hilbert space.

Theorem 3.2. Let H be a real Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let S, T : C — C be normally 2-generalized hybrid mappings
such that F(S)NF(T) # 0. Let {u,} be a sequence in C such that u, — w. Let
Cy = C and let {xz,} C C be a sequence generated by x1 € C and

Yn = AnTy + by (’ynS +(1- ’yn)T)xn +cp (5n52 +(1- 5n)T2)xn,
Cnt1={2€ Cn: |lyn — 2| < [lwn — 2|},
Tnt+1 = PCTH_luTl-f—l? Vn € N7
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where Pc, ., 1is the metric projection of H onto Cyy1 and a,b,c,d,e, f € R and
{m} {on}, {ant, {bn}, {cn} C [0,1] satisfy the following:

0<a< 1 <b<l, 0<c<d, <d<1,
an+by+c,=1 and 0<e<ap,b,c, < f<1l, VneN.
Then {x,} converges strongly to zy = Pr(s)nr(ryu, where Ppsynp(ry s the metric
projection of H onto F(S)N F(T).
Proof. Setting Sy, = 7,8 + (1 — v,)T and T, = 6,52 + (1 — 8,)T?, we have that
Yn = Ty + by S + ey Tnxy,

for all n € N. We shall show that C,, is closed and convex, and F(S) N F(T) Cc Cy,
for all n € N. It is obvious from assumption that C7 = C is closed and convex, and
F(S)NF(T) C C;. Suppose that Cy is closed and convex, and F(S) N F(T) C Cy
for some k € N. We know that, for z € Cj,

lye = 2[I* < [l — 2|
= lyxll® = llexl? = 2(yx — @1, 2) <O
So, Ckyq is closed and convex. By induction, C, are closed and convex for all
n € N. Furthermore, since S and T' are quasi-nonexpansive, we have that, for any
q € F(S)NF(T),
lye — all = llak (zx — @) + b (Skxk — @) + ek Tz — g
< ay ||z — qll + bk [|Skxk — all + ek | Ty, — 4
< ak [lzk — qll + be lze — gl + cx llze — g
= ||z —all-
Hence, we have ¢ € Cy41. By induction, we have that F(S) N F(T) C C,, for all
n € N. Since C,, is nonempty, closed and convex, there exists the metric projection
Pc, of H onto Cy,. Thus, {z,} is well-defined.
Define 290 = Pp(s)np(T)u- Putting w, = Pc, u, we have that
e = wall <l — gl
for all y € C),. Since zg € F(S)N F(T) C C,, we have that
(3.9) [ = wn| < [u—20l.

This means that {w,} is bounded. From w, = Pr,u and wy4+1 € Cpy1 C Cy, we
have that
Ju = wn |l < [Ju— wpy1]-

Thus {||u—wy||} is bounded and nondecreasing. Then the limit of {||u—w,||} exists.
Put limy, 0 ||wyn, — u|| = ¢. For any m,n € N with m > n, we have C,, C C,,. From
wm, = Po,,u € Cyp, C Cy, and (2.4), we have that

lwm — Po,ull® + | Po,u = ul® < [lu — wpnll.
This implies that

(3.10) lwim = wall < Jlu = win|* = [[wn = ul® < ¢ = Jwn = ull*.
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Since ¢? — ||w, — ul|> = 0 as n — oo, we have that {w,} is a Caushy sequence. By
the completeness of C, there exists a point wg € C such that w, — wy.

Using Theorem 2.3, we can also prove that w, — wq. In fact, since {C,} is a
nonincreasing sequence of nonempty, closed and convex subsets of H with respect
to inclusion, it follows that

(3.11) 0 # F(S) N F(T) C M- lim C, = ﬁ Ch.

n=1

Put Cy =2, Cy. Then, by Theorem 2.3 we have that {w, } = {Pc,u} converges
strongly to wo = Pg,u, i.e., wy, = Pc,u — wo.
Since the metric projection P, is nonexpansive, it follows that

|20 — woll < (|2 — wyl| + |lws — wo|
= || Pe, un — Pe,ull + |[wn — wo|
< Jup — ul| + |lwy, — wo|
and hence
(3.12) Ty — Wo.

To complete the proof, it is sufficient to show that 29 = Pr(s)nrr)u = wo.
From (3.12), we have that

(3.13) |2n — ni1] — 0.

From x,,11 € Cp41, we also have that ||y, — zp41] < ||2n — Tns1||. So, we get that
lyn — Tny1]] — 0. Using this, we have

(3.14) 1Yn = 2nll < Nlyn = ngall + l2n41 = znll = 0.

As in the proof of Theorem 3.1, we have that Sz, — z, — 0, Tz, — z, — 0,
S%2x, — x, — 0 and T?x, — x, — 0. From (3.12), we also get that z, — wp.
From Lemma 2.2, we have wo € F(S) N F(T). Since 20 = Pp(s)np(r)tt € Cpy1 and
ZTny1 = Po,. Uns1, we have that
(3.15) [tn+1 = Tnga || < flungr — 20]-
Thus we have that

[lu — wol| < [lu— 20|

and hence zyp = wg. Therefore, {x,} converges strongly to zp. This completes the
proof. O

4. APPLICATIONS

In this section, using Theorems 3.1 and 3.2, we get new strong convergence theo-
rems by the hybrid method and the shrinking projection method in a Hilbert space.

Theorem 4.1. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let T : C — C be a nonexpansive mapping such that F(T) # 0. Let
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{zn} C C be a sequence generated by x1 € C and

Yn = anTy + by Ty + CnTQJ:na
Crn={2€C:|yn— 2| <|lwy — 2|},
Qn=1{2€C:(xy—z,x—x,) >0},
Tnt1 = Pe,ng,r1, Vn €N,
where Pc, g, 1is the metric projection of H onto Cp, N Qr and {a,},{by},{cn} C
[0,1] and e, f € N satisfy
an+bp+cp=1 and 0<e<ap,by,c, < f<1l, VYneN.
Then {z,} converges strongly to zop = Prryx1, where Ppr) is the metric projection
of H onto F(T).

Proof. Put S =T and ~, = 6, = % for all n € N in Theorem 3.1, Furthermore,
since the class of nonexpansive mappings is contained in the class of normally 2-
generalized hybrid mappings, we obtain the desired result from Theorem 3.1. [

Theorem 4.2. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let S and T be nonexpansive and nonspreading mappings, respectively,
such that F(S)NF(T) # 0. Let {x,} C C be a sequence generated by x1 € C and

Yn = AnTy + by (%an +(1- ’yn)Txn) +cp <5n52xn +(1- 5n)T2a:n),

Cn={2€C:|lyn — 2| < [z — 2|},

Qu=1{2€C: (n— 20— 2,) > 0},

Tnt+1 = Pe,ng.r1, Vn €N,
where Po,ng, 15 the metric projection of H onto C,,NQy and a,b,c,d,e, f € R and
{m}b {0} {an}t, {bn}, {cn} C [0,1] satisfy the following:

0<a<ym<b<l, 0<e<i, <d<1,
n+bp+cpn=1 and 0<e<ap,by,c, < f<1l, VYneN.

Then {xy} converges strongly to 2o = Pp(s)nr ()71, where Pp(g)np(r) s the metric
projection of H onto F(S) N F(T).

Proof. Since the classes of nonexpansive mappings and nonspreading mappings are
contained in the class of normally 2-generalized hybrid mappings, we obtain the
desired result from Theorem 3.1. O

Using Theorem 3.1, we have the following strong convergence theorem for 2-
generalized hybrid mappings in a Hilbert space.

Theorem 4.3. Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let S, T : C — C be 2-generalized hybrid mappings such that
F(S)NFE(T)#0. Let {x,} C C be a sequence generated by x1 € C' and

Yn = ann + b (1S + (1 = 1) T)2p + ¢ (6,57 + (1 = 6,)T?)
Cn={2€C:|yn— 2| < |lzyn — 2|},
Qn={z€C:{(x,—z,x—x,) >0},

Tny1 = Po,ng,71, Vn €N,
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where Po,ng, 15 the metric projection of H onto C,, NQy, and a,b,c,d,e, f € R and
{mb {on}, {ant, {bn}, {cn} C [0,1] satisfy the following:
0<a<y,<b<1l,0<c<é,<d<1,
an+bp+c,=1 and 0<e<ap,bp,cp < f<1l, VYneN.

Then {x,} converges strongly to zo = Pr(s)np(1)T1, where Pp(g)np(r) s the metric
projection of H onto F(S)N F(T).

Proof. Since the class of 2-generalized hybrid mappings is contained in the class of
normally 2-generalized hybrid mappings, we obtain the desired result from Theorem
3.1. 0

Similarly, using Theorem 3.2, we have the following results.

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let T : C — C be a nonexpansive mapping such that F(T) # 0. Let
{zn} C C be a sequence generated by x1 € C' and

Yn = anTp + by Ty + CnTana

Cntr={2€Cp: lyn — 2l| < |lzn — 2|},

Tn+1 = PCnﬂanlv Vn € N7
where {an}, {bn}, {cn} C [0,1] and e, f € N satisfy

an+bp+c,=1 and 0<e<ap,byc, < f<1l, VnéeN.

Then {z,} converges strongly to zo = Pp(ryx1, where Pp(ry is the metric projection
of H onto F(T).

Theorem 4.5. Let H be a real Hilbert space and let C be a nonempty, closed and
convex subset of H. Let S and T be nonexpansive and hybrid mappings of C into
itselt, respectively, such that F(S) N F(T) # 0. Let {u,} be a sequence in C such
that w, — u. Let C1 = C and let {x,} C C be a sequence generated by x1 € C' and

Yn = Ty + bp (Y Sxy + (1 — 'yn)Ta:n> + ¢ (6,5%x, + (1 — 5n)T2xn),
Crni1={2 € Cn: [lyn — 2| < [lon — 2[[},
Tne1 = Po,Ung1, YR EN,
where Pc, ., 1s the metric projection of H onto Cpy1 and a,b,c,d,e, f € R and
{m}s {on}, {an},{bn}, {cn} C[0,1] satisfy the following:
0<a<y <b<l,0<c<, <d<1,
an+bp+cy,=1 and 0<e<ap,b,c, < f<1l, VneN.

Then, {x,} converges strongly to zy = Prs\nr(ryu, where Prs)np(r) s the metric
projection of H onto F(S)N F(T).

Proof. Since the classes of nonexpansive mappings and hybrid mappings are con-
tained in the class of generalized hybrid mappings, we obtain the desired result from
Theorem 3.2. Il
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Theorem 4.6. Let H be a real Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let S,T : C' — C be 2-generalized hybrid mappings such that
F(S)NF(T)#0. Let {u,} be a sequence in C such that u, — u. Let C; = C and
let {x,} C C be a sequence generated by x1 € C and

Yn = AnTy + by (’ynS +(1- 'yn)T)xn +cp (5n52 +(1- (5n)T2)xn,
Crnt1=1{2 € Cp : lyn — 2|l < |lzn — 2|},
Tny1 = Po,  Uny1, Vn €N,

where Pc, , 1is the metric projection of H onto Cyy1 and a,b,c,d,e, f € R and
{}, {0n},{an}, {bn}, {cn} C [0,1] satisfy the following:
0<a< 1 <b<l, 0<c<d, <d<1,
an+by+cp,=1 and 0<e<ap,byc, < f<1l, VneN.

Then {x,} converges strongly to zy = Pr(s)nr(ryu, where Ppsynp(r s the metric
projection of H onto F(S)N F(T).
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