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where {αn} is a sequence in [0, 1].
In 1953, Mann [14] introduced the following iteration process. For an initial guess

x1 ∈ C, an iteration process {xn} is defined recursively by

xn+1 = αnxn + (1− αn)Txn, ∀n ∈ N,

where {αn} is a sequence in [0, 1]. There are many investigations of Halpern
and Mann iterative processes for finding fixed points of nonexpansive mappings
in Hilbert spaces and Banach spaces.

Recently, Takahashi, Wen and Yao [27] proved strong and weak convergence
theorems of Halpern type iteration and Mann type iteration for the split common
fixed point problem by using families of demimetric mappings in Banach spaces; see
also [22]. See [5, 15] for the split common fixed point problem.

In this paper, motivated by this problem, methods and theorems, we consider the
split common fixed point problem for families of generalized demimetric mappings in
Banach spaces. Using the idea of Halpern iteration, we prove a strong convergence
theorem for finding a solution of the split common fixed point problem for families
of generalized demimetric mappings in Banach spaces. Furthermore, using the idea
of Mann iteration, we obtain a weak convergence theorem for finding a solution of
the problem in Banach spaces. Using these results, we obtain well-known and new
strong and weak convergence theorems in Hilbert spaces and Banach spaces.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product ⟨·, ·⟩ and
norm ∥ · ∥, respectively. For x, y ∈ H and λ ∈ R, we have from [18] that

(2.1) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;

(2.2) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

Furthermore we have that for x, y, u, v ∈ H,

(2.3) 2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for
all x ∈ H and y ∈ C. Such PC is called the metric projection of H onto C. We
know that the metric projection PC is firmly nonexpansive, i.e.,

(2.4) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩

for all x, y ∈ H. Furthermore ⟨x−PCx, y−PCx⟩ ≤ 0 holds for all x ∈ H and y ∈ C;
see [16]. The following result was proved by Takahashi and Toyoda [25].

Lemma 2.1 ([25]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let {xn} be a sequence in H. If ∥xn+1 − u∥ ≤ ∥xn − u∥ for all
n ∈ N and u ∈ C, then {PCxn} converges strongly to some z ∈ C, where PC is the
metric projection on H onto C.
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Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of
E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x, respectively. The modulus δ of convexity of E is defined
by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. A uniformly convex Banach space is strictly convex and
reflexive.

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.5) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In this case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J−1 coincides with
the duality mapping J∗ on E∗. For more details, see [16] and [17]. We know the
following result.

Lemma 2.2 ([16]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, ⟨x−y, Jx−Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly
convex and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x ∈ E, there exists a unique element
z ∈ C such that ∥x− z∥ ≤ ∥x− y∥ for all y ∈ C. Putting z = PCx, we call PC the
metric projection of E onto C.

Lemma 2.3 ([16]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x ∈ E and z ∈ C.
Then, the following conditions are equivalent:

(1) z = PCx;
(2) ⟨z − y, J(x− z)⟩ ≥ 0, ∀y ∈ C.

Let E be a Banach space and let A be a mapping of of E into 2E
∗
. A multi-valued

mapping A on E is said to be monotone if ⟨x − y, u∗ − v∗⟩ ≥ 0 for all u∗ ∈ Ax,
and v∗ ∈ Ay. A monotone operator A on E is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on E. The
following theorem is due to Browder [3]; see also [17, Theorem 3.5.4].
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Theorem 2.4 ([3]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E∗. Let A be a monotone operator of E into
2E

∗
. Then A is maximal if and only if for any r > 0,

R(J + rA) = E∗,

where R(J + rA) is the range of J + rA.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm
and let A be a maximal monotone operator of E into 2E

∗
. For all x ∈ E and r > 0,

we consider the following equation

0 ∈ J(xr − x) + rAxr.

This equation has a unique solution xr. We define Jr by xr = Jrx. Such Jr, r > 0
are called the metric resolvents of A. The set of null points of A is defined by
A−10 = {z ∈ E : 0 ∈ Az}. We know that A−10 is closed and convex; see [17].

Let E be a smooth Banach space, let C be a nonempty, closed and convex subset
of E and let θ be a real number with θ ≠ 0. Then a mapping U : C → E with
F (U) ̸= ∅ is called generalized demimetric [8] if it satisfies (1.1), i.e.,

θ⟨x− q, J(x− Ux)⟩ ≥ ∥x− Ux∥2

for all x ∈ C and q ∈ F (U), where J is the duality mapping on E.
Let η be a real number with η ∈ (−∞, 1). Then a mapping U : C → E with

F (U) ̸= ∅ is called η-demimetric [21] if, for any x ∈ C and q ∈ F (U),

⟨x− q, J(x− Ux)⟩ ≥ 1− η

2
∥x− Ux∥2,

where F (U) is the set of fixed points of U .

Examples 2.5. We know examples of generalized demimetric mappings.

(1) Let H be a Hilbert space, let C be a nonempty, closed and convex subset
of H and let t be a real number with 0 ≤ t < 1. A mapping U : C → H is
called a t-strict pseudo-contraction [4] if

∥Ux− Uy∥2 ≤ ∥x− y∥2 + t∥x− Ux− (y − Uy)∥2

for all x, y ∈ C. If U is a t-strict pseudo-contraction and F (U) ̸= ∅, then U
is 2

1−t -generalized demimetric; see [8].

(2) Let H be a Hilbert space and let C be a nonempty, closed and convex subset
of H. A mapping U : C → H is called generalized hybrid [9] if there exist
α, β ∈ R such that

(2.6) α∥Ux− Uy∥2 + (1− α)∥x− Uy∥2 ≤ β∥Ux− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. Such a mapping U is called (α, β)-generalized hybrid. If U
is generalized hybrid and F (U) ̸= ∅, then U is 2-generalized demimetric. In
fact, setting x = u ∈ F (U) and y = x ∈ C in (2.6), we have that

α∥u− Ux∥2 + (1− α)∥u− Ux∥2 ≤ β∥u− x∥2 + (1− β)∥u− x∥2

and hence ∥Ux− u∥2 ≤ ∥x− u∥2. From

∥Ux− u∥2 = ∥Ux− x∥2 + ∥x− u∥2 + 2⟨Ux− x, x− u⟩,
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we have that

2⟨x− u, x− Ux⟩ ≥ ∥x− Ux∥2

for all x ∈ C and u ∈ F (U). This means that U is 2-generalized demi-
metric. Notice that the class of generalized hybrid mappings covers several
well-known mappings. For example, a (1,0)-generalized hybrid mapping is
nonexpansive. It is nonspreading [10, 11] for α = 2 and β = 1, i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

It is also hybrid [19] for α = 3
2 and β = 1

2 , i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous; see [7].
(3) Let E be a strictly convex, reflexive and smooth Banach space and let C be

a nonempty, closed and convex subset of E. Let PC be the metric projection
of E onto C. Then PC is 1-generalized demimetric; see [8].

(4) Let E be a uniformly convex and smooth Banach space and let B be a
maximal monotone operator with B−10 ̸= ∅. Let λ > 0. Then the metric
resolvent Jλ is 1-generalized demimetric; see [8].

(5) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of
H and let T be a mapping from C into H. Suppose that T is Lipschitzian,
that is, there exists L > 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥

for all x, y ∈ C. Let S = (L+1)I−T . If F (TL ), then S is (−2L)-generalized
demimetric; see [8, 24].

(6) Let H be a Hilbert space, let C be a nonempty, closed and convex subset
of H and let α > 0. If B be an α-inverse strongly monotone mapping from
C into H with B−10 ̸= ∅, then T = I +B is

(
− 1

α

)
-generalized demimetric;

see [8, 24].

The following lemmas are important and crucial in the proofs of our main results.

Lemma 2.6 ([8]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E. If a mapping U : C → E
is θ-generalized demimetric and θ > 0, then U is

(
1− 2

θ

)
-demimetric.

Lemma 2.7 ([8]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E. Let θ be a real number
with θ ̸= 0. Let T be a θ-generalized demimetric mapping of C into E. Then F (T )
is closed and convex.

Lemma 2.8 ([8]). Let E be a smooth, strictly convex and reflexive Banach space,
let C be a nonempty, closed and convex subset of E and let θ be a real number with
θ ̸= 0. Let T be a θ-generalized demimetric mapping from C into E and let k ∈ R
with k ̸= 0. Then (1− k)I + kT is θk-generalized demimetric from C into E.

We also know the following lemma from [26]:
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Lemma 2.9 ([26]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let k ∈ (−∞, 1) and let T be a k-demimetric mapping of C
into H such that F (T ) is nonempty. Let λ be a real number with 0 < λ ≤ 1−k and
define S = (1− λ)I + λT . Then S is a quasi-nonexpansive mapping of C into H.

We also know the following lemmas:

Lemma 2.10 ([2], [29]). Let {sn} be a sequence of nonnegative real numbers, let
{αn} be a sequence in [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of nonneg-

ative real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real numbers
with lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, . . . . Then limn→∞ sn = 0.

Lemma 2.11 ([13]). Let {Γn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {Γni} of {Γn} which satisfies
Γni < Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},
where n0 ∈ N satisfies {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n) → ∞;
(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

3. Strong convergence theorem

In this section, using the idea of Halpern iteration, we prove a strong convergence
theorem of finding a solution of the split common fixed point problem for families
of generalized demimetric mappings in Banach spaces. Let E be a Banach space,
let C be a nonempty, closed and convex subset of E and let {Un} be a sequence
of mappings of C into E such that ∩∞

n=1F (Un) ̸= ∅. The sequence {Un} is said
to satisfy the condition (I) [1] if for any bounded sequence {zn} of C such that
limn→∞ ∥zn − Unzn∥ = 0, every weak cluster point of {zn} belongs to ∩∞

n=1F (Un).

Theorem 3.1. Let H be a Hilbert space and let F be a smooth, strictly convex and
reflexive Banach space. Let JF be the duality mapping on F . Let {θn} and {τn}
be sequences of real numbers with θn, τn ̸= 0 and let {kn} and {hn} be sequences
of real numbers with θnkn > 0 and τnhn > 0, respectively. Let {Sn} be a sequence
of θn-generalized demimetric mappings of H to H with ∩∞

n=1F (Sn) ̸= ∅ satisfying
the condition (I) and let {Tn} be a sequence of τn-generalized demimetric mappings
of F to F with ∩∞

n=1F (Tn) ̸= ∅ satisfying the condition (I). Let A : H → F be a
bounded linear operator such that A ̸= 0. Suppose that

G := ∩∞
n=1F (Sn) ∩A−1 ∩∞

n=1 F (Tn) ̸= ∅.
Let {un} be a sequence in H such that un → u. For x1 = x ∈ H, let {xn} ⊂ H be
a sequence generated by{

yn =
(
(1− λn)I + λnSn

)(
xn − rnhnA

∗JF (I − Tn)Axn
)
,

xn+1 = αnun + (1− αn)
(
βnxn + (1− βn)yn

)
, ∀n ∈ N,
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where a, b, c, d, e, f, g, λ0 ∈ R, {αn}, {βn} ⊂ [0, 1], {rn} ⊂ (0,∞) and {λn}, {kn},
{hn} ⊂ R satisfy the following:

0 < a ≤ βn ≤ b < 1, 0 < c ≤ |hn| ≤ d, lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞,

0 < e ≤ rn ≤ f < g ≤ 2

τnhn∥A∥2
, 0 <

λn

kn
≤ 2

θnkn
and 0 < λ0 ≤ |λn|

for all n ∈ N. Then {xn} converges strongly to a point z0 ∈ G, where z0 = PGu.

Proof. Since Sn : H → H is θn-generalized demimetric, F (Sn) is closed and convex
from Lemms 2.7. Then ∩∞

n=1F (Sn) is closed and convex. Since Tn : F → F is
τn-generalized demimetric, we also have from Lemma 2.7 that F (Tn) is closed and
convex. Since A : H → F is linear and continuous, A−1 ∩∞

n=1 F (Tn) is closed and
convex. Then G is nonempty, closed and convex. Since G is nonempty, closed and
convex, the metric projection PG of H onto G is well-defined.

Since Tn : F → F is τn-generalized demimetric, we have from Lemma 2.8 that
(1−hn)I+hnTn is τnhn-generalized demimetric. Since Sn : H → H is θn-generalized
demimetric, we also have from Lemma 2.8 that (1−kn)I+knSn is θnkn-generalized
demimetric. Furthermore, from Lemma 2.6 and θnkn > 0, we have that (1 −
kn)I + knSn is

(
1− 2

θnkn

)
-demimetric in the sense of [21]. Since 0 < λn

kn
≤ 2

θnkn
=

1−
(
1− 2

θnkn

)
and

(1− λn)I + λnSn =

(
1− λn

kn

)
I +

λn

kn
((1− kn)I + knSn),

we have from Lemma 2.9 that (1− λn)I + λnSn is quasi-nonexpansive.
Let z ∈ G. We have that z = Snz and Az − TnAz = 0. Furthermore, putting

zn = (I − rnhnA
∗JF (I − Tn)A)xn and

yn = ((1− λn)I + λnSn)(I − rnhnA
∗JF (I − Tn)A)xn

for all n ∈ N, we have from τnhn > 0 that for all z ∈ G and n ∈ N,
∥yn − z∥2 = ∥((1− λn)I + λnSn)zn − ((1− λn)I + λnSn)z∥2

≤ ∥xn − rnhnA
∗JF (I − Tn)Axn − z∥2

= ∥xn − z − rnhnA
∗JF (I − Tn)Axn∥2

≤ ∥xn − z∥2 − 2rnhn⟨Axn −Az, JF (I − Tn)Axn⟩

+ r2nh
2
n∥A∥2 ∥(I − Tn)Axn∥2

= ∥xn − z∥2 − 2rn⟨Axn −Az, JF (I − ((1− hn)I + hnTn)Axn⟩(3.1)

+ r2nh
2
n∥A∥2 ∥(I − Tn)Axn∥2

≤ ∥xn − z∥2 − 2rn
1

τnhn
∥Axn − ((1− hn)I + hnTn)Axn∥2

+ r2nh
2
n∥A∥2 ∥(I − Tn)Axn∥2

= ∥xn − z∥2 − 2rnh
2
n

1

τnhn
∥Axn − TnAxn∥2 + r2nh

2
n∥A∥2 ∥(I − Tn)Axn∥2
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= ∥xn − z∥2 + rnh
2
n(rn∥A∥2 − 2

τnhn
) ∥(I − Tn)Axn∥2 .

From 0 < e ≤ rn ≤ f < g ≤ 2
τnhn∥A∥2 we have that

(3.2) ∥yn − z∥ ≤ ∥xn − z∥
for all n ∈ N.

Put sn = βnxn + (1 − βn)((1 − λn)I + λnSn)(xn − rnhnA
∗JF (I − Tn)Axn). We

have from (2.2) and (3.2) that

∥sn − z∥2 = ∥βn(xn − z) + (1− βn)(yn − z)∥2

= βn∥xn − z∥2 + (1− βn)∥yn − z∥2 − βn(1− βn)∥xn − yn∥2

≤ βn ∥xn − z∥2 + (1− βn) ∥xn − z∥2 − βn(1− βn)∥xn − yn∥2(3.3)

= ∥xn − z∥2 − βn(1− βn)∥xn − yn∥2

= ∥xn − z∥2 .
Using this, we get that

∥xn+1 − z∥ = ∥αn(un − z) + (1− αn)(sn − z)∥
≤ αn ∥un − z∥+ (1− αn) ∥sn − z∥
≤ αn ∥un − z∥+ (1− αn) ∥xn − z∥ .

Since {un} is bounded, there exists M > 0 such that supn∈N ∥un−z∥ ≤ M . Putting
K = max{∥x1 − z∥,M}, we have that ∥xn − z∥ ≤ K for all n ∈ N. In fact, it is
obvious that ∥x1 − z∥ ≤ K. Suppose that ∥xj − z∥ ≤ K for some j ∈ N. Then we
have that

∥xj+1 − z∥ ≤ αj∥uj − z∥+ (1− αj)∥xj − z∥
≤ αjK + (1− αj)K = K.

By induction, we obtain that ∥xn − z∥ ≤ K for all n ∈ N. Then {xn} is bounded.
Furthermore, {Axn}, {yn} and {sn} are also bounded.

Take z0 = PGu. Since yn = ((1 − λn)I + λnSn)(I − rnhnA
∗JF (I − Tn)A)xn, we

have from (3.3) that

∥xn+1 − z0∥2 = ∥αn(un − z0) + (1− αn)(sn − z0)∥2

≤ αn ∥un − z0∥2 + (1− αn) ∥sn − z0∥2

≤ αn ∥un − z0∥2

+ (1− αn)(∥xn − z0∥2 − βn(1− βn)∥xn − yn∥2)

≤ αn ∥un − z0∥2 + ∥xn − z0∥ − βn(1− βn)∥xn − yn∥2.
Using this, we have that

(3.4) βn(1− βn)∥xn − yn∥2 ≤ αn ∥un − z0∥2 + ∥xn − z0∥2 − ∥xn+1 − z0∥2 .
Onthe other hand, we have that

xn+1 − xn = αnun + (1− αn){βnxn + (1− βn)yn} − xn

= αn(un − xn) + (1− αn){βnxn + (1− βn)yn − xn}
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= αn(un − xn) + (1− αn){(1− βn)yn − (1− βn)xn}
= αn(un − xn) + (1− αn)(1− βn)(yn − xn)

and hence

(3.5) ∥xn+1 − xn∥ ≤ αn∥un − xn∥+ (1− αn)(1− βn)∥yn − xn∥.
We will divide the proof into two cases.

Case 1: Set Γn = ∥xn − z0∥2 for all n ∈ N. Suppose that there exists a natural
number N such that Γn+1 ≤ Γn for all n ≥ N . In this case, limn→∞ Γn exists and
then limn→∞(Γn+1 − Γn) = 0. Using limn→∞ αn = 0 and 0 < a ≤ βn ≤ b < 1, we
have from (3.4) that

(3.6) lim
n→∞

∥yn − xn∥ = 0.

From (3.5) we have that

(3.7) lim
n→∞

∥xn+1 − xn∥ = 0.

We also have that

∥xn+1 − sn∥ = ∥αnun + (1− αn)sn − sn∥(3.8)

= αn∥un − sn∥ → 0.

Furthermore, using ∥sn − yn∥ ≤ βn∥yn − xn∥ → 0, we have that

(3.9) lim
n→∞

∥xn+1 − yn∥ = 0.

We show that lim supn→∞⟨u− z0, yn − z0⟩ ≤ 0, where z0 = PGu. Put

l = lim sup
n→∞

⟨u− z0, yn − z0⟩.

Without loss of generality, there exists a subsequence {yni} of {yn} such that l =
limi→∞⟨u − z0, yni − z0⟩ and {yni} converges weakly to some point w ∈ H. From
∥xn − yn∥ → 0, {xni} converges weakly to w ∈ H. On the other hand, from (3.1)
we have that

rnh
2
n(

2

τnhn
− rn∥A∥2) ∥(I − Tn)Axn∥2 ≤ ∥xn − z∥2 − ∥yn − z∥2

= (∥xn − z∥ − ∥yn − z∥)(∥xn − z∥+ ∥yn − z∥)(3.10)

≤ ∥xn − yn∥ (∥xn − z∥+ ∥yn − z∥).
Then we get from ∥xn − yn∥ → 0 that

(3.11) lim
n→∞

∥Axn − TnAxn∥ = 0.

Since {xni} converges weakly to w ∈ H and A is bounded and linear, we also have
that {Axni} converges weakly to Aw. Using limn→∞ ∥Axn−TnAxn∥ = 0 and {Tn}
satisfies the condition (I), we have Aw ∈ ∩∞

n=1F (Tn) and hence w ∈ A−1∩∞
n=1F (Tn).

We also prove w ∈ ∩∞
n=1F (Sn). We have that

∥zn − yn∥ = ∥zn − ((1− λn)I + λnSn)zn∥
= ∥λn(zn − Snzn)∥(3.12)

≥ λ0∥zn − Snzn∥.
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Furthemore, from zn = xn − rnhnA
∗JF (Axn − TnAxn), we have that

∥zn − yn∥ = ∥xn − rnhnA
∗JF (Axn − TnAxn)− yn∥

≤ ∥xn − yn∥+ |rnhn|∥A∥∥JF (Axn − TnAxn)∥
= ∥xn − yn∥+ |rnhn|∥A∥∥Axn − TnAxn∥
≤ ∥xn − yn∥+ f · d|∥A∥∥Axn − TnAxn∥.

Then we have from (3.6) and (3.11) that ∥zn− yn∥ → 0. Using (3.12), we have that

(3.13) lim
n→∞

∥zn − Snzn∥ = 0.

Since ∥zn − xn∥ → 0 from ∥zn − xn∥ = ∥rnhnA∗JF (Axn − TnAxn)∥ → 0, we also
have that {zni} converges weakly to w. Since {Sn} satisfies the condition (I), we
have that w ∈ ∩∞

n=1F (Sn). This implies that w ∈ G. Since {yni} converges weakly
to w ∈ G, we have that

l = lim
i→∞

⟨u− z0, yni − z0⟩ = ⟨u− z0, w − z0⟩ ≤ 0.

On the other hand, we have from (2.1) that

∥xn+1 − z0∥2 = ∥αn(un − z0) + (1− αn)(sn − z0)∥2

≤ (1− αn)
2 ∥sn − z0∥2 + 2αn⟨un − z0, xn+1 − z0⟩

≤ (1− αn) ∥xn − z0∥2 + 2αn⟨un − z0, xn+1 − z0⟩

= (1− αn) ∥xn − z0∥2

+ 2αn

(
⟨un − u, xn+1 − z0⟩+ ⟨u− z0, xn+1 − z0⟩

)
= (1− αn) ∥xn − z0∥2

+ 2αn

(
⟨un − u, xn+1 − z0⟩+ ⟨u− z0, xn+1 − yn⟩

+ ⟨u− z0, yn − z0⟩
)
.

Since
∑∞

n=1 αn = ∞, by un → u, (3.9) and Lemma 2.10 we obtain that xn → z0.
Case 2: Suppose that there exists a subsequence {Γni} of the sequence {Γn} such

that Γni < Γni+1 for all i ∈ N. In this case, we define τ : N → N by

τ(n) = max{k ≤ n : Γk < Γk+1}.

Then we have from Lemma 2.11 that Γτ(n) ≤ Γτ(n)+1. Thus we have from (3.4)
that for all n ∈ N,

βτ(n)(1−βτ(n))∥xτ(n) − yτ(n)∥2(3.14)

≤ ατ(n)

∥∥uτ(n) − z0
∥∥2 + ∥xτ(n) − z0∥2 −

∥∥xτ(n)+1 − z0
∥∥2 .

Using limn→∞ αn = 0 and 0 < a ≤ βn ≤ b < 1, we have from (3.14) that

(3.15) lim
n→∞

∥yτ(n) − xτ(n)∥ = 0.

As in the proof of Case 1 we have that

(3.16) lim
n→∞

∥xτ(n)+1 − xτ(n)∥ = 0.
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and

(3.17) lim
n→∞

∥xτ(n)+1 − sτ(n)∥ = 0.

Using ∥sτ(n) − yτ(n)∥ ≤ βτ(n)∥yτ(n) − xτ(n)∥ → 0, we have that

(3.18) lim
n→∞

∥xτ(n)+1 − yτ(n)∥ = 0.

For z0 = PGu, let us show that lim supn→∞⟨z0 − u, yτ(n) − z0⟩ ≥ 0. Put

l = lim sup
n→∞

⟨z0 − u, yτ(n) − z0⟩.

Without loss of generality, there exists a subsequence {yτ(ni)} of {yτ(n)} such that
l = limi→∞⟨z0 − u, yτ(ni) − z0⟩ and {yτ(ni)} converges weakly to some point w ∈ H.
From ∥yτ(n) − xτ(n)∥ → 0, {xτ(ni)} converges weakly to w ∈ H. As in the proof of
Case 1 we have that w ∈ G. Then we have

(3.19) l = lim
i→∞

⟨z0 − u, yτ(ni) − z0⟩ = ⟨z0 − u,w − z0⟩ ≥ 0.

As in the proof of Case 1, we also have that∥∥xτ(n)+1 − z0
∥∥2 = ∥∥ατ(n)(uτ(n) − z0) + (1− ατ(n))(sτ(n) − z0)

∥∥2
≤ (1− ατ(n))

2
∥∥sτ(n) − z0

∥∥2
+ 2ατ(n)⟨uτ(n) − z0, xτ(n)+1 − z0⟩

≤ (1− ατ(n))
∥∥xτ(n) − z0

∥∥2
+ 2ατ(n)⟨uτ(n) − z0, xτ(n)+1 − z0⟩.

From Γτ(n) ≤ Γτ(n)+1, we have that

ατ(n)

∥∥xτ(n) − z0
∥∥2 ≤ 2ατ(n)⟨uτ(n) − z0, xτ(n)+1 − z0⟩.

Since ατ(n) > 0, we have that∥∥xτ(n) − z0
∥∥2 ≤ 2⟨uτ(n) − z0, xτ(n)+1 − z0⟩

= 2
(
⟨uτ(n) − u, xτ(n)+1 − z0⟩

+ ⟨u− z0, xτ(n)+1 − yτ(n)⟩+ ⟨u− z0, yτ(n) − z0⟩
)
.

Using uτ(n) → u, (3.18) and (3.19), we have that

lim sup
n→∞

∥∥xτ(n) − z0
∥∥2 ≤ 0

and hence ∥xτ(n) − z0∥ → 0. From (3.16), we have also that xτ(n) − xτ(n)+1 → 0.
Thus ∥xτ(n)+1 − z0∥ → 0 as n → ∞. Using Lemma 2.11 again, we obtain that

∥xn − z0∥ ≤ ∥xτ(n)+1 − z0∥ → 0

as n → ∞. This completes the proof. □
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4. Weak convergence theorem

In this section, using the idea of Mann iteration, we prove a weak convergence
theorem of finding a solution of the split common fixed point problem for families
of generalized demimetric mappings in Banach spaces.

Theorem 4.1. Let H be a Hilbert space and let F be a smooth, strictly convex and
reflexive Banach space. Let JF be the duality mapping on F . Let {θn} and {τn}
be sequences of real numbers with θn, τn ̸= 0 and let {kn} and {hn} be sequences
of real numbers with θnkn > 0 and τnhn > 0, respectively. Let {Sn} be a sequence
of θn-generalized demimetric mappings of H to H with ∩∞

n=1F (Sn) ̸= ∅ satisfying
the condition (I) and let {Tn} be a sequence of τn-generalized demimetric mappings
of F to F with ∩∞

n=1F (Tn) ̸= ∅ satisfying the condition (I). Let A : H → F be a
bounded linear operator such that A ̸= 0. Suppose that

G := ∩∞
n=1F (Sn) ∩A−1 ∩∞

n=1 F (Tn) ̸= ∅.
For any x1 = x ∈ H, define

xn+1 = βnxn + (1− βn)((1− λn)I + λnSn)
(
xn − rnhnA

∗JF (Axn − TnAxn)
)

for all n ∈ N, where a, b, c, d, e, f, g, λ0 ∈ R, {βn} ⊂ [0, 1], {rn} ⊂ (0,∞) and
{λn}, {kn}, {hn} ⊂ R satisfy the following:

0 < a ≤ βn ≤ b < 1, 0 < c ≤ |hn| ≤ d,

0 < e ≤ rn ≤ f < g ≤ 2

τnhn∥A∥2
, 0 <

λn

kn
≤ 2

θnkn
and 0 < λ0 ≤ |λn|

for all n ∈ N. Then {xn} converges weakly to z0 ∈ G, where z0 = limn→∞ PGxn.

Proof. As in the proof of Theorem 3.1, G is nonempty, closed and convex and hence
the metric projection PG of H onto G is well-defined.

Let z ∈ G = ∩∞
n=1F (Sn) ∩ A−1 ∩∞

n=1 F (Tn). Then we have that z = Snz and
Az − TnAz = 0. Putting zn = xn − rnhnA

∗JF (Axn − TnAxn) and

yn = ((1− λn)I + λnSn)
(
xn − rnhnA

∗JF (Axn − TnAxn)
)

for all n ∈ N, as in the proof of Theorem 3.1, we have that

∥yn − z∥2 = ∥((1− λn)I + λnSn)zn − ((1− λn)I + λnSn)z∥2

≤ ∥xn − rnhnA
∗JF (Axn − TnAxn)− z∥2

= ∥xn − z − rnhnA
∗JF (Axn − TnAxn)∥2(4.1)

= ∥xn − z∥2 − 2⟨xn − z, rnhnA
∗JF (Axn − TnAxn)⟩

+ ∥rnhnA∗JF (Axn − TnAxn)∥2

≤ ∥xn − z∥2 + rnh
2
n(rn∥A∥2 − 2

τnhn
)∥Axn − TnAxn∥2.

From 0 < e ≤ rn ≤ f < g ≤ 2
τnhn∥A∥2 we have that

∥yn − z∥ ≤ ∥xn − z∥
for all n ∈ N and hence

∥xn+1 − z∥ = ∥βnxn + (1− βn)yn − z∥
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≤ βn ∥xn − z∥+ (1− βn) ∥yn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥xn − z∥
≤ ∥xn − z∥ .

Then limn→∞ ∥xn − z∥ exists. Thus {xn}, {Axn} and {yn} are bounded. Using the
equality (2.2), we have that for n ∈ N and z ∈ G

∥xn+1 − z∥2 = ∥βnxn + (1− βn)yn − z∥2

= βn ∥xn − z∥2 + (1− βn) ∥yn − z∥2 − βn(1− βn) ∥xn − yn∥2

≤ βn ∥xn − z∥2 + (1− βn) ∥xn − z∥2

+ (1− βn)rnh
2
n(rn∥A∥2 − 2

τnhn
)∥Axn − TnAxn∥2

− βn(1− βn) ∥xn − yn∥2

= ∥xn − z∥2 + (1− βn)rnh
2
n(rn∥A∥2 − 2

τnhn
)∥Axn − TnAxn∥2

− βn(1− βn) ∥xn − yn∥2 .

Therefore, we have that βn(1− βn) ∥xn − yn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 and

(1− βn)rnh
2
n(

2

τnhn
− rn∥A∥2)∥Axn − TnAxn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 .

Using 0 < a ≤ βn ≤ b < 1, 0 < c ≤ |hn| ≤ d and

0 < e ≤ rn ≤ f < g ≤ 2

τnhn∥A∥2
,

we have that

(4.2) lim
n→∞

∥xn − yn∥2 = 0 and lim
n→∞

∥Axn − TnAxn∥2 = 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} converging weakly
to w. Since A is bounded and linear, we also have that {Axni} converges weakly to
Aw. Using limn→∞ ∥Axn−TnAxn∥ = 0 and {Tn} satisfies the condition (I), we have
Aw ∈ ∩∞

n=1F (Tn) and hence w ∈ A−1 ∩∞
n=1 F (Tn). We also prove w ∈ ∩∞

n=1F (Sn).
As in the proof of Theorem 3.1, we have that

(4.3) ∥zn − yn∥ = ∥zn − ((1− λn)I + λnSn)zn∥ ≥ λ0∥zn − Snzn∥.

Furthemore, from zn = xn − rnhnA
∗JF (Axn − TnAxn), we have that

∥zn − yn∥ = ∥xn − rnhnA
∗JF (Axn − TnAxn)− yn∥

≤ ∥xn − yn∥+ f · d∥A∥∥Axn − TnAxn∥.

Then we have from (4.2) that ∥zn − yn∥ → 0. Using (4.3), we have that

(4.4) lim
n→∞

∥zn − Snzn∥ = 0.

Since ∥zn − xn∥ → 0 from ∥zn − xn∥ = ∥rnhnA∗JF (Axn − TnAxn)∥ → 0, we also
have that {zni} converges weakly to w. Since {Sn} satisfies the condition (I), we
have that w ∈ ∩∞

n=1F (Sn). This implies that w ∈ G.
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We next show that if xni ⇀ x∗ and xnj ⇀ y∗, then x∗ = y∗. We know x∗, y∗ ∈ G
and hence limn→∞ ∥xn − x∗∥ and limn→∞ ∥xn − y∗∥ exist. Suppose x∗ ̸= y∗. Since
H satisfies Opial’s condition, we have that

lim
n→∞

∥xn−x∗∥ = lim
i→∞

∥xni − x∗∥ < lim
i→∞

∥xni − y∗∥

= lim
n→∞

∥xn − y∗∥ = lim
j→∞

∥xnj − y∗∥

< lim
j→∞

∥xnj − x∗∥ = lim
n→∞

∥xn − x∗∥.

This is a contradiction. Then we have x∗ = y∗. Therefore, xn ⇀ x∗ ∈ G. Moreover,
since for any z ∈ G

∥xn+1 − z∥ ≤ ∥xn − z∥ , ∀n ∈ N,
we have from Lemma 2.1 that PGxn → z0 for some z0 ∈ G. The property of metric
projection implies that

⟨x∗ − PGxn, xn − PGxn⟩ ≤ 0.

Therefore, we have that ∥x∗ − z0∥2 = ⟨x∗−z0, x
∗−z0⟩ ≤ 0. This means that x∗ = z0.

Therefore, xn ⇀ z0, where z0 = limn→∞ PGxn. □

5. Applications

In this section, using Theorems 3.1 and 4.1, we get well-known and new strong
and weak convergence theorems which are connected with the split common fixed
point problem in Hilbert spaces and Banach spaces. We know the following result
obtained by Kocourek, Takahashi and Yao [9]; see also [28].

Lemma 5.1 ([9, 28]). Let H be a Hilbert space, let C be a nonempty, closed and
convex subset of H and let U : C → H be generalized hybrid. If xn ⇀ z and
xn − Uxn → 0, then z ∈ F (U).

Using Lemma 5.1, we have the following result.

Lemma 5.2. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let S, T : C → H be generalized hybrid mappings such that F (S) ∩
F (T ) ̸= ∅ and let {γn} be a sequence of real numbers. Assume that there exist
a, b ∈ R such that 0 < a ≤ γn ≤ b < 1 for all n ∈ N. If Tn = γnS + (1 − γn)T for
all n ∈ N, then ∩∞

n=1F (Tn) = F (S) ∩ F (T ) and {Tn} satisfies the condition (I).

Proof. Since S and T are generalized hybrid mappings and F (S) ∩ F (T ) ̸= ∅, S
and T are quasi-nonexpansive mappings. Using this, we have from (2.2) that, for
z0 ∈ F (S) ∩ F (T ), z ∈ ∩∞

n=1F (Tn) and n ∈ N,
∥z − z0∥2 = ∥Tnz − z0∥2

= ∥(γnS + (1− γn)T )z − z0∥2

= ∥γn(Sz − z0) + (1− γn)(Tz − z0)∥2

= γn∥Sz − z0∥2 + (1− γn)∥Tz − z0∥2 − γn(1− γn)∥Sz − Tz∥2

≤ γn∥z − z0∥2 + (1− γn)∥z − z0∥2 − γn(1− γn)∥Sz − Tz∥2

= ∥z − z0∥2 − γn(1− γn)∥Sz − Tz∥2.
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This means that γn(1−γn)∥Sz−Tz∥2 ≤ 0. Since 0 < a ≤ γn ≤ b < 1 for all n ∈ N,
we have Sz = Tz. Since

∥Sz − z∥ = ∥γnSz + (1− γn)Sz − z∥
= ∥γnSz + (1− γn)Tz − z∥
= ∥(γnS + (1− γn)T )z − z∥
= ∥z − z∥
= 0,

we have that Sz = z. Similarly, we have that Tz = z. This implies that ∩∞
n=1F (Tn) ⊂

F (S) ∩ F (T ). It is obvious that F (S) ∩ F (T ) ⊂ ∩∞
n=1F (Tn). Thus ∩∞

n=1F (Tn) =
F (S) ∩ F (T ).

Suppose that {zn} is a bounded sequence such that zn − Tnzn → 0. Then we
have from (2.1) and (2.2) that, for z ∈ ∩∞

n=1F (Tn),

∥zn − z∥2 = ∥zn − Tnzn + Tnzn − z∥2

≤ ∥Tnzn − z∥2 + 2⟨zn − Tnzn, zn − z⟩
= ∥γnSzn + (1− γn)Tzn − z∥2 + 2⟨zn − Tnzn, zn − z⟩
= γn∥Szn − z∥2 + (1− γn)∥Tzn − z∥2

− γn(1− γn)∥Szn − Tzn∥2 + 2⟨zn − Tnzn, zn − z⟩
≤ γn∥zn − z∥2 + (1− γn)∥zn − z∥2

− γn(1− γn)∥Szn − Tzn∥2 + 2⟨zn − Tnzn, zn − z⟩
= ∥zn − z∥2 − γn(1− γn)∥Szn − Tzn∥2 + 2⟨zn − Tnzn, zn − z⟩

and hence
γn(1− γn)∥Szn − Tzn∥2 ≤ 2⟨zn − Tnzn, zn − z⟩.

Since zn−Tnzn → 0 and {zn} is bounded, we have that Szn−Tzn → 0. Using this,
we have that

∥zn − Szn∥ = ∥zn − Tnzn + Tnzn − Szn∥
≤ ∥zn − Tnzn∥+ ∥Tnzn − Szn∥
= ∥zn − Tnzn∥+ (1− γn)∥Tzn − Szn∥
→ 0.

If a subsequence {zni} of {zn} converges weakly to w, then we have from Lemma
5.1 and zn−Szn → 0 that w ∈ F (S). Similarly, w ∈ F (T ). Thus every weak cluster
point {zn} belongs to F (S) ∩ F (T ) = ∩∞

n=1F (Tn). This completes the proof. □
Using Theorem 3.1, we get the following strong convergence theorems in Hilbert

spaces and Banach spaces.

Theorem 5.3. Let H1 and H2 be Hilbert spaces. Let S, T : H1 → H1 be nonex-
pansive mappings with F (S) ∩ F (T ) ̸= ∅ and let U, V : H2 → H2 be nonspreading
mappings with F (U) ∩ F (V ) ̸= ∅. Let {γn} and {δn} be sequences of real num-
bers. Assume that there exists s, t, u, v ∈ R such that 0 < s ≤ γn ≤ t < 1 and
0 < u ≤ δn ≤ v < 1 for all n ∈ N. Let A : H1 → H2 be a bounded linear operator
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such that A ̸= 0. Suppose that G := F (S) ∩ F (T ) ∩ A−1(F (U) ∩ F (V )) ̸= ∅. Let
{un} be a sequence in H1 such that un → u. For x1 = x ∈ H1, let {xn} ⊂ H1 be a
sequence generated by{

yn =
(
γnS + (1− γn)T

)(
xn − rnA

∗(Axn − (δnU + (1− δn)V )Axn)
)
,

xn+1 = αnun + (1− αn)
(
βnxn + (1− βn)yn

)
, ∀n ∈ N,

where a, b, e, f ∈ R, {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy the following:

0 < a ≤ βn ≤ b < 1, lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞

and 0 < e ≤ rn ≤ f <
1

∥A∥2

for all n ∈ N. Then {xn} converges strongly to a point z0 ∈ G, where z0 = PGu.

Proof. Since S and T are nonexpansive mappings of H1 into H1, S and T are
generalized hybrid. Since U and V are nonspreading mappings of H2 into H2, S
and T are also generalized hybrid. From F (S) ∩ F (T ) ̸= ∅ and F (U) ∩ F (V ) ̸= ∅,
Sn = γnS + (1− γn)T and Tn = δnU + (1− δ)V are quasi-nonexpansive mappings
and hence they are 2-generalized demimetric mappings. Furthermore, {Sn} and
{Tn} satisfy the condition (I) from Lemma 5.2. Putting kn = 1, hn = 1 and λn = 1
in Theorem 3.1, we obtain the desired result from Theorem 3.1. □

Theorem 5.4. Let H be a Hilbert space and let F be a uniformly convex and
smooth Banach space. Let JF be the duality mapping on F . Let G and B be
maximal monotone operators of H into H and F into F ∗, respectively. Let Jν be
the resolvent of G for ν > 0 and let Qµ be the metric resolvent of B for µ > 0,
respectively. Let A : H → F be a bounded linear operator such that A ̸= 0 and let
A∗ be the adjoint operator of A. Suppose that G−10 ∩A−1(B−10) ̸= ∅. Let {un} be
a sequence in H such that un → u. For x1 = x ∈ H, let {xn} ⊂ H be a sequence
generated by

xn+1 = αnun + (1− αn)
(
βnxn + (1− βn)Jνn(xn − rnA

∗JF (I −Qµn)Axn)
)

for all n ∈ N, where a, b, e, f, λ0 ∈ R, {αn}, {βn} ⊂ [0, 1] and {rn}, {νn}, {µn} ⊂
(0,∞) satisfy the following:

0 < a ≤ βn ≤ b < 1, 0 < λ0 ≤ νn, µn, lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞ and 0 < e ≤ rn ≤ f <
2

∥A∥2

for all n ∈ N. Then {xn} converges strongly to a point z0 ∈ G−10 ∩ A−1(B−10),
where z0 = PG−10∩A−1(B−10)u.

Proof. Since Qµn is the metric resolvent of B for µn > 0, from (4) in Examples,
Qµn is 1-generalized demimetric. We also have that if {zn} is a bounded sequence
in F such that zn − Qµnzn → 0, then every weak cluster point of {zn} belongs to
B−10 = ∩∞

n=1F (Qµn). In fact, suppose that {zni} is a subsequence of {zn} such
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that zni ⇀ p and zn −Qµnzn → 0. Since Qµn is the metric resolvent of B, we have
that

JF (zn −Qµnzn)/µn ∈ BQµnzn

for all n ∈ N. From the monotonicity of B, we have

0 ≤ ⟨u−Qµni
zni , v

∗ −
JF (zni −Qµni

zni)

µni

⟩

for all (u, v∗) ∈ B and i ∈ N. Taking the limit i → ∞, we conclude that ⟨u −
p, v∗⟩ ≥ 0 for all (u, v∗) ∈ B. Since B is a maximal monotone operator, we have
p ∈ B−10 = ∩∞

n=1F (Qµn). This means that the family {Qµn} satisfies the condition
(I). Similarly, Jνn is 1-generalized demimetric and the family {Jνn} satisfies the
condition (I). Putting kn = 1, hn = 1 and λn = 1 in Theorem 3.1, we have the
desired result from Theorem 3.1. □

Theorem 5.5. Let H be a Hilbert space and let F be a smooth, strictly convex and
reflexive Banach space. Let JF be the duality mapping on F . Let {θn} and {τn}
be sequences of real numbers with θn, τn ∈ (−∞, 1). Let {Sn} be a sequence of θn-
demimetric mappings of H to H with ∩∞

n=1F (Sn) ̸= ∅ satisfying the condition (I)
and let {Tn} be a sequence of τn-demimetric mappings of F to F with ∩∞

n=1F (Tn) ̸=
∅ satisfying the condition (I). Let A : H → F be a bounded linear operator such that
A ̸= 0. Suppose that

G := ∩∞
n=1F (Sn) ∩A−1 ∩∞

n=1 F (Tn) ̸= ∅.

Let {un} be a sequence in H such that un → u. For x1 = x ∈ H, let {xn} ⊂ H be
a sequence generated by{

yn =
(
(1− λn)I + λnSn

)(
xn − rnA

∗JF (I − Tn)Axn
)
,

xn+1 = αnun + (1− αn)
(
βnxn + (1− βn)yn

)
, ∀n ∈ N,

where a, b, e, f, λ0 ∈ R, {αn}, {βn} ⊂ [0, 1], {rn} ⊂ (0,∞) and {λn} ⊂ R satisfy the
following:

0 < a ≤ βn ≤ b < 1, lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞,

0 < e ≤ rn ≤ f < g ≤ 1− τn
∥A∥2

and 0 < λ0 ≤ λn ≤ 1− θn

for all n ∈ N. Then {xn} converges strongly to a point z0 ∈ G, where z0 = PGu.

Proof. Since Sn is θn-demimetric, Sn is 2
1−θn

-generalized demimetric and 2
1−θn

> 0.

Similarly, Tn is 2
1−τn

-generalized demimetric and 2
1−τn

> 0. Putting kn = 1 and
hn = 1 in Theorem 3.1 and taking λn as 0 < λ0 ≤ λn ≤ 1− θn, we have the desired
result from Theorem 3.1. □

Using Theorem 4.1, we get the following weak convergence theorems in Hilbert
spaces and Banach spaces.

Theorem 5.6. Let H1 and H2 be Hilbert spaces. Let S, T : H1 → H1 be nonex-
pansive mappings with F (S) ∩ F (T ) ̸= ∅ and let U, V : H2 → H2 be nonspreading
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mappings with F (U) ∩ F (V ) ̸= ∅. Let {γn} and {δn} be sequences of real num-
bers. Assume that there exists s, t, u, v ∈ R such that 0 < s ≤ γn ≤ t < 1 and
0 < u ≤ δn ≤ v < 1 for all n ∈ N. Let A : H1 → H2 be a bounded linear operator
such that A ̸= 0. Suppose that G := F (S) ∩ F (T ) ∩A−1(F (U) ∩ F (V )) ̸= ∅.

For any x1 = x ∈ H1, define{
zn = xn − rnA

∗(Axn − (δnU + (1− δn)V )Axn),

xn+1 = βnxn + (1− βn)(γnS + (1− γn)T )zn, ∀n ∈ N,

where a, b, e, f ∈ R, {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy the following:

0 < a ≤ βn ≤ b < 1, lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞

and 0 < e ≤ rn ≤ f <
1

∥A∥2

for all n ∈ N. Then {xn} converges weakly to a point z0 ∈ F (S)∩F (T )∩A−1(F (U)∩
F (V )), where z0 = limn→∞ PF (T )∩A−1(F (U)∩F (V ))xn.

Theorem 5.7. Let H be a Hilbert space and let F be a uniformly convex and
smooth Banach space. Let JF be the duality mapping on F . Let G and B be
maximal monotone operators of H into H and F into F ∗, respectively. Let Jν be
the resolvent of G for ν > 0 and let Qµ be the metric resolvent of B for µ > 0,
respectively. Let A : H → F be a bounded linear operator such that A ̸= 0 and let
A∗ be the adjoint operator of A. Suppose that G−10 ∩ A−1(B−10) ̸= ∅. For any
x1 = x ∈ H, define

xn+1 = βnxn + (1− βn)Jνn
(
xn − rnA

∗JF (Axn −QµnAxn)
)

for all n ∈ N, where a, b, e, f, λ0 ∈ R, {αn}, {βn} ⊂ [0, 1] and {rn}, {νn}, {µn} ⊂
(0,∞) satisfy the following:

0 < a ≤ βn ≤ b < 1, 0 < λ0 ≤ νn, µn, lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞ and 0 < e ≤ rn ≤ f <
2

∥A∥2

for all n ∈ N. Then {xn} converges weakly to a point z0 ∈ G−10∩A−1(B−10), where
z0 = limn→∞ PG−10∩A−1(B−10)xn.

Theorem 5.8 ([27]). Let H be a Hilbert space, let F be a smooth, strictly convex and
reflexive Banach space and let JF be the duality mapping on F . Let {θn} and {ηn}
be sequences of real numbers with θn, ηn ∈ (−∞, 1). Let {λn} be a sequence of real
numbers such that for some λ0 ∈ R, 0 < λ0 ≤ λn ≤ 1− θn for all n ∈ N. Let {Tn}
be a sequence of θn-demimetric mappings of H to H with ∩∞

n=1F (Tn) ̸= ∅ satisfying
the condition (I) and let {Un} be a sequence of ηn-demimetric mappings of F to F
with ∩∞

n=1F (Un) ̸= ∅ satisfying the condition (I). Let A : H → F be a bounded linear
operator such that A ̸= 0. Suppose that G := ∩∞

n=1F (Tn) ∩ A−1 ∩∞
n=1 F (Un) ̸= ∅.

For any x1 = x ∈ H, define

xn+1 = βnxn + (1− βn)((1− λn)I + λnTn)
(
I − rnA

∗JF (A− UnA)
)
xn
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for all n ∈ N, where {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy the following:

0 < a ≤ βn ≤ b < 1 and 0 < c ≤ rn∥AA∗∥ ≤ d < e ≤ 1− ηn

for some a, b, c, d, e ∈ R. Then {xn} converges weakly to a point z0 ∈ G, where
z0 = limn→∞ PGxn.

Problem. We do not know whether “Hilbert spaces” in Theorem 3.1 and Theorem
4.1 can be replaced by “Banach spaces” or not.
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