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COUPLED FIXED POINTS FOR HARDY-ROGERS TYPE
OPERATORS IN ORDERED GENERALIZED KASAHARA
SPACES

ALEXANDRU-DARIUS FILIP

ABSTRACT. In this paper we present some coupled fixed point theorems for
Hardy-Rogers type operators in an ordered generalized Kasahara space
(X,—,d, <), where d : X x X — R is a functional. Some applications concern-
ing the existence and uniqueness of solutions for systems of functional-integral
equations are also given.

1. INTRODUCTION AND PRELIMINARIES

Recently, we have presented in [6] some coupled fixed point theorems for Zam-
firescu type operators in ordered generalized Kasahara spaces. In this paper, we
will give some generalizations of these results by considering Hardy-Rogers type
operators. The notions of Zamfirescu and Hardy-Rogers type operators are recalled
bellow.

Definition 1.1 (Zamfirescu type operator, [22]). Let (X, d) be a metric space. Let
f X — X be an operator. Then f is a Zamfirescu type operator if at least one of
the following conditions holds:

(i) there exists a € [0,1) such that d(f(z), f(y)) < ad(z,y), for all z,y € X;

(i1) there exists b € [0, 1) such that d(f(z), f(y)) < bld(z, f(z))+d(y, f(y))], for all
z,y € X;

(iii) there exists ¢ € [0, 1) such that d(f(z), f(y)) < c[d(z, f(y)) + d(y, f(z))], for
all z,y € X.

Definition 1.2 (Hardy-Rogers type operator, [8]). Let (X,d) be a metric space.
Let f: X — X be an operator. Then f is a Hardy-Rogers type operator if there
exists a,b,c € Ry with a + 2b + 2¢ € (0,1) such that d(f(x), f(y)) < ad(x,y) +
bld(z, f(z)) +d(y, f(y)] + cld(z, f(y)) + d(y, f(2))], for all z,y € X.

Notice that the notion of Hardy-Rogers type operator is more general than the
notion of Zamfirescu type operator. In order to establish our results concerning
Hardy-Rogers type operators, let us recall first some notions and notations.

Definition 1.3 (L-space, [7]). Let X be a nonempty set. Let
$(X) == {(@n)nen | zn € X, n € N}.
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Let ¢(X) be a subset of s(X) and Lim : ¢(X) — X be an operator. By definition
the triple (X, c¢(X), Lim) is called an L-space (denoted by (X, —)) if the following
conditions are satisfied:

(1) if ¢, = x, for all n € N, then (x,)nen € ¢(X) and Lim(zy,)peny = .
(73) if (xn)nen € ¢(X) and Lim(zy)nen = z, then for all subsequences (zy,)ien
of (xn)nen we have that (zy,)ien € ¢(X) and Lim(zy,)ieny = .

Example 1.4. Let (X, d) be a metric space. Let “ be the convergence structure
induced by d on X. Then (X, £>) is an L-space.

Example 1.5. Let (X,p) be a partial metric space. Let 2 be the convergence

structure induced by p on X. Then (X, £>) is an L-space. (Concerning partial
metric spaces, see [10])

In general, an L-space is any set endowed with a structure implying a notion of
convergence for sequences. Other examples of L-spaces are: Hausdorff topological
spaces, generalized metric spaces in Perov’ sense (i.e. d(x,y) € R'), generalized
metric spaces in Luxemburg’ sense (i.e. d(x,y) € Ry U {+o0}), K-metric spaces
(i.e. d(z,y) € K, where K is a cone in an ordered Banach space), gauge spaces,
2-metric spaces, D-R-spaces, probabilistic metric spaces, syntopogenous spaces.

In 1922, S. Banach in [2] and later, in 1930 R. Caccioppoli in [4] have given one
of the most famous tool in the fixed point theory domain: the Contraction Principle
for a-contractions defined on complete metric spaces (X, d), where d : X x X — Ry
is a metric.

In 1976, S. Kasahara proved in [9] that the Banach-Caccioppoli’s contraction
principle works in a more general setting: d-complete L-space, where d : X x X —
R4 U {400} is a function, not necessarily a metric.

In 2010, starting from Kasahara’s work, I.A. Rus introduced in [17] the notion of
generalized Kasahara space.

Definition 1.6. Let (X, —) be an L-space, (G,+,§,§>) be an L-space ordered
semigroup with unity, 0 be the least element in (G, <) and dg : X x X — G be an
operator. The triple (X, —,dg) is called a generalized Kasahara space if and only
if the following compatibility condition between — and dg holds:

for all (z)neny € X with Z dg(xp, Tpy1) < +00
neN
(1.1) = (Tpn)nen is convergent in (X, —).

Remark 1.7. By the inequality with the symbol 4o in the compatibility condition
(1.1), we understand that the series ) _ndg(%n, Zns1) is bounded in (G, <).

Remark 1.8. In the context of generalized Kasahara spaces, fixed point results for
self generalized contractions were already given by S. Kasahara in [9], for the case
when G = R4 U {+oc} and by I.A. Rus in [17], for the case when G = R

Some examples of generalized Kasahara space are the following ones:
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Example 1.9. Let p: X x X — R’ be a generalized complete metric on a set X.
Let d : X x X — R’ be a functional. Assume that there exists ¢ > 0 such that

p(z,y) < cd(z,y), for all x,y € X. Then (X, Y d) is a generalized Kasahara space.

In the above example, by the inequality denoted by <, we mean that each pos-
itive real component of p is less than or equal to the corresponding positive real
component of d.

Example 1.10 (I.LA. Rus, [17]). Let p : X x X — R be a generalized complete
metric on a set X. Let g € X and A € R" with A # 0. Let dy : X x X — R be
defined by

d ((L‘ )_ p(:E,y) ) 1fx7éff0 andy#xm
AN Y) = A , if . = xg or y = xp.

Then (X, £ d \) is a generalized Kasahara space.

We recall also a very useful tool which helps us to prove the uniqueness of the fixed
point for operators defined on generalized Kasahara spaces.

Lemma 1.11 (Kasahara’s lemma [9]). Let (X, —,dqg) be a generalized Kasahara
space. Then dg(z,y) = dg(y,x) = 0 implies x =y, for all z,y € X.

Proof. Let x,y € X. Assume that dg(x,y) = dg(y,z) = 0. Define the subsequences
(on)neny C X, by xoy, := x, for all n € N and (22,41)neny C X, by zon41 1=y, for
all n € N.

We get that ) da(zn, Tny1) = 0. Since (X, —,dg) is a generalized Kasahara,
space, the sequence (xy,)nen is convergent in (X, —). So, there exists an element
z* € X such that z,, — x* as n — oco. Since x9, — T as n — oo, it follows that
x = a*. Similarly, we get y = x*. Thus, z = y. O

More considerations on Kasahara spaces can be found in [5] and [17].

Definition 1.12 (Ordered generalized Kasahara space, [6]). Let (X, —,dg) be a
generalized Kasahara space and let < be a partial order relation on X. Then
(X, —,dg, <) is an ordered generalized Kasahara space.

Example 1.13. Let X := C([a,b],R™) = {z : [a,b] — R™ | x is continuous on
[a,b]} be endowed with the partial order relation

x<cy<ext) <y(t) s xi(t) <y(t), for all t € [a,b], i =1,m.

We consider %, the convergence structure induced by the Cebisev norm
p: C([a,b],R™) x C([a,b], R™) — R, defined by

max;e|(qp)|21(t) — y1(t)]

play) = llr ~ yllo = max|e(t) — y(0)] = .
| mae(oy 2m(t) = ym(0)
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Let d : C([a,b],R™) x C([a,b],R™) — R, defined by

d(z,y) = |z —ylc + Iz —y)’llc
= max |z(t) — y(t)| + max {[x(t) —y(t)["}
tela,b] tela,b]
max;e(qp)|71(t) — y1(t)| + maxiepq g {21 (t) — y1 ()P}
= : ,where p € R,..
maxyc(q,)|Tm(t) — Ym(t)| + maxie(op){|Tm(t) — ym ()P}
Since p(z,y) < d(x,y), for all z,y € C([a,b],R™), it follows that the structure
(C([a,b],R™), ﬁ>, d,<¢) is an ordered generalized Kasahara space.

Let (X, —,dg, <) be an ordered generalized Kasahara space.
We define

X< ={(z1,22) € X x X | 21 <@g or z3 < x1}.

In the above setting, if f: X — X is an operator, then the Cartesian product of f
with itselfis f x f: X x X — X x X, given by

(f x )@, 22) = (f(21), f(22)).

All the notions presented above, were related to the generalized Kasahara space
(X,—,dg) or the ordered generalized Kasahara space (X, —,dg, <), where dg :
X x X — (G is an operator. In the sequel, we will consider the particular case, when
G =R'?. So, we will consider the ordered generalized Kasahara space (X, —,d, <),
where d : X x X — R’ is a functional.

We mention that if o, € R™, a = ( a1,09,...,a), B = ( B1,02,...,0m) and
¢ € R, then by a < 8 (respectively a < f3), we mean that «; < f3; (respectively
a; < Bi), for all i = 1,m and by a < ¢ we mean that «; < ¢, for all i =1, m.

We denote by M,,, (R4 ) the set of all square matrices of order m, having positive
real elements, by O,, the zero matrix of order m and by I,, the identity matrix
of order m. If A = (a; ) B = (bij); j-tm € Mm(Ry), then by A < B we
understand a;; < b;j, for all 7,5 = 1, m. The symbol A” stands for the transpose
of the matrix A. Notice also that, for the sake of simplicity, we will make an
identification between row and column vectors in R™.

A matrix A € M,,,(R) is said to be convergent to zero if and only if A™ — O,,
as n — oo (see [18]). Regarding this class of matrices we have the following classical
result in matrix analysis (see [1](Lemma 3.3.1, page 55), [19], [16](page 37), [21](page
12).

i,j=1,m>

Theorem 1.14. Let A € M,,(Ry). The following statements are equivalent:
(1) A is convergent to zero;
(i1) A" = Oy, as n— 00;
(ii7) the eigenvalues of A are in the open unit disc, i.e., |A\| < 1, for all A € C
with det(A — A,,) = 0;

(iv) the matriz I, — A is non-singular and

In—A) =1, + A+ A2+ 4+ A+
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(v) the matriz (I, — A) is non-singular and (I, — A)~! has nonnegative ele-
ments;
(vi) A"q—0€R™ and ¢"A" — 0 € R™ as n — oo, for all ¢ € R™.

Remark 1.15. Some examples of matrices which converge to zero are:
a a

a) any matrix A := ( b b

>,Wherea,b€]R+ and a4+ b < 1;

b) any matrix A := < b),where a,be Ry and a+b < 1;

a
a b
c¢) any matrix A := < g ZC) ), where a,b, c € Ry and max{a,c} < 1.

Remark 1.16. For more considerations on matrices which converge to zero, see
[11], [16] and [20].

Let (X, —) be an L-space and f : X — X be an operator. The following notations
and notions will be needed in the sequel of this paper:

o Fiz(f):={zr e X | z= f(x)} the set of all fixed points for f.

o I(f):={Y Cc X | f(Y) C Y} - the set of all invariant subsets of X with
respect to f.

o Graph(f) = {(z,y) € X x X | y = f(x)} the graph of f. We say that f
has closed graph with respect to — or Graph(f) is closed in X x X with
respect to — if and only if for any sequences (zn)neny C X, (Yn)neny C X
with y, = f(zy,) foralln e Nand z,, -z € X, y, >y € X, as n — oo, we
have that y = f(z).

e A sequence (zp)nen C X is called sequence of successive approximations for
f starting from a given point xg € X if x,,11 = f(z,), for all n € N. Notice
that x, = f™(xg), for all n € N.

o If Fiz(f) := {2*} and the sequence of successive approximations for f
starting from any given point o € X converges to z*, then f is a Picard
operator in (X, —).

2. MAIN RESULTS

We present here the principal result of this paper, generalizing the Theorem 2.1
stated in [6] for Zamfirescu type operators.

Theorem 2.1. Let (X, —,d, <) be an ordered generalized Kasahara space, where
d: X xX = R is a functional, satisfying d(z,z) = 0 and d(x, z) < d(z,y)+d(y, 2),
forallx,y,z € X. Let f: X — X be an operator. We assume that:

(i) for each (z,y) € X<, there exists z(y,) := 2 € X such that (z,2), (y,2) €
XS;
(i) X< € I(f x 1);
(131) f:(X,—)— (X,—) has closed graph;
(iv) there exists xg € X such that (zo, f(x0)) € X<;
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(v) there exist A,B,C € Mu,(Ry) such that (I, — B — C) YA+ B+ C) is
convergent to zero and

d(f(z), f(y)) < Ad(z,y) + Bld(z, f(z)) + d(y, f(y))]+
C[d(ﬂf,f(y)) + d(yv ( ))]7 fOT’ each (ﬂf,y) € XS'
Then f:(X,—) — (X,—) is a Picard operator.

Proof. Let x € X be arbitrary.
Since (z¢, f(w0)) € X<, by (ii) we have (f(xo), f%(0)) € X< and by (v),

d(f (o), f*(x0)) < Ad(wo, f(20)) + Bld(xo, f(20)) + d(f(z0), f*(x0))]+
+ Cld(xo, f*(20)) + d(f(0), f(x0))]

< Ad(zo, f(w0)) + Bld(zo, f(x0)) + d(f(z0), f*(x0))]+
+ Cld(xo, f(w0)) + d(f (o), f*(x0))]-

So, d(f(xo0), f*(x0)) < (I;n — B = C)""(A+ B + C)d(, f(z0))-
Let A := (I, — B—C)"Y(A+ B+ C). Then

d(f(z0), f*(x0)) < Ad(zo, f(x0)).

)
)
)
0)

Since (f(wo), f?(w0)) € X<, by (i) we have (f?(x0), f3(x0)) € X< and by (v), we
get that
d(f*(wo), f*(x0)) < Ad(f(z0), f*(x0))+
+ Bd(f(x0), f*(x0)) + d(f*(x0), f*(x0))]+
+ Cld(f (o), £*(x0)) + d(f*(w0), F*(0))]
< Ad(f (20), f*(20))+
+B[ (f (o), £*(x0)) + d(f*(wo), F*(x0))]+
Cld(f(xo), f*(x0)) + d(f*(x0), f*(w0))]-
So,
d(f*(x0), f*(x0)) < Ad(f(x0), f(x0)) < A%d(xo, f(z0))-
By induction, for n € N, we get:
d(f" (o), f*H(x0)) < A"d(z0, f(z0))
and since A is a matrix that converges to zero, we have

D d(f (o), [ (w0)) <D A™d(xo, f(x0))

neN neN
= (I, — A)'d(z0, f(z0)) < +00.

Since (X, —,d) is a generalized Kasahara space, we get that the sequence of
successive approximations for f, starting from =z, is convergent in (X,—). So,
there exists z* € X such that f"(zg) — 2* as n — oo. By (iii) we get that
x* € Fix(f).

Notice also that:
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o If (z,29) € X< then by (ii) we have (f"(z), f"(z09)) € X< and by (v), 0 <

d(f™(x), fM(xo)) < A"d(z, ) Rﬁ 0 as n — oo. Similarly, we get d(f™(zo), f™(z)) =
0. By Kasahara’s lemma 1.11, it follows that f"(z) = f"(x¢), for all n € N.

o If (z,m0) ¢ X<, then by (i), there exists z(, ,,) = 2z € X such that (z,2),
(x0,2) € X<. Since (z,z) € X<, by (it) we have (f"(z), f"(2)) € X< and by

(v), 0 < d(f™(z), fM(2)) < A"d(x,2) RJ 0. Similarly, we get d(f™(z), f"(z)) = 0.
By Kasahara’s lemma 1.11, it follows that f™(x) = f"(z), for all n € N. Since
(x0,2) € X< we get that f™(xg) = f"(z), for all n € N. Hence f"(x) = f"(zo) — =*
as n — 00.

We show next the uniqueness of the fixed point x*.

Let y* € Fiz(f) such that y* # z*.

If (z*,y*) € X<, then by (i) we have (f"(z*), f"(y*)) € X< and by (v), 0 <

d(z*,y*) = d(f"(z*), f"(y*)) < A™d(z*,y*) RJ 0. So, d(z*,y*) = 0. By a similar
way, we obtain d(y*,z*) = 0. By Kasahara’s lemma 1.11, it follows that z* = y*.

If (z%,y*) ¢ X<, then by (i), there exists z(,« +) = z € X such that (z7, 2),
(y*,z) € X<. Since (2%, z) € X<, by (ii) we get (f"(z*), f"(2)) € X<, for all n € N,
and by (v), 0 < d(z*,2) = d(f"(z*), f"(2)) < A™d(z*, z) Ri 0. So, d(z*,z) = 0.
Similarly, we obtain d(z,2*) = 0. By Kasahara’s lemma 1.11, we get z* = z.

Since (y*, z) € X<, by (i) we have (f"(y*), f*(z)) € X<, for all n € N, and by
(v), 0 < d(y*,2) = d(f ("), f"(2)) < A"d(y",2) = 0. So, d(y*,2) = 0. Similarly,
we obtain d(z,y*) = 0. By Kasahara’s lemma 1.11, we have y* = z.

Hence z* = y*. O

Remark 2.2. There can be found matrices A, B,C € M,,(R) such that (I, —
B —C) YA+ B+ C) is convergent to zero.
Let € > 0. We consider the following particular upper triangular matrix set:

aip a2 aiz ... Qaim
0 age asz ... aom
ME (R = { 0 0 ass ... am | € M, (Ry) | max ay < 5}.
. . . . i=1m
0 0 0 ... Gmm

For ¢ € (0,1], it is clear that any matrix A € M$,(R,) is convergent to zero.

Now, let a,b,c € R such that a +2b+ 2c < 1. Let A € M%(R,), B € M% (R,)
and C € M¢ (R;) . Then the matrix (I, — B — C)~}(A+ B + C) is convergent to
Zero.

Indeed, let A = (ai;); ;17 € My (R+), B = (bij); j_1m € M?P(R,) and C =
(Cij)i,jlen € M¢ (Ry). Since a+2b+ 2¢ < 1, we have that a;; + 2b;; + 2¢;; < 1 and
also that 0 < ay + by + ¢y < 1 — by — ¢y, for all i = 1, m. Since det(I,,, — B—C) =
[T%, (1 — by — cis) # 0, it follows that the matrix (I, — B — C) is non-singular. In
addition, it can be shown that (I,, — B—C)~! is an upper triangular matrix and its
diagonal elements are m, for all i = 1,m. On the other hand, A+ B+ C is an

upper triangular matrix. The product (I,,, — B —C)~'(A+ B + () is also an upper
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triangular matrix, having its diagonal elements % < 1, for all i = 1,m.
1 11

Hence, the eigenvalues of (I,, — B — C)"}(A + B + C) are in the open unit disk.
The conclusion follows from Theorem 1.14.

In the sequel, we will apply Theorem 2.1 to the coupled fixed point problem gener-
ated by an operator.

Let X be a nonempty set, endowed with a partial order relation denoted by <.
If we consider two arbitrary elements z := (x,y), w = (u,v) of X x X, then, we
can introduce a partial ordering relation on X x X, denoted by < and defined as
follows:

z < w if and only if (z > v and y < v).
Theorem 2.3. Let (X, —,d, <) be an ordered Kasahara space, where d : X x X —
Ry is a functional. Let S : X x X — X be an operator. We suppose that:

(1) for each z = (x,y), w = (u,v) € X x X, which are not comparable with
respect to the partial ordering < in X x X, there exists t := (t1,t2) € X x X,
which may depend on (x,y) and (u,v), such that t is comparable with respect
to the partial ordering =<, with both z and w;

(73) for all (x > u and y < wv) or (u >z and v < y), we have

{S(az,y)zS(u,v) or {S(u,fu)ZS(w,y)
S(y,z) < S(v,u) S(v,u) < S(y,x)
i.e., S has the generalized mized monotone property;
(ii7) S: X x X — X has closed graph with respect to —;
(iv) there exists zo := (2§,28) € X x X such that
2 > Sz, 25) S(29,25) > 2
{za <) {s<z3,zs> <3
(v) there exist k; € Ry, i = 1,6, with
ki + ko + 2max{ks, ka} + 2max{ks, k¢} < 1,
such that
d(S(z,y), S(u,v)) < kid(z,u) + kod(y,v)+
(2.1) + ksd(x, S(z,y)) + kad(u, S(u,v))+
+ ksd(x, S(u,v)) + ked(u, S(z,y)),
forall (x> u and y <v) or (u>x and v < y).
Then there exists a unique element (x*,y*) € X x X such that z* = S(z*,y*) and

y* = S(y*,x*). In addition, the sequence of successive approzimations (S™(wg, wd),
S (w3, w})) converges to (z*,y*) as n — oo, for all wy = (w}, wd) € X x X.
Proof. Let Z := X x X and consider =, the partial order relation on Z, defined as
follows: for all z := (z,y), w := (u,v) € Z, z < w if and only if (z > v and y < v).
Let Z< :={(z,w) := ((z,y), (w,v)) € Z X Z | z 2w or w = z}.
Let F': Z — Z be an operator defined by

Fep) = (o)) = (5.). 50:0).
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We show that all of the assumptions of Theorem 2.1 are satisfied.

By (#i7), F has closed graph with respect to —, so the assumption (7i7) of Theorem
2.1 holds.

By (ii), we have Z< € I(F x F).

Indeed, let z = (x,y), w = (u,v) € Z< be two arbitrary elements, where (z >
wand y <w) or (u >z and v < y) such that

S(u, v) = S(x,y)
S(v u) < S(y,z

From (1) and (2) we have that (S(z,v), S(y,x)) = (S(u,v), S(v,u)), i.e., F(x,y) =
F(u,v) or F(z) = F(w). Similarly, we get F'(w) = F(z). Hence (F(2), F(w)) € Z<,
for all (z,w) € Z<. So, (Fx F)(Z<) C Z<, i.e., Z< € I(F x F) Thus, the assump-
tion (77) holds.

By (iv), since (2§, 28) € X x X such that

.

we get that (23,23) < (S(24,28),S(28, 28)) and thus, zp < F(z0). By a similar
approach we get F'(zp) < zp. Hence, there exists zp € Z such that (2o, F'(20)) € Z<,
so, the assumption (iv) of Theorem 2.1 holds.

Finally, we prove the assumption (v) of Theorem 2.1.

Let d: Z x Z — R? , defined by d((z,y), (u,v)) := <Z§§:g))> .

Since (X, —,d, <) is an ordered Kasahara space, it follows that (X,—>,a7, <) is
an ordered generalized Kasahara space.

For the sake of simplicity, we will use the contraction condition (2.1) with the
following notations:

VANV

S
S

O[\') OH

1

CE I CEr
(Z(%v ZO) é

dey,Suv < kldx,u + k2dy,v + k3dx,Smy + k4du,5uv + de:v,Suv + k6du,Sxy-

Hence, we have:

y >U)) = d((S(a?,y), S(y,l’)), (S(ua U)v S(Uvu))) =
d ,S u ’U)) o dSzy,Suv
d(s S(v u))) B (dSym Svu> =

<k1dm U =+ dey v+ dex Say + k4du Suv + dex Suv + k6du Swy) —

:Ev

IN

kldy vt dex U + dey Syx + k4d’u ,Svu + dey Svu + k6dv Syzx
T,U k3 0 da:,S:):y k4 0 du,Suv
) ()= (8 0) ()« (0 ) (s
k5 0 dm,Suv k6 0 du,Sxy
i <0 ’%) <dy,5vu> i <0 ’f6> <dv,Syx '

_l’_
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Let k' := max{ks, k4} and k" := max{ks, kg}. Then
dSzy Suv k1 ks Ay K 0) |: <d:v Sa:y) <du Suv) :|
i )+ S R +
<dSya:,5'vu> B <k2 k1> <dy,v> <O K dy,Sya: dv,Svu
K" 0 dm,Suv du,Sxy
+ <0 kﬂ) |: (dy,S'Uu) + (dv,Sy:v
which means that

d(F(z,y),F(u,v)) < Ad((z, u), (y,v))+
+ B [d((x, ), F(z,y)) + d((u,v), F(u, U))]+
+C[d((x,), F(u,0)) + d((u, ), F(z,y))].
Since ky, ko, k', k" € Ry and ki + ko + 2K + 2k” < 1, we get that the matrices

(k1 kg (K 0 (K0
() e (Y D) wac= (48

satisfy the condition that the matrix A := (I — B—C)~!(A+ B+ C) is convergent
to zero. Indeed, the matrix A has the eigenvalues A\ = Byt K 4K k2 and Ay =

T—F k"
%, both being in the open unit disk. By applying Theorem 2.1, the
conclusion follows. O

Remark 2.4. For several coupled fixed pont results in the case of metric or b-metric
spaces see [12]-[15] and the references therein.

3. APPLICATIONS

Let us consider the following system of functional-integral equations
g [0 =1, [} ot s.2(s), y(s))ds)
y(t) = fty(), [, B(t,5,y(s), 2(s))ds)

By a solution of the system (S) we understand a couple (z,y) € C[a,b] x Cla,b],
which satisfies the system for all t € [a,b] C R.
Let X = Cla,b] be endowed with the partial order relation

, for all ¢t € [a,b] C R4.

r <cy<x(t) <y(t), for all ¢t € [a,b].

We consider 5, the convergence structure induced by the Cebigev norm p :
Cla,b] x Cla,b] = Ry, p(x,y) = ||z — yllo = maxepo )z (t) — y(£)].
Let d : C[a,b] x Cla,b] — R4, defined by
d(z,y) = |[(z = y)llo + (z —y)*llc = max |2(t) — y(t)| + max {(z(t) — y(t))*}.
t€la,b] tela,b]
Since p(z,y) < d(z,y), for all z,y € Cla,b], we get that (C[a,b],ﬁhd, <¢) is an
ordered Kasahara space.

Theorem 3.1. Let ® : [a,b] X [a,b] x R? — R and f : [a,b] x R? — R be two
continuous mappings and consider the system (S). We suppose that:
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(i) there ezists 20 = (23, 28) € Cla,b] x Cla,b] such that

{%O>ﬂta )+ Jy @(t5,20(0), 3(0)ds)
2(t) < f(t.25(0), J, @(t, 5,25 (1), 25(1))ds)
M{%wéf@%ﬂf (1,5, 20(1), 23(0)ds)
2B(0) > (8, 2(2), [, Bt 5,25(0), z§(8)ds)
(1) f(t,-,z) is increasing for all t € [a,b], z € R and ®(t,s,-,z) is increasing,
O(t,s,w,-) is decreasing and f(t,w,-) is increasing for all t,s € [a,b], w,z €
]R7

or, f(t,-,z) is decreasing for allt € [a,b], z € R and ®(t, s, -, z) is decreas-
ing, ®(t,s,w,-) is increasing and f(t,w,-) is decreasing for all t,s € [a,b],
w,z € R
(13i) there exists k1, ko € Ry such that

|f(t,wi, z1) — f(t, w2, 22)| < ki|wy — wa| + k2|21 — 2]

for all t € [a,b] and w1, wa, 21,22 € R;
(iv) there exists o, B € Ry such that for all t,s € [a,b] and wi,ws, 21,22 € R we
have

‘(I)(tﬂsawbzl) - @(t737w2722)’ < a|w1 - w2’ + 6|Zl - Z2|;
(v) the following conditions hold:
k1 + koo(b— a) + 3k% + 3k3a? (b — a)? < 5
k2B (b — a) + 3k35%(b — a)® < 3.

Then there exists a unique solution (x*,y*) for the system (S).

Proof. Let us consider the operator S : C [a, b] x Cla,b] — Cla,b], defined by

b
S, y)(t) = f(t,fﬂ(t)a/ D(t,s,2(s),y(s))ds).
Then the system (S) is equivalent with {z : gé;’i))

Since S(z,y) is a continuous operator on (Cla,b] x Cla,b], %), it follows that
Graph(S) is closed with respect to .

For all (x > uw and y <) or (u > x and v < y) we have

1S (2, y)(t) = S(u, 0)(t)] =

. |)f (t,z(t) f O(t,s,2(s),y(s))ds) —f(t,u(t),ff@(t,s,u(s),v(s))ds)]

< kp|x(t) — u(t) |+k‘2|f O(t,s,x(s),y(s)) d,s—fb@t (t,s,u(s),v(s))ds]|
< Rala(t) — ult)] + b [110(t, 5,2(5), y(5)) — D(t, 5, u(s), 0(5))|ds

)
(S Falw(t) —u(t)| + ks [, (alz(s) — u(s)| + Bly(s) — v(s)|)ds
< Fa(le(t) — u(t)] + |z(t) — u(t)]?)
+ks |, (|l’(8) u(s)] + |z (s) — u(s)[*)d
( ( 2

ks [} Blly(s) = v(s)] + ly(s) — v(s)]*)ds
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< kyd(z,u) + ko f; ad(z,u)ds + ko fb Bd(y,v)ds
= [k1 + kaa(b — a)ld(z,u) + [k28(b — a)ld(y, v).

On the other hand, we have
1S (2, y)(t) = S(u,v)(t)|* <

< [kafa(t) - ()H/@f (alz(s) - )!+5|y( ) — (S)|)d3]2
< [Fala(t) — u(t)] + ks [, (ay/Ta(s) = u(s)2 + By/Ty(s) — v(s)]?)ds]?
< () - ( )H

+ha | 04\/\ !+ |z(s) — u(s)[*ds

+k‘2f /8\/|y s)| + ly(s) —v(s)[2)ds]?

< [k1|x(t) H—kgf ar/d(z,u)ds + ks bﬂ\/d(y,v)ds}z
= [k1]z(t) — ()]—I—kza —a)\/d(x,u) + k2B(b — a)\/d(y,v)]?
< 3[kf]x(t) — u(t)]® + k3a?(b - @) d(z,u) + k3B%(b — a)?d(y,v)]
< 3[kF(|l2(t) — u(t)| + !1’( ) —u(®)*)+

+h3a?(b— a)?d(w,u) + k36%(b — )2d(y7 v)]
= 3[kid(z, u) + k3a?(b — a)®d(w,u) + k35°(b — a)*d(y, v)]
= [3k{ + 3k30*(b — a)’Jd(w,u) + [3 k252( a)?]d(y, v).

It follows that:
|S(@,y)(t) = S(u,v)(t)] + S (@, y)(t) = S(u,v)(t)]?
< [k1 + kaa(b — a) + 3kF + 3k3a?(b — a)?]d(z, u)
+ [k2B(b = a) + 3k35%(b — a)Jd(y, v).
Hence, by taking the maximum over ¢ € [a, b] we get:
d(S(z,y), S(u,v)) < Kid(z,u) + Kod(y,v),
for all (x > w and y <w) or (u > x and v < y), where
K1 := ki + koa(b — a) + 3k7 + 3k3a%(b — a)?
Ko := koB(b— a) + 3k38%(b — a)?.

By (v) we get that K1 + Ko < 1.
We see that all the assumptions of Theorem 2.3 are satisfied and, by applying it,
the conclusion follows. O

As a particular case of the above application, we consider the following system
of integral equations

2(t) = g(t) + [ G(s,t) f(s,2(s), y(s))ds )
(S) {y(t) =g(t) +f; G(s,t) (5, y(s), 2(s))ds .t € [a,b] CR,.

A solution of the system (S) is a pair (z,y) € Cla,b] x C[a,b], satisfying the
above relations for all ¢ € [a,b], 0 < a < b.

By considering the same ordered Kasahara space (C|a, b],ﬁ>,d, <c¢) as in the
previous application, we have the following result:

Theorem 3.2. Consider the integral system (S). We assume that:
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(i) g:[a,b] = R and f : [a,b] xR? — R are continuous and G : [a,b]x[a,b] — R,
1s integrable w.r.t. the first variable;
(i3) f(s,-,-) has the generalized mized monotone property w.r.t. the last two
variables for all s € [a,b];
(iii) there exists xo,yo € Cla,b] such that

wo(t) < g(t) + [L G(s,8)f(s,20(s), ¥
yo(t) > g(t) + [ G(s,t) f(s,y0(s), zo(s))ds

z0(t) > g(t) + [ G(5,1)F (5, 20(5), yo(s))ds

yo(t) < g(t) + [ G(s, ) f(5,90(5), 0(s))ds

(iv) there exists o, B : [a,b] — Ry in L'[a,b] such that, for each uy, uz, v1, vy €
R with uy < vy and ug > vy (or reversely), we have

|f(s,u1,u2) — f(s,v1,v2)| < a(s)|ur —vi| + B(s)|uz — vo

for each s € [a,b];
(v) the following conditions are satisfied:

[«
—
»
~—
S~—
U
»

, for all t € [a,b];

Maxc(q p) (f; G(s,t)a(s)ds) + 2 maxc[qp) (f; G(s,t)a(s)ds)? <
max;e o (f7 G5, 8)B(5)ds) + 2 maxyepy (/7 G(s,t)B(s)ds)? <

Then there exists a unique solution (x*,y*) of the system

w(t) = g(t) + [ G(s,t) f(s,2(s), y(s))ds
y(t) = g(t) + [2 G(s,) f(s,y(s), x(s))ds

Remark 3.3. Similar applications were given in [3] and [12].

DO po| =

(S) , t € [a,b] C Ry.
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