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solution of nonlinear Volterra–Fredholm integral equation as follows

(1.1) x(t) +

t∫
a

K1(t, s, x(s))ds+

b∫
a

K2(t, s, x(s))ds = g(t), a ≤ t ≤ b,

where x(t) is an unknown function that will be determined, g(t),Ki(t, s, x), i = 1, 2
are known functions and a, b are known constants. At first, we use one of frequently
used quadrature methods to reduce the equation (1.1) into a perturbed system of
nonlinear equations. For further information on quadrature methods in this respect,
see [5,9,17]. Next, we propose an iterative method to solve the obtained perturbed
system of nonlinear equations. The method is based on a hybrid of the method
of contractive mapping and parameter continuation method. Parameter continua-
tion method was suggested and developed by S. N. Bernstein [2] and J. Schauder
[10]. Later on, V. A. Trenoghin [18–21] has developed a generalized variants of the
parameter continuation method and used to prove the invertibility of nonlinear op-
erators, which map a metric space or a weak metric space into a Banach space. Y. L.
Gaponenko [6] proposed and justifed the parameter continuation method for solving
operator equations of the second kind with a Lipschitz - continuous and monotone
operator, which operates in an arbitrary Banach space. K. V. Ninh [14,15] has stud-
ied parameter continuation method for solving the operator equations of the second
kind with a sum of two operators. In [22], V. G. Vetekha presented the application
of parameter continuation method to solving the boundary value problem for the
ordinary differential equations of second order. Parameter continuation method has
some advantages that encourage us to use it. Firstly, the properties of contractions
such as iteration, error estimates are used to find approximate solutions and esti-
mate the errors of approximate solutions. Furthermore, this method is very simple
to apply and to make an algorithm.

The paper is organized as follows. In Section 2, the parameter continuation
method for solving operator equations of the second kind is briefly presented. In
this section, we recall some definitions and results that will be useful in the sequel.
In Section 3, we transform the equation (1.1) into a perturbed system of nonlinear
equations. Then we discuss the existence and uniqueness of the solution of the
obtained perturbed system of nonlinear equations and prove that its solution con-
verges to the exact solution of the problem. We also study approximate solutions of
the perturbed system of nonlinear equations and their error estimates. Some illus-
trative examples are given in Section 4 to illustrate the efficiency of the introduced
method. Finally, Section 5 draws some conclusions from the paper.

2. Parameter continuation method for solving operator equations of
the second kind

In this section, we recall some definitions and results which we will use in the
sequel. For details, we refer to [6].

Let X be a Banach space and A be a mapping, which operates in the space X.
Consider the operator equation of the second kind

(2.1) x+A(x) = f.
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Definition 2.1 ([6]). The mapping A, which operates in the Banach space X
is called monotone if for any elements x1, x2 ∈ X and any ε > 0 the following
inequality holds

(2.2) ∥x1 − x2 + ε [A(x1)−A(x2)] ∥ ≥ ∥x1 − x2∥.

Remark 2.2 ([6]). If X is Hilbert space then the condition of monotonicity (2.2)
is equivalent to the classical condition

⟨A(x1)−A(x2), x1 − x2⟩ ≥ 0, ∀x1, x2 ∈ X,

where ⟨, ⟩ is an inner product in the Hilbert space X.

Lemma 2.3 ([6]). Assume that A is a monotone mapping which operates in the
Banach space X. Then for any elements x1, x2 ∈ X and any positive numbers
ε1, ε2, 0 < ε1 ≤ ε2 ≤ 1, the following inequality holds

∥x1 − x2 + ε1 [A(x1)−A(x2)] ∥ ≤ ∥x1 − x2 + ε2 [A(x1)−A(x2)] ∥.

The basic idea of the parameter continuation method for solving operator equa-
tions of the second kind (2.1) is as follows. Consider a one-parametric family of
equations

x+ εA(x) = f, 0 ≤ ε ≤ 1,

which when ε = 0 gives the trivial equation x = f and when ε = 1 gives the initial
equation (2.1). Dividing [0, 1] into N equal parts with N is a natural number such
that q = Lε0 < 1, ε0 = 1

N , where L is Lipschitz coefficient of the operator A. After
N − 1 changes of variables

u = x+ ε0A(x) ≡ G1(x),(2.3a)

v = u+ ε0AG
−1
1 (u) ≡ G2(u),(2.3b)

. . . ,(2.3c)

y = ω + ε0AG
−1
1 · · ·G−1

N−2(ω) ≡ GN−1(ω),(2.3d)

we construct intermediate equations with contractive operators in new variables. By
virtue of the monotonicity and Lipschitz continuity of the operator A, contraction
coefficients of these contractive operators equal q. By shifting the parameter ε step
by step ε0 from 0 to 1 we can verify that the equation (2.1) has a unique solution.

Theorem 2.4 ([6]). Suppose that the mapping A, which operates in the Banach
space X is Lipschitz - continuous and monotone. Then the equation (2.1) has a
unique solution for any element f ∈ X.

To find approximate solutions of the equation (2.1), Y. L. Gaponenko has con-
structed the following iteration process

(2.4) xk+1 = − 1

N
A(xk)−

1

N
A(xl)− · · · − 1

N
A(xp)︸ ︷︷ ︸

N terms

+f, k, l, . . . , p = 0, 1, 2, . . . .
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The symbolic notation (2.4) should be understood as the following iteration pro-
cesses, which consist of N iteration processes

xk+1 = −ε0A(xk) + ul, k = 0, 1, 2, . . . ,(2.5a)

ul+1 = −ε0AG−1
1 (ul) + vc, l = 0, 1, 2, . . . ,(2.5b)

. . . ,(2.5c)

yp+1 = −ε0AG−1
1 · · ·G−1

N−1(yp) + f, p = 0, 1, 2, . . . .(2.5d)

For simplicity, assume that A(0) = 0 and the number of steps in each iteration
scheme of the iteration process (2.4) is the same and equals n0. Denote x(n0, N) ≡
xn0 as the approximate solutions of the equation (2.1), which is constructed by the
iteration process (2.4). In this case, Y. L. Gaponenko received the error estimations
of approximate solutions of the equation (2.1), which are presented in the following
theorem.

Theorem 2.5 ([6]). Assume that the conditions of Theorem 2.4 are satisfied. Then
the sequence of approximate solutions {x(n0, N)}, n0 = 1, 2, . . . constructed by itera-
tion process (2.4) converges to the exact solution x∗ of the equation (2.1). Moreover,
the following estimates hold

(2.6) ∥x(n0, N)− x∗∥ ≤ qn0+1

1− q

eqN − 1

eq − 1
∥f∥,

where L is Lipschitz coefficient of the operator A,N is the smallest natural number
such that q = L

N < 1, n0 = 1, 2, . . ..

3. Main results

Now, the nonlinear Volterra–Fredholm integral equation (1.1) will be investigated
under the assumptions:

(i) K1(t, s, x) satisfies a Lipschitz condition of the type

|K1(t, s, x)−K1(t, s, x)| ≤ |ψ(t, s)| |x− x| ,

for all a ≤ t, s ≤ b and for all reals x, x, where
t∫
a
|ψ(t, s)|2ds ≤ Q2(t) and

b∫
a
Q2(t)dt ≤M2 < +∞;

(ii) K2(t, s, x) satisfies a Lipschitz condition of the type

|K2(t, s, x)−K2(t, s, x)| ≤ |ϕ(t, s)| |x− x| ,

for all a ≤ t, s ≤ b and for all reals x, x, where
b∫
a

b∫
a
|ϕ(t, s)|2 dsdt = L2 < +∞;

(iii) K2(t, s, x) satisfies the condition

b∫
a


b∫

a

[K2(t, s, x(s))−K2(t, s, x(s))] ds

 [x(t)− x(t)] dt > 0,

for all x(t), x(t) ∈ L2[a, b] with x(t) ̸= x(t).
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At the beginning, we transform the equation (1.1) into a discretized form. Let
Π = {a = t0, t1, . . . , tn−1, tn = b} be an equidistant partition of [a, b] where h =
ti+1 − ti, i = 0, 1, . . . , n− 1 is the discretization parameter of the partition. Now, if
x∗(t) is an analytical solution of (1.1), then for the partition Π on [a, b], we have

(3.1) x∗(ti) +

ti∫
a

K1(ti, s, x
∗(s))ds+

b∫
a

K2(ti, s, x
∗(s))ds = g(ti), i = 0, 1, . . . , n.

In (3.1), the integral term can be estimated by a numerical method of integration,
e.g. Newton–Cotes methods. Therefore, by taking equidistant partition Π, as above
with h = si+1−si, i = 0, 1, . . . , n−1 and also the known weights wij , j = 0, 1, . . . , i
for interval [a, ti] and wr, r = 0, 1, . . . , n for interval [a, b], equality (3.1) can be
written as

x∗i+

i∑
j=0

wijK1(ti, sj , x
∗
j ) +O(hν1) +

n∑
r=0

wrK2(ti, sr, x
∗
r) +O(hν2) = gi,

i = 0, 1, . . . , n,(3.2)

where x∗i = x∗(ti), gi = g(ti), i = 0, 1, . . . , n and ν1, ν2 depend upon the used
method of Newton–Cotes for estimating the integrals in (3.1). From (3.2), we have

(3.3) x∗i +

i∑
j=0

wijK1(ti, sj , x
∗
j ) +

n∑
r=0

wrK2(ti, sr, x
∗
r) +O(hν) = gi, i = 0, 1, . . . , n,

where ν = min {ν1, ν2}.
For partition Π, we consider a perturbed system of nonlinear equations obtained

by neglecting the truncation error of (3.1) as follows

(3.4) ξi +
i∑

j=0

wijK1(ti, sj , ξj) +
n∑

r=0

wrK2(ti, sr, ξr) = gi, i = 0, 1, . . . , n.

The perturbed system of nonlinear equations (3.4) can be rewritten as

(3.5) ξ +Φ(ξ) + F (ξ) = g,

where ξ = (ξ0, ξ1, . . . , ξn)
T , g = (g0, g1, . . . , gn)

T ,Φ(ξ) = (φ0(ξ), φ1(ξ), . . . , φn(ξ))
T

and F (ξ) = (f0(ξ), f1(ξ), . . . , fn(ξ))
T with

φi(ξ) =
i∑

j=0

wijK1(ti, sj , ξj), fi(ξ) =
n∑

r=0

wrK2(ti, sr, ξr), i = 0, 1, . . . , n.

For partition Π and the known weights wi, i = 0, 1, . . . , n, we define an inner
product in Rn+1 by

⟨
ξ, ξ
⟩
=

n∑
i=0

wiξiξi, ∀ξ = (ξ0, ξ1, . . . , ξn)
T , ξ = (ξ0, ξ1, . . . , ξn)

T ∈ Rn+1.
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This inner product induces the norm

∥ξ∥ =
√

⟨ξ, ξ⟩ =

(
n∑

i=0

wi|ξi|2
) 1

2

.

The following proposition gives us the property of the mapping Φ.

Proposition 3.1. Let the assumption (i) be satisfied. Then

(3.6) ∥Φm(ξ)− Φm(ξ)∥ ≤ Mm√
(m− 1)!

∥ξ − ξ∥, ∀ξ, ξ ∈ Rn+1

for some positive integer m.

Proof. Define the operator V as

(V x)(t) =

t∫
a

K1(t, s, x(s))ds, ∀x(t) ∈ L2[a, b].

First, we prove that (3.6) is hold for m = 1. From (i), we have

|(V x)(t)− (V x)(t)| =

∣∣∣∣∣∣
t∫

a

[K1(t, s, x(s))−K1(t, s, x(s))] ds

∣∣∣∣∣∣
≤

t∫
a

|K1(t, s, x(s))−K1(t, s, x(s))| ds

≤
t∫

a

|ψ(t, s)| |x(s)− x(s)| ds

for all x(t), x(t) ∈ L2[a, b]. From this and Cauchy–Schwarz inequality, we obtain

|(V x)(t)− (V x)(t)|2 ≤
t∫

a

|ψ(t, s)|2 ds
t∫

a

|x(s)− x(s)|2 ds

≤ Q2(t)

t∫
a

|x(s)− x(s)|2 ds

= Q2(t)

t∫
a

|x(s1)− x(s1)|2 ds1

(3.7)

and hence

|(V x)(t)− (V x)(t)|2 ≤ Q2(t)

b∫
a

|x(s1)− x(s1)|2 ds1.
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Then we have
b∫

a

|(V x)(t)− (V x)(t)|2 dt ≤
b∫

a

Q2(t)dt

b∫
a

|x(t)− x(t)|2 dt

≤M2

b∫
a

|x(t)− x(t)|2 dt.

This implies that

b∫
a

∣∣∣∣∣∣
t∫

a

[K1(t, s, x(s))−K1(t, s, x(s))]ds

∣∣∣∣∣∣
2

dt−M2

b∫
a

|x(t)− x(t)|2dt ≤ 0

for all x(t), x(t) ∈ L2[a, b]. We may assume without loss of generality that

(3.8)

b∫
a

∣∣∣∣∣∣
t∫

a

[K1(t, s, x(s))−K1(t, s, x(s))]ds

∣∣∣∣∣∣
2

dt−M2

b∫
a

|x(t)− x(t)|2ds < 0

for all x(t), x(t) ∈ L2[a, b] with x(t) ̸= x(t).
By taking equidistant partition Π, as above with h = ti+1 − ti, i = 0, 1, . . . ,

n−1 and also the known weights wi, we, i, e = 0, 1, . . . , n for interval [a, b], we have

n∑
i=0

wi

∣∣∣∣∣∣
ti∫

a

[K1(ti, s, x(s))−K1(ti, s, x(s))] ds

∣∣∣∣∣∣
2

+O(hη1)

−M2
n∑

e=0

we|xe − xe|2 −O(hη2) < 0,

(3.9)

where xe = x(te), xe = x(te), e = 0, 1, . . . , n and η1, η2 depend upon the used
method of Newton–Cotes for estimating the integrals in (3.8). From (3.9), we have

n∑
i=0

wi

∣∣∣∣∣∣
ti∫

a

[K1(ti, s, x(s))−K1(ti, s, x(s))] ds

∣∣∣∣∣∣
2

−M2
n∑

e=0

we|xe − xe|2 +O(hη3) < 0,

(3.10)

where O(hη3) = O(hη1) − O(hη2). Therefore, by taking equidistant partition Π, as
above with h = si+1 − si, i = 0, 1, . . . , n − 1 and also the known weights wij , j =
0, 1, . . . , i for interval [a, ti], the inequality (3.10) can be written as

n∑
i=0

wi

∣∣∣∣∣∣
i∑

j=0

wij [K1(ti, sj , xj)−K1(ti, sj , xj)] +O(hη4)

∣∣∣∣∣∣
2

−M2
n∑

e=0

we|xe − xe|2 +O(hη3) < 0,
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where xj = x(sj), xj = x(sj) and η4 depend upon the used method of Newton–Cotes
for estimating the integral in (3.10). Hence, for sufficiently large n, we have

n∑
i=0

wi

∣∣∣∣∣∣
i∑

j=0

wij [K1(ti, sj , ξj)−K1(ti, sj , ξj)]

∣∣∣∣∣∣
2

−M2
n∑

e=0

we|ξe − ξe|2 ≤ 0

for all ξ, ξ ∈ Rn+1. That means

∥Φ(ξ)− Φ(ξ)∥2 −M2∥ξ − ξ∥2 ≤ 0, ∀ξ, ξ ∈ Rn+1.

Hence

∥Φ(ξ)− Φ(ξ)∥ ≤M∥ξ − ξ∥, ∀ξ, ξ ∈ Rn+1.

Consequently, (3.6) is hold for m = 1.
We now prove that (3.6) is hold for m = 2. From (3.7), we have

|(V 2x)(t)− (V 2x)(t)|2 ≤ Q2(t)

t∫
a

|(V x)(s1)− (V x)(s1)|2ds1

≤ Q2(t)

t∫
a

Q2(s1)ds1

s1∫
a

|x(s2)− x(s2)|2ds2

(3.11)

and hence

|(V 2x)(t)− (V 2x)(t)|2 ≤ Q2(t)

t∫
a

Q2(s1)ds1

b∫
a

|x(s2)− x(s2)|2ds2.

Then we have

b∫
a

|(V 2x)(t)− (V 2x)(t)|2dt ≤
b∫

a

Q2(t)dt

b∫
a

Q2(s1)ds1

b∫
a

|x(t)− x(t)|2dt

≤M4

b∫
a

|x(t)− x(t)|2dt.

It follows that

b∫
a

∣∣∣∣∣∣
t∫

a

[K1(t, s, (V x)(s))−K1(t, s, (V x)(s))]ds

∣∣∣∣∣∣
2

dt

−M4

b∫
a

|x(t)− x(t)|2dt ≤ 0
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for all x(t), x(t) ∈ L2[a, b]. We may assume without loss of generality that

b∫
a

∣∣∣∣∣∣
t∫

a

[K1(t, s, (V x)(s))−K1(t, s, (V x)(s))]ds

∣∣∣∣∣∣
2

dt

−M4

b∫
a

|x(t)− x(t)|2dt < 0

(3.12)

for all x(t), x(t) ∈ L2[a, b] with x(t) ̸= x(t).
By taking equidistant partition Π, as above with h = ti+1 − ti, i = 0, 1, . . . ,

n−1 and also the known weights wi, we, i, e = 0, 1, . . . , n for interval [a, b], we have

n∑
i=0

wi

∣∣∣∣∣∣
ti∫

a

[K1(ti, s, (V x)(s))−K1(ti, s, (V x)(s))] ds

∣∣∣∣∣∣
2

+O(hη5)

−M4
n∑

e=0

we|xe − xe|2 −O(hη6) < 0,

(3.13)

where xe = x(te), xe = x(te), e = 0, 1, . . . , n and η5, η6 depend upon the used
method of Newton–Cotes for estimating the integrals in (3.12). From (3.13), we
have

n∑
i=0

wi

∣∣∣∣∣∣
ti∫

a

[K1(ti, s, (V x)(s))−K1(ti, s, (V x)(s))] ds

∣∣∣∣∣∣
2

−M4
n∑

e=0

we|xe − xe|2 +O(hη7) < 0,

(3.14)

where O(hη7) = O(hη5) − O(hη6). Therefore, by taking equidistant partition Π, as
above with h = si+1 − si, i = 0, 1, . . . , n − 1 and also the known weights wij , j =
0, 1, . . . , i for interval [a, ti], the inequality (3.14) can be written as

n∑
i=0

wi

∣∣∣∣∣∣
i∑

j=0

wij [K1(ti, sj ,

sj∫
a

K1(sj , ς, x(ς))dς)

−K1(ti, sj ,

sj∫
a

K1(sj , ς, x(ς))dς)] +O(hη8)

∣∣∣∣∣∣
2

−M2
n∑

e=0

we|xe − xe|2 +O(hη7) < 0,

(3.15)

where η8 depend upon the used method of Newton–Cotes for estimating the integral
in (3.14). By taking equidistant partition Π, as above with h = ςi+1 − ςi, i =
0, 1, . . . , n − 1 and also the known weights wjρ , wjρ′ , ρ, ρ

′ = 0, 1, . . . , j for interval
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[a, sj ], the inequality (3.15) can be written as

n∑
i=0

wi

∣∣∣∣∣∣
i∑

j=0

wij [K1(ti, sj ,

j∑
ρ=0

wjρK1(sj , ςρ, xρ) +O(hη9))

−K1(ti, sj ,

j∑
ρ′=0

wjρ′K1(sj , ςρ′ , xρ′) +O(hη10))] +O(hη8)

∣∣∣∣∣∣
2

−M2
n∑

e=0

we|xe − xe|2 +O(hη7) < 0,

where xρ = x(ςρ), xρ′ = x(ςρ′), ρ, ρ′ = 0, 1, . . . , j and η9, η10 depend upon the
used method of Newton–Cotes for estimating the integrals in (3.15). Therefore, for
sufficiently large n, we have

n∑
i=0

wi

∣∣∣∣∣∣
i∑

j=0

wij [K1(ti, sj ,

j∑
ρ=0

wjρK1(sj , ςρ, ξρ))

−K1(ti, sj ,

j∑
ρ′=0

wjρ′K1(sj , ςρ′ , ξρ′))]

∣∣∣∣∣∣
2

−M2
n∑

e=0

we|ξe − ξe|2 ≤ 0

for all ξ, ξ ∈ Rn+1. That means

∥Φ2(ξ)− Φ2(ξ)∥2 −M4∥ξ − ξ∥2 ≤ 0, ∀ξ, ξ ∈ Rn+1.

Thus

∥Φ2(ξ)− Φ2(ξ)∥ ≤M2∥ξ − ξ∥, ∀ξ, ξ ∈ Rn+1.

Consequently, (3.6) is hold for m = 2.
Next, we shall prove that (3.6) is hold for some integer m ≥ 3. Continuing the

process from (3.7) and (3.11), we obtain

|(V mx)(t)− (V mx)(t)|2 ≤ Q2(t)

t∫
a

|(V m−1x)(s1)− (V m−1x)(s1)|2ds1 ≤ Q2(t)

×
t∫

a

Q2(s1)ds1

s1∫
a

Q2(s2)ds2 · · ·
sm−2∫
a

Q2(sm−1)dsm−1

sm−1∫
a

|x(sm)− x(sm)|2dsm

and hence

|(V mx)(t)− (V mx)(t)|2 ≤ Q2(t)

×
t∫

a

Q2(s1)ds1

s1∫
a

Q2(s2)ds2 · · ·
sm−2∫
a

Q2(sm−1)dsm−1

b∫
a

|x(sm)− x(sm)|2dsm.

(3.16)
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By induction, we can show that

t∫
a

Q2(s1)ds1

s1∫
a

Q2(s2)ds2 · · ·
sm−2∫
a

Q2(sm−1)dsm−1

=
1

(m− 1)!

 t∫
a

Q2(s)ds

m−1

.

(3.17)

Combining now (3.16) and (3.17), we get

|(V mx)(t)− (V mx)(t)|2

≤ Q2(t)
1

(m− 1)!

 t∫
a

Q2(s)ds

m−1 b∫
a

|x(sm)− x(sm)|2dsm

≤ Q2(t)
1

(m− 1)!

 b∫
a

Q2(s)ds

m−1 b∫
a

|x(sm)− x(sm)|2dsm

≤ Q2(t)
M2(m−1)

(m− 1)!

b∫
a

|x(sm)− x(sm)|2dsm.

Hence
b∫

a

|(V mx)(t)− (V mx)(t)|2 dt ≤ M2(m−1)

(m− 1)!

b∫
a

Q2(t)dt

b∫
a

|x(t)− x(t)|2 dt

≤ M2m

(m− 1)!

b∫
a

|x(t)− x(t)|2 dt

for all x(t), x(t) ∈ L2[a, b]. In a similar way as above, we can show that

∥Φm(ξ)− Φm(ξ)∥2 − M2m

(m− 1)!
∥ξ − ξ∥2 ≤ 0, ∀ξ, ξ ∈ Rn+1.

This implies that

∥Φm(ξ)− Φm(ξ)∥ ≤ Mm√
(m− 1)!

∥ξ − ξ∥, ∀ξ, ξ ∈ Rn+1.

Consequently, (3.6) is hold for some integer m ≥ 3. This completes the proof of the
proposition. □

We now give some properties of the mapping F in the following proposition.

Proposition 3.2. Let the assumptions (ii) and (iii) be satisfied. Then

(3.18) ∥F (ξ)− F (ξ)∥ ≤ L∥ξ − ξ∥, ∀ξ, ξ ∈ Rn+1

and

(3.19)
⟨
F (ξ)− F (ξ), ξ − ξ

⟩
> 0, ∀ξ, ξ ∈ Rn+1, ξ ̸= ξ.



114 N. T. BINH AND K. V. NINH

Proof. From (ii), we have∣∣∣∣∣∣
b∫

a

[K2(t, s, x(s))−K2(t, s, x(s))]ds

∣∣∣∣∣∣ ≤
b∫

a

|K2(t, s, x(s))−K2(t, s, x(s))|ds

≤
b∫

a

|ϕ(t, s)||x(s)− x(s)|ds

for all x(t), x(t) ∈ L2[a, b]. From this and Cauchy–Schwarz inequality, we obtain

b∫
a

∣∣∣∣∣∣
b∫

a

[K2(t, s, x(s))−K2(t, s, x(s))]ds

∣∣∣∣∣∣
2

dt

≤
b∫

a

b∫
a

|ϕ(t, s)|2dsdt
b∫

a

|x(s)− x(s)|2ds

= L2

b∫
a

|x(t)− x(t)|2dt

and hence

b∫
a

∣∣∣∣∣∣
b∫

a

[K2(t, s, x(s))−K2(t, s, x(s))] ds

∣∣∣∣∣∣
2

dt− L2

b∫
a

|x(t)− x(t)|2 dt ≤ 0.

We may assume without loss of generality that

(3.20)

b∫
a

∣∣∣∣∣∣
b∫

a

[K2(t, s, x(s))−K2(t, s, x(s))] ds

∣∣∣∣∣∣
2

dt− L2

b∫
a

|x(t)− x(t)|2 dt < 0

for all x(t), x(t) ∈ L2[a, b] with x(t) ̸= x(t).
By taking equidistant partition Π, as above with h = ti+1− ti, i = 0, 1, . . . , n− 1

and also the known weights wi, we, i, e = 0, 1, . . . , n for interval [a, b], we have

n∑
i=0

wi

∣∣∣∣∣∣
b∫

a

[K2(ti, s, x(s))−K2(ti, s, x(s))] ds

∣∣∣∣∣∣
2

+O(hϑ1)

− L2
n∑

e=0

we|xe − xe|2 −O(hϑ2) < 0,

(3.21)

where xe = x(te), xe = x(te), e = 0, 1, . . . , n and ϑ1, ϑ2 depend upon the used
method of Newton–Cotes for estimating the integrals in (3.20). From (3.21), we
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have

n∑
i=0

wi

∣∣∣∣∣∣
b∫

a

[K2(ti, s, x(s))−K2(ti, s, x(s))] ds

∣∣∣∣∣∣
2

− L2
n∑

e=0

we|xe − xe|2 +O(hϑ3) < 0,

(3.22)

where O(hϑ3) = O(hϑ1)−O(hϑ2). Therefore, by taking equidistant partition Π, as
above with h = si+1 − si, i = 0, 1, . . . , n − 1 and also the known weights wr, r =
0, 1, . . . , n for interval [a, b], the inequality (3.22) can be written as

n∑
i=0

wi

∣∣∣∣∣
n∑

r=0

wr [K2(ti, sr, xr)−K2(ti, sr, xr)] +O(hϑ4)

∣∣∣∣∣
2

− L2
n∑

e=0

we|xe − xe|2 +O(hϑ3) < 0,

where xr = x(sr), xr = x(sr), r = 0, 1, . . . , n and ϑ4 depend upon the used method
of Newton–Cotes for estimating the integral in (3.22). Hence, for sufficiently large
n, we have

n∑
i=0

wi

∣∣∣∣∣
n∑

r=0

wr

[
K2(ti, sr, ξr)−K2(ti, sr, ξr)

]∣∣∣∣∣
2

− L2
n∑

e=0

we|ξe − ξe|2 ≤ 0

for all ξ, ξ ∈ Rn+1. That means

∥F (ξ)− F (ξ)∥2 − L2∥ξ − ξ∥2 ≤ 0, ∀ξ, ξ ∈ Rn+1.

Hence

∥F (ξ)− F (ξ)∥ ≤ L∥ξ − ξ∥,∀ξ, ξ ∈ Rn+1,

which proves (3.18).
Let us prove (3.19). From (iii), by taking equidistant partition Π, as above with

h = ti+1 − ti, i = 0, 1, . . . , n− 1, and also the known weights wi, i = 0, 1, . . . , n for
interval [a, b], we obtain

(3.23)
n∑

i=0

wi

b∫
a

[K2(ti, s, x(s))−K2(ti, s, x(s))] ds [xi − xi] +O(hσ1) > 0,

where xi = x(ti), xi = x(ti), i = 0, 1, . . . , n and σ1 depend upon the used method
of Newton–Cotes for estimating the integral. Therefore, by taking equidistant par-
tition Π, as above with h = si+1− si, i = 0, 1, . . . , n−1 and also the known weights
wr, r = 0, 1, . . . , n for interval [a, b], the inequality (3.23) can be written as

n∑
i=0

wi

{
n∑

r=0

wr[K2(ti, sr, xr)−K2(ti, sr, xr)] +O(hσ2)

}
[xi − xi]

+O(hσ1) > 0,
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where xr = x(sr), xr = x(sr), r = 0, 1, . . . , n and σ2 depend upon the used method
of Newton–Cotes for estimating the integral in (3.23). Hence, for sufficiently large
n, we have

n∑
i=0

wi

{
n∑

r=0

wr

[
K2(ti, sr, ξr)−K2(ti, sr, ξr)

]}
[ξi − ξi] > 0

for all ξ, ξ ∈ Rn+1 with ξ ̸= ξ. That means⟨
F (ξ)− F (ξ), ξ − ξ

⟩
> 0, ∀ξ, ξ ∈ Rn+1, ξ ̸= ξ.

This completes the proof of the proposition. □
In order to prove our main results, we need the following theorems.

Theorem 3.3. Assume H is a nonempty closed set in a Banach space X and
T : H → H is continuous. Suppose that Tm is a contractive operator for some
positive integer m. Then T has a unique fixed point x∗ in H. Moreover, the iteration
process

(3.24) xk+1 = T (xk), k = 0, 1, 2, . . .

converges to the fixed point x∗.

Proof. For proof see [1] or [12]. □
Theorem 3.4. Let the assumptions of Theorem 3.3 be satisfied and let {xk}, k =
1, 2, . . . be constructed by iteration process (3.24). Then for k ≥ m, the following
estimates hold

(3.25) ∥xk − x∗∥ ≤ α
k−h0
m

1− α
∥xm+h0 − xh0∥,

where α is the contraction coefficient of the operator Tm, h0 ∈ {0, 1, . . . ,m− 1} is
the residual of k

m .

Proof. For proof see [12]. □
Now, we shall give the existence and uniqueness of the solution of the perturbed

system of nonlinear equations (3.5).

Theorem 3.5. Let the assumptions (i)-(iii) be satisfied. Then the perturbed system
of nonlinear equations (3.5) has a unique solution for any g ∈ Rn+1.

Proof. We shall carry out a change of variable

(3.26) z = ξ + F (ξ) ≡ P (ξ).

By Proposition 3.2, the mapping F is monotone and Lipschitz - continuous with
Lipschitz coefficient equal to L. Therefore, by Theorem 2.4, the system of equa-
tions (3.26) has a unique solution for any z ∈ Rn+1, i.e., the mapping P−1(z) is
determined in the whole space Rn+1. By virtue of the monotonicity of the mapping
F , the mapping P−1 is Lipschitz - continuous with Lipschitz coefficient equal to 1.
Indeed, for all z, z ∈ Rn+1 we have

∥P−1(z)− P−1(z)∥ = ∥ξ − ξ∥ ≤ ∥ξ − ξ + F (ξ)− F (ξ)]∥ = ∥z − z∥.
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After changing the variable (3.26), the perturbed system of nonlinear equations
(3.5) will take the following form

(3.27) z +ΦP−1(z) = g.

Define the mapping T as

(3.28) T (z) = −ΦP−1(z) + g, ∀z ∈ Rn+1.

Then the system of equations (3.27) can be rewritten as

(3.29) z = T (z).

It follows from (3.28) that for all z, z ∈ Rn+1 and for some positive integer m,

∥Tm(z)− Tm(z)∥ = ∥(−ΦP−1)m(z)− (−ΦP−1)m(z)∥.
By virtue of Proposition 3.1 and Lipschitz continuity of the mapping P−1, we have

∥Tm(z)− Tm(z)∥ ≤ Mm√
(m− 1)!

∥z − z∥, ∀z, z ∈ Rn+1.

Since Mm√
(m−1)!

< 1 when m is sufficiently large, we see that Tm is a contractive

mapping with contraction coefficient equal to α = Mm√
(m−1)!

. By Theorem 3.3, the

mapping T has a unique fixed point z∗ ∈ Rn+1, i.e., the system of equations (3.27)
has a unique solution z∗ ∈ Rn+1 for any g ∈ Rn+1. Consequently, the perturbed
system of nonlinear equations (3.5) has a unique solution ξ∗ for any g ∈ Rn+1. This
completes the proof of the theorem. □

In the following proposition, we shall estimate ∥x∗ − ξ∗∥, where x∗ =
(x∗0, x

∗
1, . . . , x

∗
n)

T with x∗i = x∗(ti), i = 0, 1, . . . , n (note that x∗(t) is an analytical
solution of (1.1)) and ξ∗ = (ξ∗0 , ξ

∗
1 , . . . , ξ

∗
n)

T is the exact solution of the perturbed
system of nonlinear equations (3.5).

Proposition 3.6. Let the assumptions (i)-(iii) be satisfied. Then

(3.30) ∥x∗ − ξ∗∥ ≤
√
b− a |O(hν)|

1− α
,

where α = Mm√
(m−1)!

< 1 when m is chosen sufficiently large.

Proof. By (3.3) and (3.4), we have

x∗i − ξ∗i +
i∑

j=0

wijK1(ti, sj , x
∗
j )−

i∑
j=0

wijK1(ti, sj , ξ
∗
j ) +

n∑
r=0

wrK2(ti, sr, x
∗
r)

−
n∑

r=0

wrK2(ti, sr, ξ
∗
r ) = −O(hν), i = 0, 1, . . . , n,

which means

x∗i − ξ∗i + φi(x
∗)− φi(ξ

∗) + fi(x
∗)− fi(ξ

∗) = −O(hν), i = 0, 1, . . . , n.

Then we have

|x∗i − ξ∗i + φi(x
∗)− φi(ξ

∗) + fi(x
∗)− fi(ξ

∗)| = |O(hν)|, i = 0, 1, . . . , n,
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and hence

wi|x∗i − ξ∗i + φi(x
∗)− φi(ξ

∗) + fi(x
∗)− fi(ξ

∗)|2 = wi|O(hν)|2, i = 0, 1, . . . , n.

It follows that

∥x∗ − ξ∗ +Φ(x∗)− Φ(ξ∗) + F (x∗)− F (ξ∗)∥2

=
n∑

i=0

wi|x∗i − ξ∗i + φi(x
∗)− φi(ξ

∗) + fi(x
∗)− fi(ξ

∗)|2 = |O(hν)|2
n∑

i=0

wi.

Since in every Newton–Cotes formula
n∑

i=0
wi = b− a, we obtain

∥x∗ − ξ∗ +Φ(x∗)− Φ(ξ∗) + F (x∗)− F (ξ∗)∥ =
√
b− a |O(hν)|.

By virtue of the contraction of the mapping Tm and the monotonicity of the map-
ping F , we have

√
b− a |O(hν)| = ∥x∗ + F (x∗)− [ξ∗ + F (ξ∗)] + Φ(x∗)− Φ(ξ∗)∥

= ∥z∗x − z∗ +ΦP−1(z∗x)− ΦP−1(z∗)∥
= ∥z∗x − z∗ + T (z∗x)− T (z∗)∥
= ∥z∗x − z∗ + T (Tm(z∗x))− T (Tm(z∗))∥
= ∥z∗x − z∗ + Tm+1(z∗x)− Tm+1(z∗)∥
= ∥z∗x − z∗ + Tm(T (z∗x))− Tm(T (z∗))∥
≥ ∥z∗x − z∗∥ − ∥Tm(T (z∗x))− Tm(T (z∗))∥
≥ ∥z∗x − z∗∥ − α∥T (z∗x)− T (z∗)∥
= (1− α)∥z∗x − z∗∥
= (1− α)∥x∗ − ξ∗ + F (x∗)− F (ξ∗)∥
≥ (1− α)∥x∗ − ξ∗∥,

where z∗x = x∗ + F (x∗) ≡ P (x∗) and z∗ = ξ∗ + F (ξ∗) ≡ P (ξ∗). Consequently,

∥x∗ − ξ∗∥ ≤
√
b− a |O(hν)|

1− α
.

This completes the proof of the proposition. □

The inequality (3.30) leads to the following corollary.

Corollary 3.7. ∥x∗ − ξ∗∥ vanishes when h→ 0.

Next, we shall construct the iterative algorithm to find approximate solutions of
the perturbed system of nonlinear equations (3.5). To solve the perturbed system
of nonlinear equations (3.5), we first have to solve the system of equations (3.27)
and after that we solve the system of equations (3.26). In the proof of Theorem
3.5, we have proved that the system of equations (3.27) has a unique solution by
using the contraction mapping principle and the system of equations (3.26) has a
unique solution for any z ∈ Rn+1 by using parameter continuation method. The
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approximate solutions of the system of equations (3.27) are obtained by using the
standard iteration process

(3.31) z(τ+1) = −ΦP−1(z(τ)) + g ≡ T (z(τ)), τ = 0, 1, 2, . . . .

For the initial approximation we take z(0) = g. At the same time at each step of
above iteration process when calculating the value P−1(z(τ)), we have to solve the
system of equations of the form (3.26), as

(3.32) ξ + F (ξ) = z(τ).

Substituting F for A in the iteration processes (2.5a)–(2.5d), the approximate solu-
tions of the system of equations (3.32) are obtained by using the following iteration
processes

ξ(k+1) = −ε0F (ξ(k)) + u(l), k = 0, 1, 2, . . . ,(3.33a)

u(l+1) = −ε0FG−1
1 (u(l)) + v(c), l = 0, 1, 2, . . . ,(3.33b)

. . . ,(3.33c)

y(p+1) = −ε0FG−1
1 · · ·G−1

N−1(y
(p)) + z(τ), p = 0, 1, 2, . . . .(3.33d)

Therefore the approximate solutions of the perturbed system of nonlinear equations
(3.5) can be found by the following iteration processes

ξ(k+1) = −ε0F (ξ(k)) + u(l), k = 0, 1, 2, . . . ,(3.34a)

u(l+1) = −ε0FG−1
1 (u(l)) + v(c), l = 0, 1, 2, . . . ,(3.34b)

. . . ,(3.34c)

y(p+1) = −ε0FG−1
1 · · ·G−1

N−1(y
(p)) + z(τ), p = 0, 1, 2, . . .(3.34d)

z(τ+1) = −ΦP−1(z(τ)) + g, τ = 0, 1, 2, . . . , z(0) = g.(3.34e)

Now we estimate the error of approximate solutions of the perturbed system of
nonlinear equations (3.5). Assume that the number of steps in each iteration scheme

of the iteration processes (3.34a)–(3.34e) is the same and equals n0. Let ξ(n0) be
approximate solutions of the perturbed system of nonlinear equations (3.5). Note

that ξ(n0) depends on N , hence we denote ξ(n0, N) ≡ ξ(n0). We have the following
result.

Theorem 3.8. Let the assumptions of Theorem 3.5 be satisfied. Then the sequence
of approximate solutions {ξ(n0, N)}, n0 = 1, 2, . . . constructed by iteration pro-
cesses (3.34a)–(3.34e) converges to the exact solution ξ∗ of the perturbed system of
nonlinear equations (3.5). Moreover, the following estimates hold

(3.35) ∥ξ(n0, N)− ξ∗∥ ≤ (1 +M)
qn0+1

1− q

eqN − 1

eq − 1
Cn′∥g∥+ α

n0−h0
m

1− α
Cm∥g∥,

where Cn′ = γ
1−γ

Mn′
√

(n′−1)!
+ Mn′
√

(n′−1)!
+· · ·+M+1, Cm = Mm√

(m−1)!
+ Mm−1√

(m−2)!
+· · ·+M,

N is the smallest natural number such that q = L
N < 1, n′ is a natural number such

that γ = M√
n′ < 1 and m is chosen sufficiently large such that α = Mm√

(m−1)!
< 1,

h0 ∈ {0, 1, . . . ,m− 1} is the residual of n0
m , n0 > max {m,n′}.
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Proof. For simplicity, we assume that Φ(0) = 0 and F (0) = 0, where 0 = (0, 0, . . . , 0)T

denotes the zero element in Rn+1. Indeed, if Φ(0) ̸= 0 or F (0) ̸= 0, we can define
two mappings Φ1, F1 : Rn+1 → Rn+1 by

(3.36) Φ1(ξ) = Φ(ξ)− Φ(0), F1(ξ) = F (ξ)− F (0),

then Φ1(0) = F1(0) = 0 and the perturbed system of nonlinear equations (3.5) is
equivalent to

(3.37) ξ +Φ1(ξ) + F1(ξ) = g1,

where g1 = g − Φ(0)− F (0). It follows from (3.36) that for all ξ, ξ ∈ Rn+1

Φ1(ξ)− Φ1(ξ) = Φ(ξ)− Φ(ξ), F1(ξ)− F1(ξ) = F (ξ)− F (ξ).

Therefore the Propositions 3.1 and 3.2 can be applied to the mappings Φ1 and F1,
respectively. Consequently, Theorem 3.5 can be applied to the perturbed system of
nonlinear equations (3.37).

We split the proof into two steps.
Step 1. We estimate the error of approximate solutions of the system of equa-

tions (3.27). Firstly, we estimate the errors in calculating the values T (z(τ)) =

−ΦP−1(z(τ)) + g, τ = 1, 2, . . . , n0 − 1. Since F (0) = 0, it follows that P (0) =

0 + F (0) = 0. Thus T (0) = −ΦP−1(0) + g = g ≡ z(0). At the same time at each

step of the iteration process (3.31) when calculating the value P−1(z(τ)), we will

use the iteration processes (3.33a)–(3.33d). Let ξ
(n0)

z(τ)
and ξ∗

z(τ)
be the approximate

and exact values of P−1(z(τ)), respectively. It follows from Theorem 2.5 that the

values P−1(z(τ)) are calculated with the error

(3.38) ∥ξ(n0)

z(τ)
− ξ∗

z(τ)
∥ ≤ qn0+1

1− q

eqN − 1

eq − 1
∥z(τ)∥,

where N is the smallest natural number such that q = L
N < 1, n0 = 1, 2, . . ..

Since
{
z(τ)

}
, τ = 1, 2, . . . is a convergence sequence, it follows that ∥z(τ)∥ is

bounded for all positive integer τ . We now determine the supremum of ∥z(τ)∥, τ ∈
{1, 2, . . . , n0} (n0 is the number of steps in each iteration scheme). For any τ ∈
{1, 2, . . . , n0} we have

∥z(τ)∥ ≤ ∥z(τ) − z(τ−1)∥+ ∥z(τ−1) − z(τ−2)∥+ · · ·+ ∥z(1) − z(0)∥+ ∥z(0)∥

≤ ∥z(n0) − z(n0−1)∥+ ∥z(n0−1) − z(n0−2)∥+ · · ·+ ∥z(τ+1) − z(τ)∥

+ ∥z(τ) − z(τ−1)∥+ ∥z(τ−1) − z(τ−2)∥+ · · ·+ ∥z(1) − z(0)∥+ ∥z(0)∥.

(3.39)
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On the other hand, we have

∥z(n0) − z(n0−1)∥+ ∥z(n0−1) − z(n0−2)∥+ · · ·+ ∥z(1) − z(0)∥+ ∥z(0)∥
=∥Tn0(g)− Tn0(0)∥+ ∥Tn0−1(g)− Tn0−1(0)∥+ · · ·+ ∥T (g)− T (0)∥+ ∥g∥

≤

[
Mn0√
(n0 − 1)!

+
Mn0−1√
(n0 − 2)!

+ · · ·+M

]
∥g∥+ ∥g∥

=

[
Mn0√
(n0 − 1)!

+
Mn0−1√
(n0 − 2)!

+ · · ·+M + 1

]
∥g∥.

Let n′ be natural number such that γ = M√
n′ < 1. Then for any n0 > n′, we have

Mn0√
(n0 − 1)!

+
Mn0−1√
(n0 − 2)!

+ · · ·+M + 1

=
Mn0√
(n0 − 1)!

+
Mn0−1√
(n0 − 2)!

+ · · ·+ Mn′+1

√
n′!

+
Mn′√
(n′ − 1)!

+ · · ·+M + 1

≤ Mn′√
(n′ − 1)!

γn0−n′
+

Mn′√
(n′ − 1)!

γn0−n′−1 + · · ·+ Mn′√
(n′ − 1)!

γ +
Mn′√
(n′ − 1)!

+ · · ·+M + 1

=(γn0−n′
+ γn0−n′−1 + · · ·+ γ)

Mn′√
(n′ − 1)!

+
Mn′√
(n′ − 1)!

+ · · ·+M + 1

=γ
1− γn0−n′

1− γ

Mn′√
(n′ − 1)!

+
Mn′√
(n′ − 1)!

+ · · ·+M + 1

≤ γ

1− γ

Mn′√
(n′ − 1)!

+
Mn′√
(n′ − 1)!

+ · · ·+M + 1 ≡ Cn′ .

Thus

(3.40) ∥z(n0)−z(n0−1)∥+∥z(n0−1)−z(n0−2)∥+ · · ·+∥z(1)−z(0)∥+∥z(0)∥ ≤ Cn′∥g∥.
It follows from (3.39) and (3.40) that

∥z(τ)∥ ≤ Cn′∥g∥
for any τ ∈ {1, 2, . . . , n0}. Hence the values P−1(z(τ)) are calculated with the error

∥ξ(n0)

z(τ)
− ξ∗

z(τ)
∥ ≤ ∆(n0),

where

(3.41) ∆(n0) =
qn0+1

1− q

eqN − 1

eq − 1
Cn′∥g∥.

By Proposition 3.1, we have

∥T (z)− T (z)∥ = ∥ΦP−1(z)− ΦP−1(z)∥ ≤M∥P−1(z)− P−1(z)∥, ∀z, z ∈ Rn+1.

Therefore the values T (z(τ)) = −ΦP−1(z(τ))+ g, τ = 1, 2, . . . , n0 − 1 are calculated
with the error not more than M∆(n0).

Next, we shall estimate the error of an iteration process in the calculation of
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z. By Theorem 3.4, the error of an iteration process in the calculation of z equals

α
n0−h0

m

1−α ∥z(m+h0)−z(h0)∥, where m is chosen sufficiently large such that α = Mm√
(m−1)!

< 1, h0 ∈ {0, 1, . . . ,m− 1} is the residual of n0
m . We have

∥z(m+h0) − z(h0)∥

≤∥z(m+h0) − z(m+h0−1)∥+ ∥z(m+h0−1) − z(m+h0−2)∥+ · · ·+ ∥z(h0+1) − z(h0)∥

=∥Tm+h0(g)− Tm+h0(0)∥+ ∥Tm+h0−1(g)− Tm+h0−1(0)∥

+ · · ·+ ∥T h0+1(g)− T h0+1(0)∥

≤

[
Mm+h0√

(m+ h0 − 1)!
+

Mm+h0−1√
(m+ h0 − 2)!

+ · · ·+ Mh0+1

√
h0!

]
∥g∥ ≡ Rm,h0∥g∥,

(3.42)

where Rm,h0 = Mm+h0√
(m+h0−1)!

+ Mm+h0−1√
(m+h0−2)!

+ · · ·+ Mh0+1
√
h0!

. Let us prove that

max{Rm,h0 , h0 ∈ {0, 1, . . . ,m− 1}} =
Mm√
(m− 1)!

+
Mm−1√
(m− 2)!

+ · · ·+M

≡ Cm.(3.43)

Obviously, Rm,0 = Cm. For some non-negative integer h′, 0 ≤ h′ ≤ h0, we have

Rm,h′ =
Mm+h′√

(m+ h′ − 1)!
+

Mm+h′−1√
(m+ h′ − 2)!

+ · · ·+ Mh′+1

√
h′!

and

Rm,h′+1 =
Mm+h′+1√
(m+ h′)!

+
Mm+h′√

(m+ h′ − 1)!
+

Mm+h′−1√
(m+ h′ − 2)!

+ · · ·+ Mh′+2√
(h′ + 1)!

.

Hence

Rm,h′+1 −Rm,h′ =
Mm+h′+1√
(m+ h′)!

− Mh′+1

√
h′!

.

We have

Mm+h′+1√
(m+ h′)!

=
Mm√
(m− 1)!

Mh′+1√
m(m+ 1) · · · (m+ h′)

= α
Mh′+1√

m(m+ 1) · · · (m+ h′)
.

Since α ∈ [0, 1), it follows that

(3.44)
Mm+h′+1√
(m+ h′)!

≤ Mh′+1√
m(m+ 1) · · · (m+ h′)

.

On the other hand, we have

m(m+ 1) · · · (m+ h′) ≥ 1(1 + 1) · · · (h′ + 1) ≥ h′!
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for any positive integer m. Hence

(3.45)
Mh′+1√

m(m+ 1) · · · (m+ h′)
≤ Mh′+1

√
h′!

.

Combining (3.44) and (3.45), we get

Mm+h′+1√
(m+ h′)!

≤ Mh′+1

√
h′!

.

Thus

Rm,h′+1 −Rm,h′ ≤ 0,

which implies that Rm,h′+1 ≤ Rm,h′ for some non-negative integer h′, 0 ≤ h′ ≤ h0.
Therefore (3.43) is proved. It follows from (3.42) and (3.43) that

∥z(m+h0) − z(h0)∥ ≤ Cm∥g∥

for every integer h0 ∈ {0, 1, . . . ,m− 1}. Hence the error of an iteration process in

the calculation of z equals α
n0−h0

m

1−α Cm∥g∥.
Consequently, the error of approximate solutions z(n0) of the system of equations

(3.27) gives the estimate

∥z(n0) − z∗∥ ≤M∆(n0) +
α

n0−h0
m

1− α
Cm∥g∥.

Step 2. We estimate the error of approximate solutions of the system of equations
(3.26)

P (ξ) ≡ ξ + F (ξ) = z.

Since the mapping P−1 is Lipschitz - continuous with Lipschitz coefficient equal to 1,

the substitution of the errorM∆(n0)+
α

n0−h0
m

1−α Cm∥g∥ into the right - hand side of the

system of equations (3.26) causes an error of not more thanM∆(n0)+
α

n0−h0
m

1−α Cm∥g∥
in the corresponding solution ξ. The error of an iteration process in the calculation
of ξ equals ∆(n0). Consequently,

∥ξ(n0, N)− ξ∗∥ ≤M∆(n0) +
α

n0−h0
m

1− α
Cm∥g∥+∆(n0)

= (1 +M)∆(n0) +
α

n0−h0
m

1− α
Cm∥g∥.

By (3.41), we obtain (3.35). This completes the proof of the theorem. □

Remark 3.9. Let d be integer part of n0
m , i.e., n0 = md+h0, h0 ∈ {0, 1, . . . ,m− 1}.

We have n0 + 1 = md + h0 + 1 ≥ md + 1 for every h0 ∈ {0, 1, . . . ,m− 1}. Since
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0 < q < 1, it follows that qn0+1 ≤ qmd+1. From this and (3.35), we have

∥ξ(n0, N)− ξ∗∥ ≤ (1 +M)
qmd+1

1− q

eqN − 1

eq − 1
Cn′∥g∥+ α

n0−h0
m

1− α
Cm∥g∥

= (1 +M)
q

1− q

eqN − 1

eq − 1
Cn′∥g∥qmd +

Cm

1− α
∥g∥αd

= C1q
md + C2α

d,

(3.46)

where

C1 = (1 +M)
q

1− q

eqN − 1

eq − 1
Cn′∥g∥, C2 =

Cm

1− α
∥g∥.

Let β = max {qm, α}. From (3.46), we get

(3.47) ∥ξ(n0, N)− ξ∗∥ ≤ (C1 + C2)β
d.

It follows from (3.47) that for any given ϵ > 0, we can find the number of iteration
such that ∥ξ(n0, N)− ξ∗∥ ≤ ϵ.

Remark 3.10. We shall now estimate the complexity of the proposed iterative
algorithm (3.34a)–(3.34e). The iteration processes (3.34a)–(3.34e) can be written
as the following symbolic notation

ξ(k+1) = − 1

N
F (ξ(k))− 1

N
F (ξ(l))− · · · − 1

N
F (ξ(p))︸ ︷︷ ︸

N terms

−Φ(ξ(τ)) + g,

k, l, . . . , τ = 0, 1, . . . , n0.

(3.48)

The procedure for calculating each value F (ξ),Φ(ξ) in the specified element ξ is
called an elementary operation. We shall call the number of elementary operations
necessary to implement algorithm (3.34a)–(3.34e) is the volume of the calculations
M(n0, N). From the symbolic notation (3.48) it follows that M(n0, N) ≤ (n0 +
1)N+1.

4. Illustrative examples

In this section, to illustrate our above results two examples are presented. The
computations associated with the examples were performed using Maple 12 on per-
sonal computer.

Example 4.1. Consider the linear Volterra–Fredholm integral equation
(4.1)

x(t) +
4

3

t∫
0

(t+ s)x(s)ds+ 4

1∫
0

ts x(s)ds =
64

45
t2
√
t− 2t2 − 2

5
t+

√
t− 1, 0 ≤ t ≤ 1,

This integral equation has analytical solution x(t) =
√
t − 1 on [0, 1]. It is easy

to verify that the functions K1(t, s, x) = 4
3(t + s) x(s) and K2(t, s, x) = 4ts x(s)

satisfy the conditions (i)-(iii) of the Theorem 3.5 with M2 = 28
27 , L

2 = 16
9 . For

approximating the left-hand integrals, we use composite midpoint rule and take a
partition with the discretization parameter h = 1

20 . We take ϵ = 10−3, N = 2,m =
6, n′ = 5. It follows from (3.47) that d ≥ 6. Taking d = 6. Since n0 = md + h0 =



SOLVING NONLINEAR VOLTERRA–FREDHOLM INTEGRAL EQUATIONS 125

6d + h0, h0 ∈ {0, 1, . . . , 5}, we have n0 ≥ 41. Taking n0 = 41, the number of
iterations needed is 68921 (the number of steps in each iteration scheme is the same
and equals n0 = 41). Table 1 presents approximate solutions obtained by using the
iteration processes (3.34a)–(3.34e) with N = 2 and n0 = 41, also exact solutions
are given for comparison.

Table 1. Comparison of the exact and approximate solutions for
Example 4.1.

Nodes t Exact solutions Approximate solutions Absolute error

0.025 −0.8403128058 −0.8402268451 1.6592719× 10−3

0.075 −0.7261387212 −0.7224677310 3.6709902× 10−3

0.125 −0.6464466094 −0.6412768969 5.1697125× 10−3

0.175 −0.5816699867 −0.5754272719 6.2427148× 10−3

0.225 −0.5256583510 −0.5187213892 6.9369618× 10−3

0.275 −0.4755955759 −0.4683076490 7.2879269× 10−3

0.325 −0.4299122875 −0.4225844350 7.3278525× 10−3

0.375 −0.3876275643 −0.3805388128 7.0887515× 10−3

0.425 −0.3480797595 −0.3414763266 6.6034329× 10−3

0.475 −0.3107975624 −0.3048919371 5.9056253× 10−3

0.525 −0.2754311627 −0.2704015138 5.0296489× 10−3

0.575 −0.2417124556 −0.2377025947 4.0098609× 10−3

0.625 −0.2094305850 −0.2065505810 2.8800040× 10−3

0.675 −0.1784161637 −0.1767436183 1.6725454× 10−3

0.725 −0.1485306817 −0.1481126240 4.1805770× 10−4

0.775 −0.1196591569 −0.1205144706 8.5531370× 10−4

0.825 −0.0917048938 −0.0938271777 2.1222839× 10−3

0.875 −0.0645856533 −0.0679463857 3.3607324× 10−3

0.925 −0.0382307969 −0.0427826948 4.5518979× 10−3

0.975 −0.0125791171 −0.0182595524 5.6804353× 10−3

Example 4.2. Consider the nonlinear Volterra–Fredholm integral equation

x(t) + 5

t∫
0

ts cos[x(s)]ds+
11

2

1∫
0

t2s2 x(s)ds =
11

8
t2 − 4t+ 5t cos(t)

+ 5t2 sin(t), 0 ≤ t ≤ 1,

(4.2)

The analytical solution of this integral equation is x(t) = t on [0, 1]. It is easy
to verify that the functions K1(t, s, x) = 5ts cos[x(s)] and K2(t, s, x) =

11
2 t

2s2 x(s)

satisfy the conditions (i)-(iii) of the Theorem 3.5 with M2 = 25
18 , L

2 = 121
100 . For

approximating the left-hand integrals, we use composite midpoint rule and take a
partition with the discretization parameter h = 1

50 . We take ϵ = 10−3, N = 2,m =
8, n′ = 6. It follows from (3.47) that d ≥ 6. Taking d = 6. Since n0 = md + h0 =
8d + h0, h0 ∈ {0, 1, . . . , 7}, we have n0 ≥ 55. Taking n0 = 55, the number of
iterations needed is 166375 (the number of steps in each iteration scheme is the
same and equals n0 = 55). Table 2 presents approximate solutions obtained by
using the iteration processes (3.34a)–(3.34e) with N = 2 and n0 = 55, also exact
solutions are given for comparison.
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Table 2. Comparison of the exact and approximate solutions for
Example 4.2.

Nodes Exact Approximate Absolute Nodes Exact Approximate Absolute
t solutions solutions error t solutions solutions error

0.01 0.01 0.0099948368 5.1632000× 10−6 0.51 0.51 0.5041937466 5.80625340× 10−3

0.03 0.03 0.0299685542 3.1445800× 10−5 0.53 0.53 0.5238057793 6.19422070× 10−3

0.05 0.05 0.0499210957 7.8904300× 10−5 0.55 0.55 0.5434091045 6.59089550× 10−3

0.07 0.07 0.0698526617 1.4733830× 10−4 0.57 0.57 0.5630033477 6.99665230× 10−3

0.09 0.09 0.0897635423 2.3645770× 10−4 0.59 0.59 0.5825879388 7.41206120× 10−3

0.11 0.11 0.1096541138 3.4588620× 10−4 0.61 0.61 0.6021621161 7.83788390× 10−3

0.13 0.13 0.1295248320 4.7516800× 10−4 0.63 0.63 0.6217248525 8.27514750× 10−3

0.15 0.15 0.1493762257 6.2377430× 10−4 0.65 0.65 0.6412748634 8.72513660× 10−3

0.17 0.17 0.1692088902 7.9110980× 10−4 0.67 0.67 0.6608105470 9.18945300× 10−3

0.19 0.19 0.1890234780 9.7652200× 10−4 0.69 0.69 0.6803299576 9.67004240× 10−3

0.21 0.21 0.2088206886 1.1793114× 10−3 0.71 0.71 0.6998307414 1.01692586× 10−2

0.23 0.23 0.2286012617 1.3987383× 10−3 0.73 0.73 0.7193100805 1.06899195× 10−2

0.25 0.25 0.2483659629 1.6340371× 10−3 0.75 0.75 0.7387646198 1.12353802× 10−2

0.27 0.27 0.2681155773 1.8844227× 10−3 0.77 0.77 0.7581903691 1.18096309× 10−2

0.29 0.29 0.2878508938 2.1491062× 10−3 0.79 0.79 0.7775825937 1.24174063× 10−2

0.31 0.31 0.3075726969 2.4273031× 10−3 0.81 0.81 0.7969356971 1.30643029× 10−2

0.33 0.33 0.3272817556 2.7182444× 10−3 0.83 0.83 0.8162430208 1.37569792× 10−2

0.35 0.35 0.3469788114 3.0211886× 10−3 0.85 0.85 0.8354966758 1.45033242× 10−2

0.37 0.37 0.3666645658 3.3354342× 10−3 0.87 0.87 0.8546872738 1.53127262× 10−2

0.39 0.39 0.3863396700 3.6603300× 10−3 0.89 0.89 0.8738036297 1.61963703× 10−2

0.41 0.41 0.4060047106 3.9952894× 10−3 0.91 0.91 0.8928323854 1.71676146× 10−2

0.43 0.43 0.4256602069 4.3397931× 10−3 0.93 0.93 0.9117575067 1.82424933× 10−2

0.45 0.45 0.4453065831 4.6934169× 10−3 0.95 0.95 0.9305597280 1.94402720× 10−2

0.47 0.47 0.4649441741 5.0558259× 10−3 0.97 0.97 0.9492157979 2.07842021× 10−2

0.49 0.49 0.4845731957 5.4268043× 10−3 0.99 0.99 0.9676975410 2.23024590× 10−2

5. Conclusions

In this paper, a new numerical method has been proposed to solve nonlinear
Volterra–Fredholm integral equations. With this method, the perturbed system
of nonlinear equations obtained by discretization is solved by an iterative method,
which is based on a hybrid of the method of contractive mapping and parameter
continuation method. Lastly, two illustrative examples are given to demonstrate
the effectiveness and convenience of the proposed method.
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[9] Prem K. Kythe and Michael R. Schäferkotter, Handbook of computational methods for inte-
gration, Chapman and Hall/CRC, Boca Raton, FL, USA, 2005.
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