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and the subspace Lµcl(M) of classical pseudo-differential operators. While elements
in Lµ(M) for n = dimM in local coordinatea x ∈ Rn modulo L−∞(M) are defined
by expressions

(2.1) Opx(a) for symbols of Hörmander’s classes a(x, ξ) ∈ Sµ(Rn × Rn)

where the class of smoothing operators L−∞(M) is identified with the space of in-
tegral operators with kernels in C∞(M ×M) via a Riemannian metric on M ; for
classical operators we assume a(x, ξ) ∈ Sµcl(R

n×Rn). Those symbols, also called clas-
sical, are defined in terms of asymptotic expansions a(x, ξ) ∼

∑∞
j=0 χ(ξ)a(µ−j)(x, ξ)

for homogeneous components a(µ−j)(x, ξ) ∈ S(µ−j)(Rn × (Rn \ {0})), where

(2.2) S(ν)(Rn × (Rn \ {0})) for any ν ∈ R,

and χ is any excision function. The space (2.2) is defined to be the space of all
f(x, ξ) ∈ C∞(Rn × (Rn \ {0})) satisfying relation

(2.3) f(x, δξ) = δνf(x, ξ)

for all δ ∈ R+, and x and ξ ̸= 0. Similar notation is valid when we replace covariables
ξ by (ξ, λ) for an extra parameter λ ∈ Rd. This gives us parameter-dependent
families of pseudo-differential operators

(2.4) Lµ(M ;Rdλ), L
µ
cl(M ;Rdλ), and L

µ
(cl)(M ;Rdλ),

respectively, where subscript “(cl)” indicates spaces of classical or non-classical el-
ements. Analogous notation will be used for respective spaces of symbols, where
parameters λ are included insofar they are components of covariables, and covari-
ables (ξ, λ) ∈ Rn+d, are admitted in the above-mentioned definition of symbols
anyway, since the dimension of variables may be independent of that of covariables.
Note that the elements of corresponding families of operators like (2.4) have the
form

(2.5) A(λ) =

N∑
j=1

φj (χ
−1
j )∗

(
Opx(aj)(λ)

)
φ′ + C(λ)

defined in terms of local symbols of the class Sµ(Ωx×Rn+dξ,λ ) with respect to an open

covering {Ωj}j=1,...,N of M by coordinate neighborhoods, and charts χj : Ωj → Rn,
a subordinate partition of unity {φj}j=1,...,N and localizing functions φ′

j ≻ φj , φ
′
j ∈

C∞
0 (Ωj), with remainders

(2.6) C(λ) ∈ L−∞(M ;Rdλ) := S(Rdλ;L−∞(M)).

As we shall see, parameter-dependent operators of different kind will belong to the
starting points of higher singular operator theories. Here we systematically employ
structures from the calculus on manifolds with conical or edge singularities.

The notion of “non-smoothness” of a configuration is often formulated by means
of very specific local models. Here we prefer a definition of some generality which
covers piecewise smoothness. Corresponding definitions have been used already
in [2], [3], but in order to fix some notation we recall here the idea in order to
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see the way of passing from a singularity order k to that of order k + 1 for any
k ∈ N := {0, 1, 2, . . . }.

Definition 2.1. (i) By M0 we denote the category of smooth manifolds with
differentiable maps as morphisms.

(ii) A topological space M is said to belong to Mk for k ≥ 1 if there is fixed
a subspace sk(M) ∈ M0 such that M \ sk(M) ∈ Mk−1 and if there is
a neighborhood Wk ⊂ M of sk(M) which is a locally trivial bundle over
sk(M) with fibres

(2.7) X△
k−1 := (R+ ×Xk−1)/({0} ×Xk−1)

for some compact Xk−1 ∈ Mk−1.

Remark 2.2. Observe that between the open stretched singular cones

X∧
k−1 := R+ ×Xk−1 ∈ Mk−1

we have natural transition maps in the category Mk−1, namely,

(2.8) X∧
k−1 → X̃∧

k−1, as well as R×Xk−1 → R× X̃k−1

and for the above-mentioned bundle Wk the transition maps between the respective
fibers

(2.9) X△
k−1 → X̃△

k−1

are asked to restrict to the transition maps as in the first relations of (2.8) which are
then required to be extendible to maps as in the second relations of (2.8). In this

process we inductively employ what we know about isomorphisms Xk−1 → X̃k−1 in
Mk−1 from the steps before. The latter mappings may be associated with a locally
trivial Xk−1-bundle VO over sk(M). This can be attached in an invariant way to
M \ sk(M), and we obtain a space

(2.10) M = (M \ sk(M)) ∪ VO,

called the stretched space associated with M. Taking two copies M± of (2.10) with
the positive space being identified with M and gluing together M+ and M− along
the common VO we obtain the double 2M of M which belongs to Mk−1.

Definition 2.1 allows us to apply the construction of sk−1(M) to M \ sk(M) ∈
Mk−1, and we obtain a next singular subspace sk−1(M) ∈ M0. Then successively
we can look at sk−2(M) := sk−2(M \ (sk(M) ∪ sk−1(M))) ∈ M0 etc. After finitely
many steps it follows a sequence

(2.11) s(M) := (s0(M), s1(M), . . . , sk−1(M), sk(M))

of disjoint smooth manifolds with

(2.12) dimM := dim s0(M) > dim s1(M) > · · · > dim sk−1(M) > dim sk(M) ≥ 0,

and

(2.13) M =
k∪
j=0

sj(M).
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Remark 2.3. Prototypes of manifolds with singularities are cones X△ ∈ M1 for
some closed manifolds X or wedges

(2.14) W := X△ × Rq ∈ M1.

In particular, we may have dimX = 0. Then we have X△ = R+, and the respective
wedge is equal to the half space R+×Rq.More generally, a manifoldM with smooth
boundary ∂M may be interpreted as a manifold with edge which is in this case of
codimension 1.

Remark 2.4. Note that any M ∈ M0 may be equipped with different strata like
(2.11). For instance, M = RN turns to a space in M1 by setting s1(M) := {=} (the
origin which is a conical singularity) or s1(M) = {x = {x1, . . . , xN} ∈ RN : xN = 0}
(which is an edge).

Remark 2.5. For M ∈ Mk, N ∈ Ml we have M ×N ∈ Mk+l.

3. Parameter-dependent edge calculus

We now outline some structures on the calculus on manifolds with conical singu-
larities and edges. The following material will refer to this material, but it seems
to be indispensable for the higher versions of pseudo-differential theories. Clearly
we cannot recall here a complete introduction to this topic. Several monographs
are devoted to these tools, cf. [34], [35], [8], and also the articles [11], [12], and we
will adopt here notation from there. This presentation is aimed at illustrating new
properties of operators on spaces in Mk or some conical exit to infinity, altogether
called manifolds with singularities. In particular, we discuss the role of conical exits
to infinity and of involved dependence of operators on parameters and to what ex-
tent these ingredients are necessary for corresponding pseudo-differential algebras
and their symbol structures.

Parameter-dependent operators A(λ) in

(3.1) Lµcl(X;Rdλ)

for a closed manifold X ∈ M0 of dimension n ∈ N give rise to the ingredients of
spaces of parameter-dependent operators

(3.2) Lµ−m(B, g;Rdλ)

for a compact space B ∈ M1 with q- dimensional edge Y ∈ M0 and weight data
g := (γ, γ − µ) for any m ∈ N. The dimension d in (3.1) is chosen independently of
that in (3.2); otherwise we should employ indices for the different choices of λ, but
the process of constructing (3.2) in terms of (3.1) consumes λ in (3.1) completely,
and λ in (3.2) only plays a role for the next higher corner calculus on a manifold
M ∈ M2, etc. Before we discuss the step from B toM we first outline technicalities
from X to B. We employ λ in (3.1) in the meaning of λ = (ρ, η) ∈ Rρ × Rqη, where
we assume that B is locally close to Y modeled on X△ × Rq, and ρ is dual to the
axial variable r ∈ R while η is the covariable to y ∈ Rq. For convenience we will
explain the procedure for m = 0. The arguments for arbitrary m are similar.
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Starting point are edge-degenerate families of operators

(3.3) p̃(r, y, ρ̃, η̃) ∈ C∞
[0,R](R+ × Rq, Lµcl(X;R1+q

ρ̃,η̃ )),

and

(3.4) p(r, y, ρ, η) := p̃(r, y, rρ, rη).

Mellin-edge quantization gives us an

(3.5) h̃(r, y, w, η̃) ∈ C∞
[0,R](R+ × Rq,Mµ

Ow
(X;Rqη̃)),

with subscript [0, R] indicating functions which are independent of r for r > R, such
that

(3.6) h(r, y, w, η) := h̃(r, y, w, rη)

satisfies relation

(3.7) Opr(p)(y, η)−OpγM (h)(y, η) = Opr(q)(y, η)

for a regularizing operator family

(3.8) q(r, r′, y, ρ, η) = (1− φ(r′/r))p(r, y, ρ, η), r, r′ ∈ R+, y ∈ Rq, (ρ, η) ∈ R1+q.

The correspondence p 7→ h also works in converse direction. It induces an isomor-
phism

C∞
[0,R](R+ × Rq, Lµcl(X;R1+q)/C∞

[0,R](R+ × Rq, L−∞(X;R1+q)

→ C∞
[0,R](R+ × Rq,Mµ

O(X;Rq)/C∞
[0,R](R+ × Rq,M−∞

O (X;Rq).
(3.9)

The latter constructions also hold in the version with parameters λ, and those will
be admitted now. Thus, similarly to [35] and [12] we consider two operator-valued
symbol classes

(3.10) Rµtrad(R
2q
y,η, g;Rdλ) or Rµnew(R2q

y,η, g;Rdλ)

which are essentially equivalent, see [12].

The space

(3.11) Rµtrad(R
2q
y,η, g;Rdλ) for weight data g = (γ, γ − µ)

of edge symbols in traditional Mellin-edge quantization from [32] is defined to be
the set of all operator-functions of the form

a(y, η, λ) = σ1(r)
(
a0(y, η, λ) + a1(y, η, λ)

)
σ0(r)

+ (1− σ1(r))aint(y, η, λ)(1− σ2(r)) + (m+ g)(y, η, λ)
(3.12)

for cut-off functions
σ2(r) ≺ σ1(r) ≺ σ0(r),

and

(3.13) a0(y, η, λ) := ω1(r[η, λ])r
−µOp

γ−n
2

M (h)(y, η, λ)ω0(r[η, λ]),

(3.14) a1(y, η, λ) := (1− ω1(r[η, λ]))r
−µOpr(p)(y, η, λ)(1− ω2(r[η, λ])),

where
ω2(r) ≺ ω1(r) ≺ ω0(r),
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are cut-off functions, and

(3.15) h(r, y, w, η, λ) ∈ C∞
[0,R](R+ × Rq,Mµ

O(X;Rq+d
η̃,λ̃

)|(η̃,λ̃)=(rη,rλ),

and

(3.16) p(r, y, ρ, η, λ) ∈ C∞
[0,R](R+ × Rq, Lµcl(X;R1+q+d

ρ̃,η̃,λ̃
))|(ρ̃,η̃,λ̃)=(rρ,rη,rλ).

Recall that subscript “[0, R]” for some R > 0 indicates the subspace of C∞(R+ . . . )
the elements of which are independent of the first r-variable for r > R. Moreover,
we assume

aint(y, η, λ) ∈ C∞(Rq, Lµcl(X
∧;Rq+dη,λ )0)

for

Lµcl(X
∧;Rq+dη,λ )0 :=

{
aint(η, λ) ∈ Lµcl(X

∧;Rq+dη,λ ) : σ̃aint(η, λ)˜̃σ = aint(η, λ)

for some cut-off functions σ̃, ˜̃σ
}
.

(3.17)

The operators Ac(λ) := Opy(a)(λ) which are later on used in the edge calculus have
symbols a(y, η, λ) in

(3.18) Rµtrad(R
2q
y,η, g;Rdλ) ⊂ Sµ(R2q+d

y,η,λ ;H, H̃)

for Kegel spaces

H = Ks,γ(X∧), H̃ = Ks−µ,γ−µ(X∧), s ∈ R.
There is another choice of edge amplitude functions, introduced in [12], namely,

(3.19) Rµnew(R2q
y,η, g;Rdλ) for weight data g = (γ, γ − µ)

consists of all operator functions

a(y, η, λ) := σ1(r)r
−µOp

γ−n/2
M (h)(y, η, λ)σ0(t)

+ (1− σ1(r))aint(y, η, λ)(1− σ2(r)) + (m+ g)(y, η, λ).
(3.20)

The essential result of [12, page 236] is that

(3.21) Rµtrad(R
2q
y,η, g;Rdλ) and Rµnew(R2q

y,η, g;Rdλ) are equivalent.

The Green symbols g(y, η, λ) in (3.12) and (3.19) are described in [12] for the case
without parameters, and smoothing Mellin symbols m(y, η, λ), here also without
parameters, will be ignored. They do not occur in the proof of (3.21).

4. Kegel- and edge- spaces with multiple weights

Let B be a compact manifold with edge Y of dimension q > 0, locally close to
the edge modeled on X△ ×Rq for a closed smooth manifold X of dimension n. We
will form Kegel spaces

(4.1) Ks,β,γ;e(B∧) in variables (t, b) ∈ B∧ = R+ ×B

of smoothness s ∈ R, a base weight β ∈ R, a corner weight γ ∈ R and an exit weight
e ∈ R. Using local wedge spaces

(4.2) Ws(R1+q
ỹ ,Ks,β(X∧

r,x))
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with ỹ ∈ R1+q being treated as edge variables, and the group action on the space
Ks,β(X∧

r,x), given by

κ = {κδ}δ∈R+ given by κδu(r, x) = δn+1/2u(δr, x).

For compact Y we first form the spaces

(4.3) Ws
ε,cone(Y

∧,Ks,β(X∧
r,x))

as follows. Let {Uj}j=1,...,N be an open covering of Y by coordinate neighborhoods
Uj and {φj}j=1,...,N a subordinate partition of unity. Moreover, we consider charts

χj : Uj → {ỹ′ ∈ Rq : |ỹ′| < 1}
with Rq being identified with

ỹ ∈ R1+q : ỹ = (ỹ0, ỹ
′) : ỹ0 = 1, ỹ′ ∈ Rq}.

We then define diffeomorphisms

(4.4) χ<j : (ε,∞)× Uj → C<j

by setting

χ<j (t, y) := (t, [t]χj(y)),

where t on the right-hand side is identified with ỹ0 ∈ R+. In other words, the
variables ỹ in C<j admit the splitting into (ỹ0, ỹ

′) and the inverse of the bijection

(4.4) has the form

(χ<j )
−1(ỹ) = (t, [t]−1ỹ′).

The space (4.3) is then defined as the subspace of all

f(t, y) ∈ Ws
loc(R+ × Y,Ks,β(X∧))

supported by [ε,∞)× Y such that

(4.5) (χ<j )∗(φjf |(ε,∞)×Uj
) ∈ Ws(R1+q,Ks,β(X∧)), j = 1, . . . , N.

Definition 4.1. For a cut-off function σ(t) we define the space

Ws
cone(Y

∧,Ks,β(X∧
r,x))

:= σ(t)Ws
loc(R× Y,Ks,β(X∧

r,x))R+×Y + (1− σ(t))Ws
ε,cone(Y

∧,Ks,β(X∧
r,x)).

(4.6)

Moreover, we set

(4.7) Hs
int((B \ Y )∧) := Hs

cone((2B)∧)|R+,t×(B\Y ).

Definition 4.2. Let us define the space

Hs,β
cone(B

∧) :=
{
v := ωglobvedge + (1− ωglob)vint

: vedge ∈ Ws
cone(Y

∧,Ks,β(X∧
r,x)), vint ∈ Hs

int((B \ Y )∧)
}
.

(4.8)

Let us also define corner Mellin spaces, i.e., spaces close to t = 0. First we consider
charts λl : Ul → Rq and set
(4.9)

Hs,γ
edge(R+,t × Ul,Ks,β(X∧

r,x)) :=
{
(idR+ × λl)

−1
∗ u) : u ∈ Hs,γ(R+ × Rq,Ks,β(X∧))

}
,
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and we form
(4.10)

Hs,γ
edge(R+,t × Y,Ks,β(X∧

r,x)) :=
{ N∑
l=1

φlul : ul ∈ Hs,γ
edge(R+,t × Ul,Ks,β(X∧

r,x))
}
.

Moreover, let

(4.11) Hs,γ
int ((B \ Y )∧) := Hs,γ((2B)∧)|R+,t×(B\Y ).

Definition 4.3.

Hs,β,γ(B∧) :=
{
u := ωglobuedge + (1− ωglob)uint

: uedge ∈ Hs,γ
edge(R+,t × Y,Ks,β(X∧

r,x), uint ∈ Hs,γ
int ((B \ Y )∧)

}
.

(4.12)

Definition 4.4. The Kegel space (4.1) over B∧ ∋ (t, b) for a compact manifold B
with edge Y of dimension q and

smoothness s,

base weight β, associated with the base B,

corner weight γ, associated with the corner axis t, for t→ 0,

exit weight e, associated with the conical exit for t→ ∞,

is defined by

(4.13) Ks, β,γ;e(B∧) := [t]−eKs, β,γ(B∧)

for

(4.14) Ks, β,γ(B∧) := σHs,β,γ(B∧) + (1− σ)Hs,β
cone(B

∧)

for some cut-off function σ(t) on the half-axis R+,t, with obvious notation.

Thus we have

Ks, β,γ(B∧) = σ
(
ωHs,γ

edge(Y
∧,Ks,β(X∧)) + (1− ω)Hs,γ

int ((B \ Y )∧)
)

+ (1− σ)
(
ωWs

cone(Y
∧,Ks,β(X∧)) + (1− ω)Hs

int((B \ Y )∧))
)
,

(4.15)

with notation from (4.10), (4.11), (4.6), (4.7), and ω(r) := ωglob(r).

Remark 4.5. Both Ks, β,γ(B∧) and Hs,β,γ(B∧), defined by (4.12), are independent
of the involved cut-off functions.

Remark 4.6. For elements u(t, b) ∈ Ks, β,γ(B∧) := Ks, β,γ;0(B∧) we define

(4.16) (κδu)(t, b) := δ(dimB+1)/2u(δt, b), δ ∈ R+.

This gives us a group action κ = {κδ}∈R+ , on Ks, β,γ(B∧), and we have associated
edge spaces

(4.17) Ws(Rq
1

z ,Ks, β,γ(B∧)).

in edge variables z ∈ Rq1 .
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Parameter-dependent Green symbols g(z, z′, ζ, λ) will be employed in a similar
meaning as in [12], though here with parameters and weight data

g := (β, β′), g1 := (γ, γ′).

The corresponding spaces are denoted by

(4.18) RνG(R
2q1

z,z′ × Rq
1

ζ , g, g
1;Rdλ)

for any order ν ∈ R. Elements g(z, z′, ζ, λ) in (4.18) are defined by the properties

(4.19) g ∈
∩

s,s′,e,e′∈R
Sνcl(R

2q1

z,z′ × Rq
1+d
ζ,λ ;Ks,β,γ;e(B∧),Ks′,β′+ε,γ′+ε;e′(B∧)),

(4.20) g∗ ∈
∩

s,s′,e,e′∈R
Sνcl(R

2q1

z,z′ × Rq
1+d
ζ,λ ;Ks,−β′,−γ′;e′(B∧),Ks,−β+ε,−γ+ϵ;e(B∧)),

for some ε = ε(g) > 0, where ∗ indicates the point wise formal adjoint with respect
to the reference scalar product of K0,0,0;0(B∧). In particular,

(4.21) RνG(R
2q1

z,ζ , (β, β
′), (γ, γ′);Rdλ)∞

denotes the set of all g(z, ζ, λ), satisfying (4.19) and (4.20) for all ε > 0.

5. Mellin quantization with respect to corner parameters

Considering a compact manifolds B ∈ M1 with edge Y we have the space

(5.1) Lµ(B, g;Rdλ) for weight data g := (β, β − µ)

of parameter-dependent edge operator families with parameter λ ∈ Rd. The space
(5.1) is defined to be the set of all families of operators

(5.2) A(λ) = ωglobAc(λ)ω
′
glob + (1− ωglob)Aint(λ)(1− ω′′

glob) + C(λ)

for the above-mentioned Ac(λ), moreover, Aint(λ) ∈ Lµcl(B \ Y ;Rdλ), and global
cut-off functions

ω′′
glob ≺ ωglob ≺ ω′

glob

on B. Furthermore, C(λ) ∈ L−∞(B, g;Rdλ)) = S(Rd, L−∞(B, g)) is a smoothing
family, defined by asking continuity

C : Hs,γ(B) → H∞,γ−µ+ε(B)

for every s and some ε > 0, and a similar condition for its formal adjoint C∗ :
Hs,−γ+µ(B) → H∞,−γ+ε(B) with respect to the reference scalar product from
H0,0(B). This definition refers to global weighted Sobolev spaces

(5.3) Hs,γ(B), s, γ ∈ R.
They are locally near Y modeled onWs(Rq;Ks,γ(X∧)) whileHs,γ(B)|B\Y ⊆ Hs

loc(B\
Y ). Such a notation extends in a natural way to Hs,γ

loc (B) when B is not compact.
In the corner theory of singularity order 2 we start with the case d = 1 + q1 where

(5.4) (τ̂ , ζ̂) := λ for τ̂ ∈ R, ζ̂ ∈ Rq
1

in the later meaning

τ̂ = tτ, ζ̂ = tζ.
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We form

(5.5) p1(t, z, t′, z′, τ̂ , ζ̂) ∈ C∞(R+ × Rq
1 × R+ × Rq

1
, Lµ(B, g;R1+q1

τ̂ ,ζ̂
)).

In some computations for convenience we drop the variables z, z′; the edge-analogue
is also considered in [12, page 11, Theorem 1.26] and in [12, page 233, Theorem 3.2].
The corner-analogue of the Mellin quantization now reads as follows.

Theorem 5.1. [4]
For every

(5.6) p̂1(t, τ̂ , ζ̂) ∈ C∞
[0,T ](R+, L

µ(B, g;R1+q1))

and any ψ ∈ C∞
0 R+), ψ(·) ≡ 1 close to 1 there exists an

(5.7) ĥ1(t, v, ζ̂) ∈ C∞
[0,T ](R+,M

µ
O(B, g;R

q1))

such that

(5.8) p1(t, τ, ζ) := p̂1(t, tτ, tζ)

and

(5.9) h1(t, v, ζ) := ĥ1(t, v, tζ)

satisfy

(5.10) Op(p1)(ζ)−Op
γ−n1/2
M (h1)(ζ) = Opt(q)(ζ)

for

(5.11) q(t, t′, τ, ζ) =
(
1− ψ(t′/t)

)
p1(t, τ, ζ) for t, t′ ∈ R+, (τ, ζ) ∈ R1+q1 ,

n1 = dimB, for every γ ∈ R. A similar result holds including variables z or z′.

6. Traditional and new Mellin-edge quantization for corner
singularities

Starting point are corner-degenerate families of operators

(6.1) p̂1(t, z, τ̃ , ζ̃) ∈ C∞
[0,T ](R+, L

µ(B, g;R1+q1)),

(6.2) ĥ1(t, v, ζ̂) ∈ C∞
[0,T ](R+,M

µ
O(B, g;R

q1))

and

(6.3) p1(t, τ, ζ) := p̂1(t, tτ, tζ), h1(t, v, ζ) := ĥ1(t, v, tζ),

such that, according to Theorem 5.1, Mellin quantization gives us

(6.4) Op(p1)(ζ)−Op
γ−n1/2
M (h1)(ζ) = Opt(q)(ζ) ∈ L−∞(R+ ×B, g;Rq

1
))

for

(6.5) q(t, t′, τ, ζ) =
(
1− ψ(t′/t)

)
p1(t, τ, ζ) for t, t′ ∈ R+, (τ, ζ) ∈ R1+q1 .

Let us study

(6.6) R1,µ
trad(R

2q1

z,ζ , g, g
1)) and Rµnew(R2q

y,η, g;Rdλ).
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The space

(6.7) R1,µ
trad(R

2q1

z,ζ , g, g
1)) for weight data g = (β − µ), g1 = (γ, γ − µ)

of edge symbols from [37] in traditional Mellin-edge quantization is defined to be
the set of all operator-functions of the form

a1(z, ζ) = σ1(t)
(
a10(z, ζ) + a11(y, η)

)
σ0(t)

+ (1− σ1(t))a
1
int(z, ζ)(1− σ2(t)) + (m1 + g1)(z, ζ)

(6.8)

for cut-off functions

σ2(t) ≺ σ1(t) ≺ σ0(t),

and

(6.9) a10(z, ζ) := ω1(t[ζ])t
−µOp

γ−n1

2
M (h1)(z, ζ)ω0(t[zη]),

(6.10) a11(z, ζ) := (1− ω1(t[ζ]))t
−µOpt(p

1)(z, ζ)(1− ω2(t[ζ])),

where

ω2(t) ≺ ω1(t) ≺ ω0(t),

are cut-off functions, and

(6.11) h1(t, z, v, ζ) ∈ C∞
[0,T](R+ × Rq

1
,Mµ

O(B;Rq
1

ζ̃
)|ζ̃=tζ ,

and

(6.12) p1(t, z, τ, η, λ) ∈ C∞
[0,R](R+ × Rq, Lµcl(X;R1+q1

τ̃ ,ζ̃
))|(τ̃ ,ζ̃)=(tτ,tζ).

Here subscript “[0, T ]” for some T > 0 indicates the subspace of C∞(R+ . . . ) the
elements of which are independent of t for t > T. Moreover,

a1int(z, ζ) ∈ C∞(Rq
1
, Lµ(R+ ×B;Rq

1

ζ )0)

for

Lµ(R+ ×B, g;Rq
1

ζ )0 :=
{
a(ζ) ∈ Lµ(R+ ×B, g;Rq

1

ζ ) : σ̃a(ζ)˜̃σ = a(ζ)

for some cut-off functions σ̃, ˜̃σ
}
.

(6.13)

The operators Ac(λ) = Op(a)(λ) have symbols a(y, η, λ) in

(6.14) R1,µ
trad(R

2q1

z,ζ , g, g
1) ⊂ Sµ(R2q1

z,ζ ;H, H̃)

for

H = Ks,β,γ;e(B∧), H̃ = Ks−µ,β−µ,γ−µ(B∧), s, e ∈ R.
There is another choice of edge amplitude functions, namely,

(6.15) R1,µ
new(R

2q1

z,ζ , g, g
1) for weight data g = (β, β − µ), g1 = (γ, γ − µ)

consisting of all operator functions

a1(z, ζ) := σ1(t)
−µOp

γ−n1

2
M (h1)(z, ζ)σ0(t)

+ (1− σ1(t))aint(z, ζ)(1− σ2(t)) + (m1 + g1)(z, ζ).
(6.16)
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Theorem 6.1.

R1,µ
trad(R

2q1

z,ζ , g, g
1) and R1,µ

new(R
2q1

z,ζ , g, g
1) are equivalent.

The ideas for proving Theorem 6.1 are as follows:
For convenience we drop variables z. Also the smoothing Mellin part m1 will be

ignored because it is not involved in the proof of Theorem 6.1. Set

(6.17) a1M (ζ) := t−µOp
γ−n1

2
M (h1)(ζ)

for n1 = dimB and

(6.18) h1(t, v, ζ) ∈ C∞
[0,T ](R+,M

µ
Ov

(B, g;Rq
1

ζ̃
))|ζ̃=tζ .

The symbol a1new(ζ) ∈ R1,µ
new(Rq

1
, g, g1) given by formula (6.16) under dropped vari-

able z and Mellin operator m1 takes the form

(6.19) a1new(ζ) = σ1(t)a
1
M (ζ)σ0(t) + (1− σ1(t))a

1
int(ζ)(1− σ2(t)) + g1(ζ).

Let us write

(6.20) ωi,ζ(t) := ωi(t[ζ]), i = 0, 1, 2,

and set

(6.21) p1ψ(ζ) := t−µOpt(p
1)(ζ).

We have

Proposition 6.2.

(6.22) a1M (ζ) = ω1,ζa
1
M (ζ)ω0,ζ + (1− ω1,ζ)a

1
M (ζ)(1− ω2,ζ) + g1∞(ζ)

for

(6.23) g1∞(ζ) = ω1,ζa
1
M (ζ)(1− ω0,ζ) + (1− ω1,ζ)a

1
M (ζ)ω2,ζ .

Then, according to notation in (6.8) and by virtue of formula (6.22) we have

a1trad(ζ)

= σ1(ω1,ζa
1
M (ζ)ω0,ζ+(1−ω1,ζ)p

1
ψ(ζ)(1−ω2,ζ))σ0+(1−σ1)a1int(ζ)(1−σ2)+g1(ζ)

= σ1(ω1,ζaM (ζ)ω0,ζ + (1− ω1,ζ)a
1
M (ζ)(1− ω2,ζ) + g1∞(ζ))σ0

+ σ1((1− ω1,ζ)[p
1
ψ(ζ)− a1M (ζ)](1− ω2,ζ))σ0 + (1− σ1)a

1
int(ζ)(1− σ2) + g1(ζ)

(6.24)

Thus we have

a1trad(ζ)

= σ1(ω1,ζa
1
M (ζ)ω0,ζ+(1−ω1,ζ)p

1
ψ(ζ)(1−ω2,ζ))σ0+(1−σ1)a1int(ζ)(1−σ2)

+ g1(ζ) + g1∞(ζ) = σ1(a
1
M (ζ))σ0 + (1− σ1)a

1
int(ζ)(1− σ2) + g1(ζ) + g1∞(ζ)

+ σ1
(
(1− ω1,ζ)[p

1
ψ(ζ)− a1M (ζ)](1− ω2,ζ)

)
σ0 + g1(ζ) + g1∞(ζ),

(6.25)

i.e.,

(6.26) a1trad(ζ) = a1new(ζ) + σ1
(
(1− ω1,ζ)[p

1
ψ(ζ)− a1M (ζ)](1− ω2,ζ)

)
σ0.
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Note that the summands a1int(ζ) may be different in different formulas, but they

all belong to Lµ(R+ × B, g;Rq
1

ζ )0, cf. notation (6.13). The right-hand side of

(6.26) belongs to the class of flat Green symbols (4.21) for ν = µ. Compared with
notation so far it suffices to replace ζ by ζ, λ. Therefore, since such Green symbols are

contained in R1,µ
new(R2q1

z,ζ , g, g
1;Rdλ) anyway, the formulation of spaces of parameter-

dependent corner operators

(6.27) Lµ(M, g, g1;Rdλ).
may focus on the non-smoothing contributions close to Z.

7. Calculus of second singular order

We often ignore the parameter λ which corresponds to the case d = 0. Never-
theless, arbitrary d is meaningful when we want to pass to corner singularities of
higher order. This is, of course, another voluminous program.

Let us introduce global weighted Sobolev spaces

(7.1) Hs,β,γ(M), s, β, γ ∈ R,

locally near Z modeled on Ws(Rq1 ;Ks,β,γ(B∧)) where Hs,β,γ(M)|M\Z ⊆ Hs,β
loc (M \

Z). The space (6.27) is defined to be the set of all families of operators

(7.2) A1(λ) = ωglobAc(λ)ω
′
glob + (1− ωglob)A

1
int(λ)(1− ω′′

glob) + C1(λ)

for global cut-off functions on M

(7.3) ω′′
glob ≺ ωglob ≺ ω′

glob

where A1
c (λ) is locally close to the edge Z defined by Opz(a

1)(λ) for symbols
a1(z, ζ, λ) of the form (6.16). Concerning A1

int(λ) we assume

A1
int(λ)|M\Z ∈ Lµ(2M, g;Rd)|M\Z

for the double 2M ∈ M1 of the stretched space M. Moreover, we ask

C(λ) ∈ L−∞(M, g, g1;Rd) := S(Rd, L−∞(M, g, g1)) =
∩
m∈N

Lµ−m(M, g, g1;Rd).

Here C ∈ L−∞(M, g, g1) means continuity

C : Hs,β,γ(M) → H∞,β−µ+ε,γ−µ+ε(M)

together with the condition for its formal adjoint C∗ : Hs,−β+µ,−γ+µ(M) →
H∞,−β+ε,−γ+ε(M) with respect to the reference scalar product from H0,0,0(M) for
every s and some ε > 0.

Corner operators A(λ) in (6.27) families of induce continuous maps

(7.4) A(λ) : Hs,β,γ(M) → Hs−µ,β−µ,γ−µ(M)

for every s ∈ R. According to the stratification (2.11) of M for k = 2 they have a
hierarchy of parameter-dependent principal symbols

(7.5) σ(A)(λ) = (σ0(A)(λ), σ1(A)(λ), σ2(A)(λ))
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which is of analogous meaning as that in the edge calculus for the case of a man-
ifold B with edge. More precisely, σ0(A)(λ) is the interor parameter-dependent
homogeneous principal symbol of A(λ) interpreted as an element

(7.6) A(λ) ∈ Lµcl(s0(M);Rd).

Moreover, A(λ) also represents an element

(7.7) A(λ) ∈ Lµ(s1(M), g;Rd)

on the (non-compact) manifold s1(M) with edge of dimension q = 1 + q + q1, and
as such it has a parameter-dependent homogenoeous principal edge symbol which
is operator-valued, as an element

(7.8) σ1(A(λ))(y,η) ∈ S(µ)(Rq
y × (Rq+d

η,λ \ {0});Ks,β(X∧),Ks−µ,β−µ(X∧)),

expressed in local coordinates y ∈ Rq of the edge of s1(M) and 0 indicating (η, λ) =
0. For the third component we have

(7.9) σ2(A(λ))(z, ζ) ∈ S(µ)(Rq
1

z × (Rq
1+d
ζ,λ \ {0});Ks,β,γ(B∧),Ks−µ,β−µ,γ−µ(B∧))

in local coordinates on Z, with 0 indicating (ζ, λ) = 0.

Theorem 7.1. Assume that A(λ) ∈ Lµ(M,a,a1;Rdλ) and B(λ) ∈ Lν(M, b, b1;Rdλ)
for weight data

a = (β − ν, β − (µ+ ν)),a1 = (γ − ν, γ − (µ+ ν)), b = (β, β − ν), b1 = (γ, γ − ν)

Then we have A(λ)B(λ) ∈ Lµ+ν(M,a ◦ b,a1 ◦ b1;Rdλ) with obvious meaning of
“ ◦ ” and σ(A)(λ)σ(B)(λ) = σ

(
(A)(λ)(B)(λ)

)
with componentwise composition, cf.

notation (7.5).

The proof follows methods of analogous character as in [12].

Conclusions on ellipticity with respect to the symbol hierarchies, Fredhomness in
weighted Sobolev spaces and the existence of parametrices within the calculus are
of analogous structure as in the case of operators on manifolds with edge, see, for
instance [32], [35], and the technique from [12].

Observe that operator theories including ellipticity on spaces in Mk for k > 2 are
of iterative character, see [2], [3]. In addition they may be enlarged to a calculus
of operator matrices with extra edge conditions of trace and potential type along
the various strata of M. It would be an interesting task to perform corresponding
elliptic theories of complexes, see, in particular, the article [38], and the monograph
[21], including the remarks there about Toeplitz-analogues of elliptic theories which
are a natural extension of the present consideration for corner theories with extra
interface conditions.
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