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THE SPLIT COMMON FIXED POINT PROBLEM
FOR FAMILIES OF GENERALIZED DEMIMETRIC MAPPINGS
IN BANACH SPACES

WATARU TAKAHASHI*, CHING-FENG WENT, AND JEN-CHIH YAO!

ABSTRACT. In this paper, we consider the split common fixed point problem
for families of generalized demimetric mappings in Banach spaces. Using the
idea of Halpern iteration, we first prove a strong convergence theorem of finding
a solution of the split common fixed point problem for families of generalized
demimetric mappings in Banach spaces. Furthermore, using the idea of Mann
iteration, we obtain a weak convergence theorem of finding a solution of the
problem for the families of mappings in Banach spaces. Using these results, we
obtain well-known and new strong and weak convergence theorems for the split
common fixed point problem in Hilbert spaces and Banach spaces.

1. INTRODUCTION

Let F be a smooth Banach space, let C' be a nonempty, closed and convex subset
of E and let n be a real number with n € (—o00,1). A mapping U : C — E with
F(U) # 0 is called n-demimetric [21] if

2(z —q,J(x — Uz)) = (1 = n)|lz - Uz|?

for all z € C and ¢ € F(U), where F(U) is the set of fixed points of U and J is the
duality mapping on E. We have from [21] that F(U) is closed and convex. Using
this property, we proved strong and weak convergence theorems for demimetric
mappings in Hilbert spaces and Banach spaces; see [12, 20, 21, 23, 26]. Very recently,
Kawasaki and Takahashi [8] generalized the concept of demimetric mappings as
follows: Let 6 be a real number with 6 # 0. A mapping U : C' — E with F(U) # ()
is called generalized demimetric [8] if

(1.1) O(x —q,J(x —Ux)) > H:U—U:UH2

for all z € C and ¢ € F(U). This mapping U is called 6-generalized demimetric.
The set F'(U) of fixed points of such a mapping U is also closed and convex; see [8].

On the other hand, in 1967, Halpern [6] introduced the following iteration process.
Let C be a nonempty, closed and convex subset of a Banach space F. A mapping
T : C — C is called nonexpansive if ||Tx — Ty|| < ||z — y|| for all 2,y € C. Take
xo,x1 € C arbitrarily and define {x,} recursively by

Tnt1 = anxo + (1 —ap)Txy,, VYneN,
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where {a,,} is a sequence in [0, 1].
In 1953, Mann [14] introduced the following iteration process. For an initial guess
x1 € C, an iteration process {z,} is defined recursively by

T+l = QpTn + (1 - Ckn)T.’L'n, Vn € N,

where {a,} is a sequence in [0,1]. There are many investigations of Halpern
and Mann iterative processes for finding fixed points of nonexpansive mappings
in Hilbert spaces and Banach spaces.

Recently, Takahashi, Wen and Yao [27] proved strong and weak convergence
theorems of Halpern type iteration and Mann type iteration for the split common
fixed point problem by using families of demimetric mappings in Banach spaces; see
also [22]. See [5, 15] for the split common fixed point problem.

In this paper, motivated by this problem, methods and theorems, we consider the
split common fixed point problem for families of generalized demimetric mappings in
Banach spaces. Using the idea of Halpern iteration, we prove a strong convergence
theorem for finding a solution of the split common fixed point problem for families
of generalized demimetric mappings in Banach spaces. Furthermore, using the idea
of Mann iteration, we obtain a weak convergence theorem for finding a solution of
the problem in Banach spaces. Using these results, we obtain well-known and new
strong and weak convergence theorems in Hilbert spaces and Banach spaces.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product (-,-) and

norm || - ||, respectively. For z,y € H and A € R, we have from [18] that
(2.1) lz + 1 < ll2ll* + 2{y, & + y);
(2.2) 1Az + (1= Nyll* = Mz * + 1 = lyl* = A1 = Nz - yl>.

Furthermore we have that for x,y,u,v € H,
(2.3) 2(z —y,u—v) = |lz =0 + lly —ul® — [l —ul* — [ly - v]*.

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C' is denoted by Pg, that is, ||x — Pox| < ||z — y|| for
all x € H and y € C. Such Py is called the metric projection of H onto C'. We
know that the metric projection Pg is firmly nonexpansive, i.e.,

(2.4) |Pox — Poy||> < (Pex — Poy,x —y)

for all z,y € H. Furthermore (x — Pox,y — Pox) < 0 holds for all x € H and y € C}
see [16]. The following result was proved by Takahashi and Toyoda [25].

Lemma 2.1 ([25]). Let H be a Hilbert space and let C' be a nonempty, closed and
conver subset of H. Let {x,} be a sequence in H. If ||xp11 — ul| < ||y — ul| for all
n € N and u € C, then {Pcxy,} converges strongly to some z € C, where Pc is the
metric projection on H onto C.
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Let E be a real Banach space with norm || - || and let E* be the dual space of
E. We denote the value of y* € E* at x € E by (z,y*). When {z,,} is a sequence
in E, we denote the strong convergence of {z,,} to x € F by z,, — x and the weak
convergence by x, — x, respectively. The modulus § of convexity of E is defined

by

) |z +y
o0 =int {1 2 o < 1l < 1o - 2 ¢

for every € with 0 < € < 2. A Banach space FE is said to be uniformly convex if
d(e) > 0 for every € > 0. A uniformly convex Banach space is strictly convex and
reflexive.

The duality mapping J from E into 2F" is defined by

Jr={z" € E*: (z,2") = |l2]|* = ||=*[|*}

for every x € E. Let U = {x € E : ||z|| = 1}. The norm of F is said to be Gateaux
differentiable if for each x,y € U, the limit
o) et gyl o]

t—0 t
exists. In this case, F is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of F into E*. We also know that F is reflexive if
and only if J is surjective, and F is strictly convex if and only if J is one-to-one.
Therefore, if F is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J~! coincides with
the duality mapping J, on E*. For more details, see [16] and [17]. We know the
following result.

Lemma 2.2 ([16]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, (x —y, Jx—Jy) > 0 for all z,y € E. Furthermore, if E is strictly
convex and (v —y,Jx — Jy) =0, then x = y.

Let C' be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any = € F, there exists a unique element
z € C such that ||z — z|| < ||z — y|| for all y € C. Putting z = Pox, we call Po the
metric projection of E onto C.

Lemma 2.3 ([16]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and conver subset of E and let x € E and z € C.
Then, the following conditions are equivalent:

(1) z = Pox;
(2) (z—y,J(x—2)) >0, VyeC.

Let E be a Banach space and let A be a mapping of of F into 2¢". A multi-valued
mapping A on E is said to be monotone if (x — y,u* —v*) > 0 for all u* € Az,
and v* € Ay. A monotone operator A on F is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on E. The
following theorem is due to Browder [3]; see also [17, Theorem 3.5.4].
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Theorem 2.4 ([3]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E*. Let A be a monotone operator of E into
2E"  Then A is mazimal if and only if for any r > 0,

R(J +rA) = E,
where R(J +rA) is the range of J +rA.

Let E be a uniformly convex Banach space with a Gateaux differentiable norm
and let A be a maximal monotone operator of E into 2¢". For all z € E and r > 0,
we consider the following equation

0€ J(zy —x) +rAz,.

This equation has a unique solution x,. We define J, by z, = J.x. Such J.,r >0
are called the metric resolvents of A. The set of null points of A is defined by
A710={z€ E:0¢€ Az}. We know that A~!0 is closed and convex; see [17].

Let E be a smooth Banach space, let C' be a nonempty, closed and convex subset
of E and let 6 be a real number with # # 0. Then a mapping U : C — FE with
F(U) # 0 is called generalized demimetric [8] if it satisfies (1.1), i.e.,

0lx —q,J(x —Uxzx)) > ||lx — UCL'H2

for all x € C and g € F(U), where J is the duality mapping on F.
Let 1 be a real number with n € (—oo,1). Then a mapping U : C — FE with
F(U) # 0 is called n-demimetric [21] if, for any = € C and ¢ € F(U),

1—n
2

(z—q,J(z —Ux)) = lz — Usz|f?,

where F(U) is the set of fixed points of U.

Examples 2.5. We know examples of generalized demimetric mappings.

(1) Let H be a Hilbert space, let C' be a nonempty, closed and convex subset
of H and let ¢ be a real number with 0 <t < 1. A mapping U : C — H is
called a t-strict pseudo-contraction [4] if

|Uz = Uyl* < |z = ylI” + tllz — Uz — (y = Uy)|”
for all z,y € C. If U is a t-strict pseudo-contraction and F(U) # ), then U
is -2 -generalized demimetric; see [8].

(2) Let H be a Hilbert space and let C' be a nonempty, closed and convex subset
of H. A mapping U : C — H is called generalized hybrid [9] if there exist
a, 8 € R such that

(26)  allUz—Uy|*+ (1 —a)llz = Uy|]® < BllUz — y|* + (1 = B) [l — y?

for all z,y € C. Such a mapping U is called («, ()-generalized hybrid. If U
is generalized hybrid and F(U) # 0, then U is 2-generalized demimetric. In
fact, setting x = u € F(U) and y = z € C in (2.6), we have that

allu = Uz|? + (1 = a)|u — Uz|® < Bllu — z|* + (1 = B)u - z||?
and hence ||[Uz — u||? < ||z — u/|?>. From

Uz —u||2 = ||Uz — ac||2 + ||z —uH2 +2(Ux —x,x — u),
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we have that
2x —u,x —Uz) > ||z — Uz|?

for all z € C and u € F(U). This means that U is 2-generalized demi-
metric. Notice that the class of generalized hybrid mappings covers several
well-known mappings. For example, a (1,0)-generalized hybrid mapping is
nonexpansive. It is nonspreading [10, 11] for « = 2 and 5 =1, i.e.,

2|Tz = Ty|* < |Tx — y|* +||Ty — =|*, va,yeC.
It is also hybrid [19] for o = % and 3 = %, ie.,
3ITx — Tyll? < o — yl> + 1Tz — > + | Ty — 2], Va,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [7].

(3) Let E be a strictly convex, reflexive and smooth Banach space and let C' be
a nonempty, closed and convex subset of E. Let Pc be the metric projection
of E onto C. Then P¢ is 1-generalized demimetric; see [8].

(4) Let E be a uniformly convex and smooth Banach space and let B be a
maximal monotone operator with B=10 # (). Let A > 0. Then the metric
resolvent Jy is 1-generalized demimetric; see [8].

(5) Let H be a Hilbert space, let C' be a nonempty, closed and convex subset of
H and let T be a mapping from C into H. Suppose that T is Lipschitzian,
that is, there exists L > 0 such that

|Tx — Tyl < Lz —y|

for all z,y € C. Let S = (L+1)I —T. If F(L), then S is (—2L)-generalized
demimetric; see [8, 24].

(6) Let H be a Hilbert space, let C' be a nonempty, closed and convex subset
of H and let o > 0. If B be an a-inverse strongly monotone mapping from
C into H with B~'0 # (), then T = I 4 B is (—é)—generalized demimetric;
see [8, 24].

The following lemmas are important and crucial in the proofs of our main results.

Lemma 2.6 ([8]). Let E be a smooth, strictly conver and reflexive Banach space
and let C be a nonempty, closed and conver subset of E. If a mappingU : C — E
s 0-generalized demimetric and 6 > 0, then U is (1 — %)—demz’metria.

Lemma 2.7 ([8]). Let E be a smooth, strictly conver and reflexive Banach space
and let C' be a nonempty, closed and convex subset of . Let 6 be a real number
with @ # 0. Let T' be a 0-generalized demimetric mapping of C into E. Then F(T)
is closed and converz.

Lemma 2.8 ([8]). Let E be a smooth, strictly convex and reflexive Banach space,
let C' be a nonempty, closed and convex subset of E and let 0 be a real number with
0 #0. Let T be a 0-generalized demimetric mapping from C into E and let k € R
with k # 0. Then (1 — k)I + kT is Ok-generalized demimetric from C into E.

We also know the following lemma from [26]:
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Lemma 2.9 ([26]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let k € (—o0,1) and let T' be a k-demimetric mapping of C
into H such that F(T') is nonempty. Let A be a real number with 0 < A < 1—Fk and
define S = (1 = N)I + \T. Then S is a quasi-nonexpansive mapping of C into H.

We also know the following lemmas:

Lemma 2.10 ([2], [29]). Let {s,} be a sequence of nonnegative real numbers, let
{an} be a sequence in [0,1] with Y 7 | an = 00, let {B,} be a sequence of nonneg-
ative real numbers with > 0" Bn < 00, and let {y,} be a sequence of real numbers

with lim sup,,_, . ¥n < 0. Suppose that

Snt1 < (1 - an)sn + apyn + Bn

foralln=1,2,.... Then lim,_,c s, = 0.

Lemma 2.11 ([13]). Let {I},} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {I7,,} of {I,} which satisfies
Iy, < I'y,41 for all i € N. Define the sequence {T(n)}n>n, of integers as follows:

7(n) = max{k <n: I} < Ik},
where ng € N satisfies {k <ng: I, < I'y11} # 0. Then, the following hold:

(i) 7(ng) < T(np+1) <--- and 7(n) — oo;

3. STRONG CONVERGENCE THEOREM

In this section, using the idea of Halpern iteration, we prove a strong convergence
theorem of finding a solution of the split common fixed point problem for families
of generalized demimetric mappings in Banach spaces. Let E be a Banach space,
let C' be a nonempty, closed and convex subset of E and let {U,} be a sequence
of mappings of C into E such that N2, F(U,) # 0. The sequence {U,} is said
to satisfy the condition (I) [1] if for any bounded sequence {z,} of C such that
limy, o0 [|2n, — Unzn|| = 0, every weak cluster point of {z,} belongs to NS, F'(Uy,).

Theorem 3.1. Let H be a Hilbert space and let F' be a smooth, strictly conver and
reflexive Banach space. Let Jp be the duality mapping on F. Let {0,} and {m,}
be sequences of real numbers with 0,, 1, # 0 and let {k,} and {h,} be sequences
of real numbers with 0pk, > 0 and T,h, > 0, respectively. Let {S,} be a sequence
of On-generalized demimetric mappings of H to H with NS F(Sy) # 0 satisfying
the condition (1) and let {T,} be a sequence of T,-generalized demimetric mappings
of F to F with "0 F(T,) # 0 satisfying the condition (I). Let A: H — F be a
bounded linear operator such that A # 0. Suppose that

G =N F(S,)NA™L NS, F(T;,) # 0.

Let {un} be a sequence in H such that u, — u. For x1 =x € H, let {x,} C H be
a sequence generated by

Yn = (1= M) T 4+ MSn) (0 — rhn A* Jp(I — Tp,) Ay,
Tl = Qpuy + (1 — an)(ﬁnxn +(1- ﬁn)yn), Vn €N,
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where a,b,c,d,e, f,g, 0 € R, {an},{Bn} C [0,1], {rn} C (0,00) and {\.},{kn},
{hn} C R satisfy the following:

o0
0<a<pB,<b<l 0<c<|hyl <d, lim a,=0, Zan:oo,
n—oo 1
0<e<r <f<g<L O<&<i and 0 < Ao < |\
== = TahallA2 T ke T Ok 0=
for alln € N. Then {x,} converges strongly to a point zy € G, where zy = Pgu.
Proof. Since Sy, : H — H is 0,-generalized demimetric, F'(S,,) is closed and convex
from Lemms 2.7. Then NY2,F(S,) is closed and convex. Since Tj, : ' — F' is
Tp-generalized demimetric, we also have from Lemma 2.7 that F(T},) is closed and
convex. Since A : H — F is linear and continuous, A~ N, F(T,,) is closed and
convex. Then G is nonempty, closed and convex. Since G is nonempty, closed and
convex, the metric projection Pg of H onto G is well-defined.

Since T, : F' — F is T,-generalized demimetric, we have from Lemma 2.8 that
(1—=hp)I+h,T, is T hy-generalized demimetric. Since S,, : H — H is 6,,-generalized
demimetric, we also have from Lemma 2.8 that (1 — k&, )I + k.S, is 0,,k,-generalized
demimetric. Furthermore, from Lemma 2.6 and 6,k, > 0, we have that (1 —

kn)I + kS, is (1 — ﬁ)—demimetric in the sense of [21]. Since 0 < 2‘—: < ﬁ =
1-— (1 — ﬁ) and
An An

we have from Lemma 2.9 that (1 — A\,)I + A\, S, is quasi-nonexpansive.
Let z € G. We have that z = S,z and Az — T, Az = 0. Furthermore, putting
zn = (I —rphpA*Jp(I — T,,)A)x,, and

Yn = (1 = A)I + A\pSp) (I — rph A" Jp(I — T,) A) ey,
for all n € N, we have from 7,,h, > 0 that for all z € G and n € N,
lyn = 217 = (1 = AT + AaSn)za = (1= AT + AnSn)z|
< lzn — rahn A" Jp(I — T,) Az, — 2|
= ||&n — 2 — Puhp A" Tp(I — Tp,) Az, ||?
< @y — 2||* = 2rphn(Az, — Az, Jp(I — T,) Azy)
+rahnl| AP (I = Tp) Az
(3.1) = ||@n — 2|* = 2rp (A, — Az, Jp(I — (1 = hn)I + hnTy,) Awy,)
+ b | AIP (I = Tp) Az |

1
< |l — 2||* — 2rn7 |Azp — (1 = hy) T + hpTy) Az ||?
Tnln
+r2R2 | A|P (I = Tp) Az ||

1
= ||z — 2|I” - 2rnhy —— Az — ToAwn|? +rihp | AP (1 — T) Az |
n''n
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2

= flan — 2l + ra B2l AIP = ——) (T — T A
From0<e<rn<f<g§Wwehavethat
(3.2) [y — 2l < llzn — 2|
for all n € N.
Put s, = Bnxn + (1 — Bn) (1 — An)I + ApSn) (2, — Tnhn A" Jp(I — T),) Axy,). We
have from (2.2) and (3.2) that
lsn = 2117 = 18a(@n — 2) + (1 = Ba) (g0 — 2)|I?
= Bullwn — Z”2 + (1= Bn)llyn — Z”Q = Bn(1 = Bo)llzn — ynH2
(3.3) < Bonn_ZH + (1= 6,) Hxn—zHZ _Bn(l_/gn)”xn_ynHQ
= |lzn = 217 = Ba(l = Ba)llzn — yul)?
= |lzn — 2.
Using this, we get that
[#ni1 = 2l = [lon(un — 2) + (1 = an)(sn — 2)||

< ap flup — 2| + (1 —an) lIsn — 2|
< ap |lup — 2| + (1 = ap) ||z, — 2] -

Since {uy,} is bounded, there exists M > 0 such that sup,,¢y ||un — 2| < M. Putting
K = max{||z1 — z||, M}, we have that ||z, — z|| < K for all n € N. In fact, it is
obvious that ||z1 — z|| < K. Suppose that ||z; — z|| < K for some j € N. Then we
have that

2541 = 2ll < ajlluy — 2l + (1 — ay)lz; — 2]
<aK+(1-a)K =K.

By induction, we obtain that ||z, — z|| < K for all n € N. Then {z,,} is bounded.
Furthermore, {Ax,}, {y,} and {s,} are also bounded.

Take zg = Pgu. Since y, = (1 — A\p)I + \Sp)(I — rph A Jp(I — T,) A)xy,, we
have from (3.3) that

|41 = 2001 = llown (un — 20) + (1 = @) (s — 20) |
< ag flun = 2ol + (1 = an) [|sn — 20|
< ay flun — ZOH2
+ (1= an)([|zn — 20[1* = Ba(1 = Ba) & — ynll?)
< ap [jup — ZOH2 + |75 — 20l = Bn(1 = Bn)llzn — yn”Q-
Using this, we have that
(B4) Bl = Bu)llen — ynll® < @ llun — 2012 + 120 — 20]12 = ns1 — 20l
Onthe other hand, we have that
Tpt1 — T = appn + (1 — ap){fnzn + (1 — Bp)yn} — zn,
= an(un — zn) + (1 — an){Bnzn + (L = Bn)yn — 0}
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= an(up — zn) + (1 — an){(L = Bn)yn — (1 = Bn)zn}
= an(un - xn) + (1 - O‘n)(l - ﬁn)(yn - ffn)

and hence

(3.5) [Zn1 = zn|l < anllun — zall + (1 = an)(1 = Bo) lyn — znll.
We will divide the proof into two cases.

Case 1: Set I}, = ||, — 20|/ for all n € N. Suppose that there exists a natural
number N such that I}, 11 < I, for all n > N. In this case, lim,_,, I}, exists and
then lim,, oo (L41 — I) = 0. Using lim, yooy, =0 and 0 < a < B, < b < 1, we
have from (3.4) that
(3.6) lim |y, — zn| = 0.

n—oo

From (3.5) we have that

(3.7) lim ||xp41 — zp] = 0.
n—oo
We also have that
(3.8) Zn+1 = snll = lanun + (1 — an)sn — sall

= ap||un — sl = 0.
Furthermore, using ||sn, — yul| < Bnllyn — xn|| — 0, we have that
(3.9) lim ||zp41 — ynl = 0.
n—oo
We show that limsup,,_,. (v — 20, yn — 20) < 0, where zp = Pgu. Put

I = limsup(u — 20, Yn — 20)-
n—o0
Without loss of generality, there exists a subsequence {yp,} of {yn} such that [ =
lim; o0 (4 — 20, Yn, — 20) and {yn, } converges weakly to some point w € H. From
|z, — yn|l = 0, {zn,} converges weakly to w € H. On the other hand, from (3.1)
we have that

rahi —rall AP 1( = To) Azl < ||z — 20° = lyn — 21

2
Tnhn
(3.10) = (lzn = 2l = llyn — 2ID(l2n = 2l + [lyn — 2])

< [lzn = yall (lzn = 20 + llyn = 21)-
Then we get from ||z, — y,|| — 0 that

(3.11) | Az, — Ty Ap]| = 0.

lim
n—oo
Since {x,,} converges weakly to w € H and A is bounded and linear, we also have
that {Az,,} converges weakly to Aw. Using lim,_, |4z, — T, Az, || = 0 and {T,,}
satisfies the condition (I), we have Aw € N, F(T},) and hence w € AN, F(T,,).
We also prove w € NS F'(Sy,). We have that

120 = ynll = llzn = (1 = An)T + AnSn) 2|

(3.12) = [[An(2n — Snzn) ||

> )\OHZn - SnZnH
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Furthemore, from z,, = x, — r,h, A*Jp(Ax, — T, Ax,), we have that
[2n = ynll = llzn — rahn A" Jp(Azn — TnAzn) — yal|
< lzn = yull + [rnhal | Al Jr(Azn — Th Azy) ||
= [|zn = ynll + [rnhal | Al | Azy — Ty Ay |
< lzn = yal + f - Al Azn — Tn Az,
Then we have from (3.6) and (3.11) that ||z, — yn|| — 0. Using (3.12), we have that
(3.13) nlLrgO |zn, — Snznll = 0.
Since ||zp, — zp|| = 0 from ||z, — x| = ||rnhnA*Jp(Azy, — T, Axy,)|| — 0, we also
have that {z,,} converges weakly to w. Since {S,} satisfies the condition (I), we

have that w € N9, F'(S,). This implies that w € G. Since {y,, } converges weakly
to w € G, we have that

[ = lim (u — 20, Yn, — 20) = (u — 20, w — 20) < 0.
i—00
On the other hand, we have from (2.1) that
st — 20ll? = llam (i — 20) + (1 — )5 — 20)|1
< (1= an)? |50 — 20| + 200 (tn, — 20, Tny1 — 20)
< (1= ) ||2n — 20||* 4 200 (tn — 20, Tny1 — 20)
= (1= an) [z — 20?
+ 2ay, ((un — Uy Tpt1 — 20) + (U — 20, Tpt1 — Zo>>
= (1 = ap) [&n — 20|
+ 2a, ((un — Uy Tpt1 — 20) + (U — 20, Tnt1 — Yn)
+ (u — 20, Yyn — 20))-

Since > o7 | @, = 00, by u, — u, (3.9) and Lemma 2.10 we obtain that x, — 2.
Case 2: Suppose that there exists a subsequence {I},, } of the sequence {I,} such
that I,, < I},,+1 for all ¢ € N. In this case, we define 7 : N — N by

T(n) =max{k <n: Ik <y}

Then we have from Lemma 2.11 that I'.,) < I7(n)41- Thus we have from (3.4)
that for all n € N,

(314) /BT(TZ)(]‘_BT(TZ))H:L‘T(?’L) — Yr(n) ”2
2 2
< o) ||[urmy = 20" + %) — 2001 = ||Try+1 — 20]|” -
Using lim,, 00 ap, =0 and 0 < a < 3, < b < 1, we have from (3.14) that

(3'15> lim Hyr(n) - x‘r(n)” =0.

n—oo

As in the proof of Case 1 we have that
(316) lim ||$T(n)+1 — :m'(n)” = 0.

n—oo
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and

(3.17) lim ||27()41 — 87|l = 0.

n—oo

Using [|s-(n) = Yrm)ll < Brm)l|¥r(n) — Tr(my |l — 0, we have that
(3'18) nh_g)lo |’$T(n)+1 - y’r(n)H =0.

For 29 = Pgu, let us show that limsup,, (20 — U, Yr(n) — 20) > 0. Put

I = limsup(20 — U, Yr(n) — 20)-
n—oo

Without loss of generality, there exists a subsequence {y,(,,} of {y-(,)} such that
= 1im;00(20 — U; Yr(n;) — 20) and {Yr(n,)} converges weakly to some point w € H.
From ||y-(n) — Zrm)ll = 0, {Z7(n,)} converges weakly to w € H. As in the proof of
Case 1 we have that w € G. Then we have

(3.19) I = lim (20 — U, Yr(n;) — 20) = (20 — w, w — 29) > 0.
71— 00

As in the proof of Case 1, we also have that

[ER ZOH2 = || otr () (Ur () — 20) + (1 = Qr(n)) (Sr(n) — Zo)H2

2
< (1= az()’ [|srm) — 2ol|
+ 207 (n) (Ur(n) — 20, Tr(n)41 — 20)
2
< (1= arg) [[#rm) = 20
+ 2a7’(n) <uT(n) = 205 Tr(n)+1 — ZO>'
From I7.(,,) < I’7(n)41, We have that
2
() [| () = 20||” < 2007(0) () = 20, Ty 41— 20)-
Since a(,) > 0, we have that
2
Hx’r(n) - ZOH < 2<u7'(n) = 205 Lr(n)+1 — Z0>
- 2(<u'r(n) — U Tr(n)+1 — ZO>
+ (U = 20, Tr(n)+1 = Yr(n)) + (U — 20, Yr(n) — Zo>)-
Using u,(,) — u, (3.18) and (3.19), we have that
lim sup fo(n) — on2 <0
n—oo
and hence ||z, — 20/ — 0. From (3.16), we have also that x,(,) — Z(n)4+1 — 0.
Thus [|2+(n)41 — 20/l = 0 as n — oo. Using Lemma 2.11 again, we obtain that
[#n = 20l < lZr(m)+1 — 20ll = 0

as n — 0o. This completes the proof. O
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4. WEAK CONVERGENCE THEOREM

In this section, using the idea of Mann iteration, we prove a weak convergence
theorem of finding a solution of the split common fixed point problem for families
of generalized demimetric mappings in Banach spaces.

Theorem 4.1. Let H be a Hilbert space and let F' be a smooth, strictly conver and
reflexive Banach space. Let Jp be the duality mapping on F. Let {0,} and {1}
be sequences of real numbers with 0,7, # 0 and let {k,} and {h,} be sequences
of real numbers with 0pk, > 0 and T,h, > 0, respectively. Let {S,} be a sequence
of On-generalized demimetric mappings of H to H with NS, F(Sy) # 0 satisfying
the condition (1) and let {T,} be a sequence of T,-generalized demimetric mappings
of F to F with "0 F(T,) # 0 satisfying the condition (I). Let A: H — F be a
bounded linear operator such that A # 0. Suppose that
G =ML F(Sy) NAT 2y F(T,) # 0.
For any x1 = x € H, define
Tpt1 = BnTn + (1 — Bn) (1 — AT + )\nSn)(mn — rphpn A" Jp(Ax, — TnAa:n))
for all n € N, where a,b,c,d,e, f,g, o € R, {8,} C [0,1], {rn} C (0,00) and
{An}, {kn}, {hn} C R satisfy the following:
0<a<pB,<b<l1l, 0<c<|hy| <d,
0<e<r,<f<g< 2 0<A”< 2 d 0< X < |\
e<r _ — < — an
=M =TS9 AR S ke Ok 0= |An
for alln € N. Then {x,} converges weakly to zg € G, where zy = limy,_,o0 PoXy.
Proof. As in the proof of Theorem 3.1, GG is nonempty, closed and convex and hence
the metric projection Py of H onto G is well-defined.
Let 2 € G = N2, F(S,) N AL N2, F(T,). Then we have that z = S,z and
Az — T, Az = 0. Putting z, = x,, — rpyhn A*Jp(Ax,, — T, Ax,) and
Yn = (1 = X)) + AoSn) (zn — T A* Jp(Azy, — Ty Azy))
for all n € N, as in the proof of Theorem 3.1, we have that
llyn — ZH2 = [[(1 = A+ AnSn)zn — (1= A + )‘nSn)Zuz
< |lzn — rahn A*Jp(Ax, — T, Azy,) — 2|2
(4.1) = ||lzn — 2 — Tnhn A Jp(Az, — T Az,)||?
= ||lzn — 2||* = 2(xp — 2, Tnhn A" Jp(Az, — T, Azy))
+ [|rphn A* Jp (A, — Ty Azy) |
2

<l = 27 + rahg(ral|A* -

n'tn

) Azy, — TnAIL‘n”2.

From0<e§rn§f<g§mhnzwwehavethat
lyn — 2l < |lzn — 2|
for all n € N and hence
|Zne1 — 2|l = || Bnn + (1 = Bn)yn — ||
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< Bnllen = 2] + (1= Bn) lyn — 2|
< Bnllen — 2l + (1= Bn) l2n — 2]
<l — 2]

Then lim,, 0 ||z, — 2|| exists. Thus {z,}, {Az,} and {y,} are bounded. Using the
equality (2.2), we have that for n € Nand z € G

Tt — ZH2 = [|Bnzn + (1 = Bn)yn — ZH2
= B |75 — ZHQ + (1 = Bn) llyn — zHQ — Bn(1 = Bn) |75 — ynH2
< Bnllzn — z”Q + (1 = Bn) |vn — Z||2

2
+ (1 - /3n)7‘nh721(7’nHAH2 - W)HAZEW/ - TnAanQ

- /Bn(]- - Bn) ||xn - ynH2
= |lzn = 2[* + (1 = Ba)rahi (ral AlI* —
— Bn(1 = Bn) lzn — ynH2 :

Therefore, we have that 8,(1 — 8,) ||2n — ynll> < |20 — 2||* = |01 — 2]|* and

2
1 — Bp)rphZ(——
(1= Bl

Using0<a<p,<b<1l 0<c<|hy <dand

2
Tnln

)| Az, — TnAa:nH2

— rall AP Azn — TnAzal® < llon — 2II* = zns1 — 2[1*.

2
O<e<r,<f<g<——,
SmsS<9s g AR
we have that
(4.2) lim ||z, — y||> =0 and lim ||Az, — T, Az,|? = 0.
n—00 n—00

Since {x,} is bounded, there exists a subsequence {z,,} of {z,} converging weakly
to w. Since A is bounded and linear, we also have that {Ax,,} converges weakly to
Aw. Using limy, o || Azy —Tp Az, || = 0 and {T,,} satisfies the condition (I), we have
Aw € N F(T,) and hence w € A1 N, F(T,). We also prove w € N F(S,).
As in the proof of Theorem 3.1, we have that
(4.3) 2 = ynll = llzn — (1 = An)I + AnSn)zn |l = Aollzn — Snzal|-
Furthemore, from z, = z, — rpnh,A*Jp(Az, — T, Az,,), we have that

120 = ynll = llzn — rnhn A" Jp(Azn — ThAzy) — ynl|

< Nz = yall + - Al Az — Ty A
Then we have from (4.2) that ||z, — yn|| — 0. Using (4.3), we have that
(4.4) lim |z, — Spzn| = 0.
n—oo

Since ||zn, — zn|| — 0 from ||z, — x| = ||rnhnA*Jp(Az, — T),Ax,)|| — 0, we also

have that {z,,} converges weakly to w. Since {S,} satisfies the condition (I), we
have that w € N2, F'(S,). This implies that w € G.
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We next show that if x,, — 2* and x,; — y*, then z* = y*. We know z*,y* € G
and hence lim,,_, ||z, — *|| and lim, o ||x, — y*|| exist. Suppose x* # y*. Since
H satisfies Opial’s condition, we have that

lim ||z,—2"| = lim ||z, — 2| < lim ||z, —y"|
n— 00 1—00 1—00
= lim ||z, —y*| = lim ||l‘n] —y*
n—oo J—r0
< lim ||z, — 2% = lim |z, — 2™
J—00 n—oo

This is a contradiction. Then we have x* = y*. Therefore, x,, — x* € G. Moreover,
since for any z € G
ln — 2l < llow — 2Il, ¥neN,
we have from Lemma 2.1 that Pgxz, — 2o for some zy € G. The property of metric
projection implies that
(" — Pgwp, xn — Pgayn) <0.

Therefore, we have that ||z* — z||* = (z*— 20, 2*—20) < 0. This means that 2* = z.
Therefore, x,, — zg, where zg = lim,,_.oo Pozy. O

5. APPLICATIONS

In this section, using Theorems 3.1 and 4.1, we get well-known and new strong
and weak convergence theorems which are connected with the split common fixed
point problem in Hilbert spaces and Banach spaces. We know the following result
obtained by Kocourek, Takahashi and Yao [9]; see also [28].

Lemma 5.1 ([9, 28]). Let H be a Hilbert space, let C' be a nonempty, closed and
conver subset of H and let U : C' — H be generalized hybrid. If x, — z and
xp —Uzxy — 0, then z € F(U).

Using Lemma 5.1, we have the following result.

Lemma 5.2. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let S,T : C — H be generalized hybrid mappings such that F(S) N
F(T) # 0 and let {y,} be a sequence of real numbers. Assume that there exist
a,b € R such that 0 < a <, <b< 1 forallneN. If T, =v,S + (1 —v,)T for
alln € N, then N2 F(T;,) = F(S)NF(T) and {1} satisfies the condition (I).

Proof. Since S and T are generalized hybrid mappings and F(S) N F(T) # 0, S
and T are quasi-nonexpansive mappings. Using this, we have from (2.2) that, for
20 € F(S)NF(T), z€ N2 F(T},) and n € N,

Iz = 20ll” = 1Tz — 20
= [I(mS + (1 = )T)z — 2|?
= [l (Sz = 20) + (1 = yu)(Tz — 20)|I?
= Sz = 20/1* + (1 = ) 1Tz = 20/ = yu(1 — 1) [|S2 — T2|?
< nllz = 20> + (L= 7)1z = 20l = Y (1 — )15z = T2|?
= |lz = 20l> = (1 — )15z — Tz||.
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This means that v, (1 —~v,)[|Sz —Tz||> <0. Since 0 < a <7, <b< 1foralln €N,
we have Sz = T'z. Since

15z — 2|l =[Sz + (1 —m)Sz — 2
= 7Sz + (1 — )Tz — 2|
= (S + (L =7)T)z — 2
=z — ||
=0,
we have that Sz = z. Similarly, we have that Tz = z. This implies that N°° , F(T},) C
F(S)N F(T). It is obvious that F(S)NF(T) C N2, F(Ty,). Thus N, F(T;,) =
F(S)NF(T).
Suppose that {z,} is a bounded sequence such that z, — T,,z, — 0. Then we
have from (2.1) and (2.2) that, for z € N7, F'(T},),

|z — 2| = |20 — Tnzn + Tnzn — 2|
<N Tnzn — 2)* 4 2(zn — Tpnzn, 20 — 2)
= ||IvnSzn + (1 = 7)) T2 — 2||? + 2{zn — Tnzn, 20 — 2)
= Ynl|Szn — ZH2 + (1 =) T2 — Z||2
— (L =) 1820 — Tz |* 4 2(2n — Tpn2n, 20 — 2)
< Yallzn — Z||2 + (1 = m)llzn — ZH2
— (L =) 1S2n — Tz ||* 4+ 2(2n — Tpn2n, 20 — 2)
= ||zn — Z||2 — (1 = )| Szn — TZnH2 + 2(2n — Tn2n, 2n — 2)
and hence
Yo (L= Y )1Szn — Tznl|* < 2(zn — Tpzn, 20 — 2).
Since z, — Tz, — 0 and {z,} is bounded, we have that Sz, — Tz, — 0. Using this,
we have that
llzn — Sznll = l|2n — Tnzn + Thzn — Sz
< llzn = Tnzall + [[Thzn — Sza|
= [lzn — Thzn|l + (1 = )| T2 — Szl
— 0.
If a subsequence {zy,} of {z,} converges weakly to w, then we have from Lemma

5.1 and z, — Sz, — 0 that w € F(S). Similarly, w € F(T'). Thus every weak cluster
point {z,} belongs to F'(S) N F(T) =Ny, F(T,). This completes the proof. O

Using Theorem 3.1, we get the following strong convergence theorems in Hilbert
spaces and Banach spaces.

Theorem 5.3. Let Hi and Hy be Hilbert spaces. Let S, T : Hy — Hq be nonex-
pansive mappings with F(S) N F(T) # 0 and let U,V : Hy — Hy be nonspreading
mappings with F(U) N F(V) # 0. Let {y,} and {6,} be sequences of real num-
bers. Assume that there exists s,t,u,v € R such that 0 < s < v, <t < 1 and
O<u<d, <v<1lforallneN. Let A: HA — Hy be a bounded linear operator
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such that A # 0. Suppose that G := F(S)NF(T)NA Y F(U)NF(V)) # 0. Let
{un} be a sequence in Hy such that u, — u. For x1 = x € Hy, let {x,} C Hy be a
sequence generated by

Yn = ('ynS +(1— *yn)T) (xn — rpA*(Azy, — (0,U + (1 — 5n)V)A$n)),
Tng1 = Aty + (1 — an) (Bnzn + (1= Bu)yn), VneN,

where a,b,e, f € R, {an},{Bn} C[0,1] and {r,} C (0,00) satisfy the following:

[o¢]
0<a<p,<b<1, lim a, =0, Zan:oo
n—oo

n=1

1
and 0<e<r,<f<-—
" | A2

for alln € N. Then {x,} converges strongly to a point zy € G, where zy = Pgu.

Proof. Since S and T are nonexpansive mappings of H; into Hi, S and T are
generalized hybrid. Since U and V are nonspreading mappings of Hy into Hs, S
and T are also generalized hybrid. From F(S)NF(T) # 0 and F(U)NF(V) # 0,
Spn =S+ (1 —7,)T and T,, = 6,,U + (1 — 0)V are quasi-nonexpansive mappings
and hence they are 2-generalized demimetric mappings. Furthermore, {S,,} and
{T,.} satisfy the condition (I) from Lemma 5.2. Putting k, =1, h, =1 and A\, =1
in Theorem 3.1, we obtain the desired result from Theorem 3.1. Il

Theorem 5.4. Let H be a Hilbert space and let F' be a uniformly convexr and
smooth Banach space. Let Jp be the duality mapping on F. Let G and B be
mazimal monotone operators of H into H and F into F*, respectively. Let J, be
the resolvent of G' for v > 0 and let @, be the metric resolvent of B for p > 0,
respectively. Let A : H — F be a bounded linear operator such that A # 0 and let
A* be the adjoint operator of A. Suppose that G0N A=Y (B~10) # (). Let {u,} be
a sequence in H such that u, — u. For x1 = x € H, let {x,} C H be a sequence
generated by

Tyl = Qplp + (1 - an) (ﬁnxn + (1 - Bn)Jzzn (xn - rnA*JF(I - Qun)Axn)>

for all n € N, where a,b,e, f, o € R, {an},{Bn} C [0,1] and {rn},{vn},{un} C
(0, 00) satisfy the following:

0<a<pB,<b<l, 0<X<vp,ln, lim a,=0,
n—oo

= 2
Zan:oo and 0<e<r,<f< 5
= 1A]
for all n € N. Then {x,} converges strongly to a point zo € G=10N A~1(B~10),
where zo = Pg-19na-1(B-10)U-

Proof. Since @, is the metric resolvent of B for p, > 0, from (4) in Examples,
Qu, is 1-generalized demimetric. We also have that if {2,} is a bounded sequence
in F such that z, — Qu,2n — 0, then every weak cluster point of {z,} belongs to
B0 = N2, F(Q,,). In fact, suppose that {z,,} is a subsequence of {z,} such
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that z,, — p and z, — Qu, 2, — 0. Since @, is the metric resolvent of B, we have
that

Jp(zn — Qunzn)/ﬂn € BQu,zn
for all n € N. From the monotonicity of B, we have

(an Qﬂnz nz)>
Hn;
for all (u,v*) € B and ¢ € N. Taking the limit i — oo, we conclude that (u —
p,v*) > 0 for all (u,v*) € B. Since B is a maximal monotone operator, we have
peEB0=N2,F (Qun) This means that the family {Q,, } satisfies the condition
(I). Similarly, J,, is 1-generalized demimetric and the family {J,, } satisfies the
condition (I). Putting k, = 1, h,, = 1 and A\, = 1 in Theorem 3.1, we have the
desired result from Theorem 3.1. O

0 S <u - Quniznﬂ U* -

Theorem 5.5. Let H be a Hilbert space and let F' be a smooth, strictly conver and
reflexive Banach space. Let Jp be the duality mapping on F. Let {0,} and {1}
be sequences of real numbers with 0, T, € (—oo,1). Let {S,} be a sequence of 6,,-
demimetric mappings of H to H with N0 F(Sy,) # 0 satisfying the condition (I)
and let {T,,} be a sequence of T,-demimetric mappings of F to F with NS F(T,,) #
0 satisfying the condition (I). Let A : H — F be a bounded linear operator such that
A # 0. Suppose that

G =N F(S,)NA™Y NS, F(T;,) # 0.

Let {un} be a sequence in H such that u, — u. For x1 =x € H, let {x,} C H be
a sequence generated by

Yn = ((1 — ) + )\nSn) (xn —ry A*Jp (I — Tn)Aacn),

Tpt1 = Qg + (1 — an)(ﬂnxn +(1- 5n)yn), Vn € N,
where a,b,e, f, g € R, {an}, {Bn} C [0,1], {rn} C (0,00) and {\,} C R satisfy the
following:

(o, ¢]
0<a<pB,<b<l1, lim a,=0, Zan:oo,
n—oo

n=1

1—
O0<e<r,<f<g< HA||T2n and 0 <X <A, <1-6,
for alln € N. Then {x,} converges strongly to a point zy € G, where zy = Pgu.

Proof. Since Sy, is 9 -demimetric, Sy, is 1 29 generalized demimetric and 5 29 > 0.

Similarly, T, is _— generalized demimetric and —T > 0. Putting k&, = 1 and
h, = 1 in Theorem 3.1 and taking A, as 0 < A\g < A\, < 1—46,, we have the desired
result from Theorem 3.1. O

Using Theorem 4.1, we get the following weak convergence theorems in Hilbert
spaces and Banach spaces.

Theorem 5.6. Let Hi and Hy be Hilbert spaces. Let S, T : Hy — Hq be nonex-
pansive mappings with F(S) N F(T) # 0 and let U,V : Hy — Hs be nonspreading
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mappings with F(U) N F(V) # 0. Let {v,} and {6,} be sequences of real num-
bers. Assume that there exists s,t,u,v € R such that 0 < s < v, <t < 1 and
O<u<éd,<wv<lforalneN. Let A: H — Hy be a bounded linear operator
such that A # 0. Suppose that G := F(S)NF(T)N A Y(FU)NF(V)) # 0.
For any x1 = x € Hy, define
Zn = Ty — A (Azy, — (0,U + (1 = 6,)V) Axy),
Tnt+1 = /8n$7l + (1 - ﬁn)('}/ns + (1 - Vn)T)Zn’ n € Na

where a,b,e, f € R, {an},{Bn} C[0,1] and {r,} C (0,00) satisfy the following:

o
0<a<p,<b<l1, lim o, =0, Zan:oo
n—oo

n=1

1
< < _—

and 0<e<r,<f< A2
for alln € N. Then {x,} converges weakly to a point zg € F(S)NF(T)NA~Y(F(U)N
F(V)), where 20 = hrnn_mO PF(T)OA—l(F(U)ﬂF(V))‘Tn'
Theorem 5.7. Let H be a Hilbert space and let F be a uniformly conver and
smooth Banach space. Let Jp be the duality mapping on F. Let G and B be
maximal monotone operators of H into H and F into F*, respectively. Let J, be
the resolvent of G' for v > 0 and let Q, be the metric resolvent of B for yu > 0,
respectively. Let A : H — F be a bounded linear operator such that A # 0 and let
A* be the adjoint operator of A. Suppose that G=10 N A~Y(B~10) # (. For any
x1=x € H, define

Tpt1 = BnTn + (1 - ﬁn)JVn (:L'n - rnA*JF(A:L'n - Q,unAxn))

for all n € N, where a,b,e, f, g € R, {an},{6n} C [0,1] and {r,},{vn}, {un} C
(0,00) satisfy the following:

0<a<Bp<b<l1l, 0<X <vp,fin, lim a, =0,
n—00

> 2
Zan:oo and 0<e<r,<f< 5
2 4]
for alln € N. Then {,} converges weakly to a point zg € G=10NA~Y(B~10), where
zZ0 — hmn_mo PG—lomA—l(Bflo).%'n.

Theorem 5.8 ([27]). Let H be a Hilbert space, let F' be a smooth, strictly conver and
reflexive Banach space and let Jp be the duality mapping on F. Let {0,} and {n,}
be sequences of real numbers with 6,,n, € (—oo,1). Let {\,} be a sequence of real
numbers such that for some A\g € R, 0 < Ao < A\, < 1—0,, for alln € N. Let {T),}
be a sequence of 0,,-demimetric mappings of H to H with N2 F(T,,) # 0 satisfying
the condition (I) and let {Uy,} be a sequence of ny,-demimetric mappings of F' to F'
with NS F(Uy) # 0 satisfying the condition (I). Let A : H — F be a bounded linear
operator such that A # 0. Suppose that G := N F(T,) N A~ n>, F(U,) # 0.
For any x1 =z € H, define

Tr1 = Bun + (1= B) (1= AT + A\ T) (I — 1 A Jp(A — Up A))
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for all n € N, where {8,} C [0,1] and {r,} C (0,00) satisfy the following:

0<a<pB,<b<l and 0<c<r,|AA*|<d<e<1l-—n,

for some a,b,c,d,e € R. Then {x,} converges weakly to a point zo € G, where
2o = limy, o0 Paxy,.

Problem. We do not know whether “Hilbert spaces” in Theorem 3.1 and Theorem
4.1 can be replaced by “Banach spaces” or not.
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