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being so complex that even fine-grained models cannot represent all aspects
of them. Fourthly (but certainly not lastly), with a handful of exceptions,
publicly available network models of metabolic systems are never complete
in the sense that the entire genome information of the organisms enters the
model. Even more, from a practical point of view, the metabolisms should
never be viewed in isolation but should instead be seen as a part of their
(animate and inanimate) surrounding environment which introduces even
more uncertainty in the modeling process.

(B) Within the field of systems biology, there is a vast abundance of different
techniques and modeling frameworks: Until this day, there is not the one
agreed-upon standard on how to (i) choose and/or obtain the experimen-
tal data necessary to make predictions about the time-resolved evolution of
metabolic systems, (ii) exactly define all involved physical quantities and
(iii) there is no common understanding on the algorithmic treatment of
certain predictive tasks. This stretches beyond just the choice of certain
mathematical routines or software libraries but sometimes obscures the ac-
tual mathematical problem that is to be solved. This lack of standardization
hampers a fair comparison of the computational results acquired by differ-
ent techniques. Certainly, the computational framework to be used should
always be based on the question what you want to know about the system,
the available data respectively and there exist fixed standards concerning
the statistical tests, the experimental setups, the accuracy of equipment and
the reproducibility of the results. Nevertheless, a more mathematically solid
definition of the underlying principles could improve practical applicability
of theoretical and experimental findings. For example, the “Systems biol-
ogy markup language” (SBML, [24]) for data exchange of metabolic network
models had an immense impact on the research and collaboration activities
within the systems biology community by improving interoperability and
simplifying validation and verification of theoretical concepts along multiple
computational frameworks. Similarly, protocol solutions for certain aspects
of the modeling process (e. g. [54] for the generation of genome-scale network
models from gene-sequencing) have largely improved the general acceptance
and interchange of those models.

(C) The complexity of the biochemical processes in all lifeforms directly trans-
fers to the computer simulation. As a result, genome-scale dynamic model-
ing of metabolic networks is usually only successfully done for a few applica-
tions and computational setups that usually are not fully dynamic. In lack
of fully automatized/automatizable workflows, the involved models need to
be hand-curated which is time-consuming and prone to mistakes making it
almost impossible to give a holistic picture of the metabolic systems.

It has long been noticed [9,11,59] in the field of systems biology that the apt math-
ematical description is that of an inverse problem, [28,55]. However, the mathemat-
ical framework is usually concerned with only selected aspects of systems biology
such as network inference or parameter estimation (see below) somewhat disre-
garding the benefit that comes with the inverse problem formulation: That is that
exactly the same theoretical techniques and software may be applied in order to
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tackle the biological questions arising on different stages of the modeling process.
On the other hand, in the existing literature, also the algorithmic treatment usu-
ally focuses on established mathematical tools which thwarts the big advantage
that comes with working in mathematical biology which is that billions of years of
natural evolution have created sophisticated self-controlled systems allowing for a
multitude of optimization principles.

In recent years, several optimization-based concepts have been developed for the
simulation of metabolic network models in systems biology. Among the most well-
known are flux-balance analysis (FBA, see [42] for a review and below) where the
metabolic network is reduced to a linearly constrained system optimizing biomass
production of the cell; mathematically expressed in terms of a linear program (LP).
FBA has had various successful applications in biotechnology and medicine, [6,63].
FBA, however, is limited to a narrow field of applications because of its strict math-
ematical arrangement and hard biological simplifications and limitation to station-
ary problems. Because of this, researchers have created various extensions of FBA,
such as (a) iterative FBA, (iFBA, [58]) which is a sequential application of FBA
for (quasi-) dynamic problems (potentially with additional logical rules), (b) dy-
namic FBA (dFBA, [35]) where a control task or an optimal control problem is
formulated based on the objectives of FBA, (c) optimal knockout analysis and flux-
coupling analysis (FCA, [6]) which combines FBA with combinatorial information
resulting in mixed-integer-linear programs (MILP), (d) resource balance analysis
(RBA, [15]) where growth and dilution effects as well as macro-molecular assembly
are taken into account, (e) conditional FBA (cFBA, [46]), dynamic enzyme-cost
FBA (deFBA, [62]) and so-called models of Metabolism and macromolecular Ex-
pression (ME-models, [33]) that combine the macro-molecule production and opti-
mal control methods in one framework.

On a genome-scale, all of these frameworks mostly stay in the linear regime (i. e.
LP, MILP, potentially with quadratic constraints) for reasons of computational com-
plexity and the availability of highly-efficient LP-solvers like CPLEX1 or Gurobi2.
Klipp et al. [31] proposed a general nonlinear optimal-control form which was later
on generalized (e. g. [2]) and embedded into a control-theoretic frame, [43].

The cardinal justification for these optimization-based approaches is Darwin’s
theory of natural selection: A species that is not equipped with the (genome-
encoded) ability to survive certain external conditions and surpass its competitors
will eventually get extinct and not spread its inferior genetic material any further.

However, there is an ongoing dispute among researchers, whether and to what
extend a solely optimization-driven framework can provide a sufficiently good pic-
ture since it is very hard to exactly predict and almost impossible to prove the
‘design goals’ of a metabolic system. Most of the time, multiple such design goals
can be formulated, mathematically possibly providing a multitude of different solu-
tions without any information which one is the most realistic. On the other hand,
frameworks that do not rely on evolutionarily inspired optimization principles like

1www-01.ibm.com/software/commerce/optimization/cplex-optimizer
2www.gurobi.com
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plain data fitting techniques oftentimes employ regularization methods that com-
pletely disregard the fact, that the objects one is dealing with are actually subject
to evolutionary pressure; this way, giving up much of the biological knowledge that
could be used.

The goals of this concept paper are therefore the following: By giving a very
general description of a multitude of applied problems in systems biology—in terms
of an inverse problem formulation—we want to provide a mathematical form and
nomenclature that give practitioners some guideline for the description of the prac-
tical problems leading to a simpler communication of theoretical frameworks.

The framework will generically allow for an easier incorporation of uncertainties
and robustness aspects into the computational models and construct new algorithms
for those problems guided by biologically inspired optimization principles. This way,
it provides a standardization of many existing frameworks which will in turn also
simplify the (numerical) analysis of the actual algorithms. Systems biology problems
are intricate and, as indicated above, a large variety of tools are available. Unifying
some of these frameworks may also allow for a simpler interchange of models and
algorithms.

Another advantage of building upon a inverse problem formulation is that it natu-
rally encompasses the aspect of uncertainty quantification as well. In its very general
form, inverse problems modeling allows for an easy incorporation of random per-
turbations. Within this document, we will disregard stochasticity and completely
follow a set-valued analysis approach, see Section 2 below. Other approaches for
including the uncertainty aspects in systems biology modeling and simulation in-
clude (biological) robustness, see [29]. Here, the focus lies on the construction
of ‘topological structures’ that are insensitive to perturbations, or allow cardinal
functions of the cell to keep intact under the influence of perturbations without
a formal consideration of the input-output structure of the mathematical model.
Closely related is the abstraction to logical modeling, see [7] for a mathematical
introduction, where the dynamics are condensed to a purely phenomenological set-
ting. Further approaches include the construction of robustness-measures based on
sensitivities (see [60] for an example) and constraint-based frameworks that aim at
a full enumeration of a multitude of possible solutions like flux-variability analysis,
(FVA, [36]).

Of course, there is also the top-down approach in which biophysical intuition is
used to infer metabolic behavior instead of the bottom-up approach of deducing un-
derlying principles from detailed (but ideally semi-automatically generated) models
that are beyond a full mathematical analysis. We also point out that [5, Chap-
ter 6] covers some critical remarks on how not to use inverse problem theory when
studying complex models in systems biology.

This article is structured as follows: In Subsection 1.1, we will give a brief
overview on the basic goals of systems biology emphasizing on the mathematical
modeling of metabolic networks in terms of ordinary differential equations (ODEs)
and/or differential-algebraic equations (DAEs). In Section 2 we will introduce an
inverse problem framework and discuss some special implications regarding mostly
their regularization which stem from the biological background. Section 3 will cover
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some (small-scale) examples on how the framework is already part of active biol-
ogy research and how it can be used to derive new concepts before the article is
summarized in Section 4.

1.1. A Quick Synopsis of ODE/DAE and Constraint-Based Modeling in
Systems Biology. Before the formulation in terms of an inverse problem, we will
provide a very quick overview on the applications we aim at in this work and their
mathematical formulation. For a comprehensive survey on dynamic modeling of
metabolic systems, see [21,32].

As already outlined, the complexity of biological systems and their entangle-
ment with their environment makes it very hard to obtain unperturbed and reliable
data. In systems biology, researchers distinguish between in vivo conditions (that
is: biological systems in their natural habitat), in vitro conditions (meaning: clean
and partly measurable laboratory-setups), and so-called in silico experiments (i. e.
a completely computerized solution.), see Figure 1. The ambitious vision of re-

Figure 1. Idealistic process of systems biology knowledge acquisi-
tion, molecules designed with ‘Avogadro’: an open-source molecular
builder and visualization tool. Version 1.20. http://avogadro.cc/,
[19]

searchers in that field is that one day we might be able to fully predict the behavior
of (at least simple micro-) organisms solely from genetic information. For metabolic
modeling in systems biology, this means that: (i) from the genome it is possible to
(ii) identify biochemical compounds that might be build within the cell and use
physicochemical knowledge to (iii) construct a metabolic network, i. e. a hypergraph
that completely describes the possible chemical interactions of these compunds,
which finally allows for (iv) computer simulations.

The dynamic description of metabolic networks using an ODE or DAE framework
is typically stated by means of the dynamic mass balance equations

(1.1) ẏ(t) =
d

dt
y(t) = S · f(t,y(t))
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subject to according initial/boundary conditions.
Here, y : [t0, tend] → Rny , t0, tend ∈ R, is the state vector, denoting the absolute

amounts or relative concentrations of the involved biochemical compounds, possibly

restricted to certain compartments of the cell and ˙(·) := d
dt(·) denotes differentiation

with respect to time t. Throughout, we will follow the convention that n(•) ∈ N
is the dimension of a vector-valued entity (•). S ∈ Rny×nf is the stoichiometric
matrix, consisting of the mass ratios of the metabolites in the particular chemical
reactions and encoding the connectivity of the network model. It is well-known [23]
that the stoichiometric matrix can be expressed as the product

(1.2) S = K · Z ,

where Z is the incidence matrix of the network graph and K is the complex-
stoichiometric matrix, holding all possible stoichiometric coefficients. Chemical re-
actions are combined in the flux vector f : [t0, tend]×Rny → Rnf

≥0. There are several
biochemical justifications for this concept of ODE-modeling. Basically, it stems
from an averaging idea: The actual number of molecules, their spatial distribution,
and random interactions are abstracted to compound concentrations supported by
the law of large numbers. If further heterogeneity of the solution is required for
realistic modeling, this can be achieved by formal compartmentalization, i. e. dis-
tinguishing between chemically the same biochemical compound by using different
labels. The assumption of the ‘well-stirred metabolism’ which is the basis of the
application of the law of large numbers, is additionally founded on having almost
constant temperature, since thermodynamic effects also have a heavy influence on
the reaction rates.

The dynamical behavior of (1.1) is oftentimes multi-scale: Quick (e. g. allosteric)
adaptations of the cells are accompanied by the rather slow building of cell plasma/
membrane necessary for the growth of the cell. One way of coping with the multi-
scale character is the use of the (quasi-) steady-state assumption ((Q)SSA). Here,
it is assumed that some of the biochemical compounds adapt their concentrations
infinitely fast, such that a description in terms of ODEs is no longer necessary but
parts of (1.1) can instead be replaced by algebraic relations

(1.3) 0 = SIint,: · f(t,y(t)) .

When including these algebraic constraints, the problem class shifts to a DAE [18].
Several practical studies, however, have shown limitations of the QSSA, see for
example [12, 50]. A quite comprehensive (and critical) mathematical treatment
of the quasi-steady-state assumption using, among others, methods from singular
perturbation theory, is carried out in [48]. In a nutshell, Tikhonov’s theorem gives a
sufficient but not necessary condition for when this step is mathematically correct.
Applying the QSSA, however, also has the additional advantage that just stating
mass-balances without explicit dynamics often requires fewer parameters for the
chemical reactions. Especially for quickly changing internal metabolites/smaller
molecules, measuring chemical reaction rates is very complicated such that often
one has no choice but to adhere to QSSA.

By the strict application of averaging techniques, it is theoretically possible to
explicitly derive the flux through each edge of the metabolic network by means of
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the concentrations of educts (the ingoing nodes), that is for a chemical reaction

α1 · Y1 + α2 · Y2 + . . .+ αnin · Ynin −→ X ,

the according rate fi can be expressed in terms of the concentrations

{yk(t)}nin
k=1

of chemical compounds {Yk}nin
k=1. Note that the product(s) X of the reaction are

not relevant for non-reversible reactions.
In the ‘standard’ case of mass-action kinetics, this relation is given by

fi ∝
nin∏
k=1

yαk
k ,

where often the additional simplification αk := 1 is used. To capture more com-
plicated effects (and that way—by hand—implementing a model reduction step),
other nonlinear rate laws are also frequently used. Among the most popular are
Michaelis-Menten kinetics and Hill-functions, where

fi ∝
yk

KM + yk
or fi ∝

yβk
k

Kβk
d + yβk

k

. (KM , Kd, βk ∈ R)

For yk → ∞, these function level out (cf. Figure 2 for rate laws depending on only
one educt yk) such that a maximum level, an upper bound for this reaction rate
can be implemented. For βk < 0, Hill-functions are called inhibitory as for grow-

Figure 2. Flux profiles for different activation and inhibition rate laws

ing educt concentrations, the reaction rate gets lower. This implements chemical
inhibitors, so chemical structures which prevent the reaction from actually taking
place. Unfortunately for the researchers, even all this tools do not completely solve
the problem of insufficient parametrization of the DAE models and techniques from
control theory or exhaustive data-fitting are necessary to reason from these models
at a larger scale.

An opposite approach for the construction of computational models for metabolic
systems is constraint-based modeling: Here, solely, given constraints on the model
in terms of
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• stoichiometry,
• upper and lower bounds on the fluxes,
• steady-state of (most of) the metabolites, and
• thermodynamics, among others,

are formulated and one searches for all, some, or ‘particularly important’ solutions
that remain or semi-automatic procedures to relax some of the constraints if no
solution can be obtained at all. This may once again be seen as a model reduction
step and a way to deal with the insufficient data situation. As constraint-based
modeling can equivalently be formulated as the feasibility approach for the solution
of inverse problems, we postpone a closer description to Section 2 below.

In Section 3 below, we will apply DAE- and constraint-based modeling techniques
for a small artificial metabolic network.

2. Inverse problems: General formulation

2.1. Setup of the Mathematical Framework. Giving a complete mathematical
framework in which any inverse problem from the literature can be cast is almost
impossible. It is peculiar, almost ironic, that most introductory texts on inverse
problems start by the definition of its inverse: The direct problem. Following [28],
we will also base the representation here on the abstract formulation of the direct
problem as an input-output relation of the form

(2.1) xmeas := T (p)x+ δ ,

where xmeas is the resulting measurable (or detectible) system outcome and δ is some
noise on the output. In practice, xmeas can be (dense or continuous) computerized
data for metabolite concentrations, growth measurements of bacterial cultures or
direct machine output from experiments or (discrete-valued or structural) infor-
mation like genome-sequencing results, gene-regulation rules or statistical sampling
data. For the purpose of a broad mathematical form, we will simply require xmeas

and δ to be elements of a topological or Banach space Y. The operator T : X → Y,
possibly depending on certain parameter values p ∈ Rnp provides a mathematical
description of how the outcome xmeas can be computed once a full understanding
of the system’s state x ∈ X is at hand, where X also needs to be chosen as some
topological space.

Of course, what one would like to obtain from the computational model is the
system state x which should itself be part of the set of feasible solutions of the
inverse problem D ⊆ X. So, straightforwardly, the task of the inverse problem is
now the following:

(2.2) Find (some, all, ‘the best’) x ∈ D such that (2.1) is satisfied.

One particular aspect of this inversion process is that, formally, it is very hard to
accomplish. According to the seminal work of Hadamard [17], the condition number
of an inverse problem is very large or—more often still—the problem ill-conditioned
or even ill-defined. In particular, this means that

(1) even smallest changes in the inputs can cause tremendous variations of the
numerical results,
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(2) it might be necessary to state additional, sometimes even artificial conditions
in order to obtain a clear well-defined problem.

Numerical and analytical methods for coping with this ill-posedness of inverse prob-
lems, one way or the other, all boil down to the design and use of appropriate reg-
ularization techniques. In the following paragraph, we will shortly review the most
common solution techniques for inverse problems and where the regularization en-
ters in these cases.

2.2. Common Solution Aspects. Even though the field of inverse problems has
been applied in various different disciplines and for even more applications, its
somewhat vague definition makes it hard to give a comprehensive overview on the
ingredients usually employed for the solution. Nevertheless, there are several recur-
rent characteristics:

(a) Guiding optimization principles, which in most cases means that the inverse
problem is recast as an approximation problem. Typical questions that arise
here are (i) the appropriate choice of distances to describe how far an ap-
proximation is off the given data and (ii) a compromise of the various types
and elements of the available data.

Generically, this ‘optimality’ is understood in terms of

(2.3) min
x∈D

∥xmeas − T (p)x∥γ⋄∗ ,

where ∥·∥∗ denotes a (semi-) norm on Y and γ⋄ ≥ 0 an appropriately chosen
exponent to improve the numerical properties of the applied algorithms.
More generally, approximation problems of this type might as well be stated
in vector-valued fashion, see [16] for a detailed discussion of this problem
class.

(b) Concept and design of regularization techniques. This is probably the most
common part of the mathematical analysis and solution of ill-posed/inverse
problems. By definition, regularization means that a system is changed
in order to fulfill certain additional requirements or laws of reasoning. The
most common solution aspect in practical use is the regularization by means
of an additional term (the ‘regularizer’) R in the optimization principle, [55]

(2.4) min
x∈D

∥xmeas − T (p)x∥γ⋄∗ + λ · R(x; p,D, T ) .

In its most general form, the regularizer may, apart from the solution vector
x, depend on the parameters p but also on the feasible set D (e. g. when
attempting to choose x very deeply inside the feasible region for robustness
of the solution) and the evolution operator T which may provide insight
into expectable smoothness of the solution. Mathematically, regularization
techniques often convexify the optimization problem such that global opti-
mization strategies can be used. In the case of Tikhonov-regularization, for
example, one is trying to find a minimal norm approximation, i. e.

R := ∥x∥2 ,
where ∥·∥ is a ‘natural’ norm in Y. Other forms of this regularization in-
clude maximum-entropy and bounded-variation [1] if this norm includes
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information about the weak derivatives of the solution x, for example norms
in Sobolev spaces. In dynamical system simulation like ODE/DAE mod-
eling in systems biology, dilution or damping terms are a simplified one-
dimensional version of this. Tikhonov regularization is closely related to
projection methods, the Moore-Penrose pseudoinverse for a solution of un-
derdetermined linear systems is the limit case of λ → 0 if the problem is
stated in the approximation form. When studying analytical properties of
the regularized solutions, the role of the regularization parameter λ ≥ 0 is
usually of central importance. The so-called L-curve is an indicator for a
good choice of the regularization parameter, but the computational effort
for its computation is often too restrictive, [28].

Of course, regularization does not only concern the objective in the op-
timization or approximation problem that recasts (2.2). Sometimes, also a
regularization of constraints (constraint relaxation) is necessary, where the

feasible region is extended D → D̃. In practice, D can often be expressed
by a set of inequalities G(x) ≤ 0 which can be relaxed to G(x) ≤ ϵ with
a vector ϵ ∈ RnG

≥0 . Another possibility is to just approximately enforce the
constraints using penalty techniques. Also, a restriction of the space X, that
the solutions live in has a regularizing effect. For example, requiring more
smoothness or restricting x to a finite-dimensional ansatz-space may already
lower the condition number of the inverse problem considerably.

Lastly, also preprocessing, smoothening or a prior statistical analysis (e. g.
removal of outliers) in the input data xmeas is to be considered as regulariza-
tion and sometimes an iterative refinement of the regularization is required
as well.

In biology, systems are usually much more robust to external changes
than randomly generated systems, oftentimes it is still unclear why and the
field of biological robustness [29, 52] is vast and a recurring motif in the
systems biology community. Inspired by this, in Section 2.3 below, we will
argue that for biological systems, the restriction to solely mathematically
motivated regularization terms falls rather short and outline some ways to
include biological knowledge into the process.

(c) The construction of a universal algorithm. Roughly speaking, this means
that the input-output structure of (2.1) is directly used to ‘feed’ an algorithm
that ‘learns’ the common features of the system and that can later on be
inverted to predict results for unknown inputs.

Within this category of computational tools, there has been immense
progress in recent years that are typically entitled under keywords like ‘arti-
ficial intelligence’, ‘(deep) neural networks’ and ‘supervised learning’. Also,
subspace approximations and support vector machines (SVMs) [51] are some
form of universal algorithms.

But, more generally, also some plain data fitting techniques and, to a
certain extend, system identification issues fall under this class and also
some varieties of Monte-Carlo methods can fit into this category.

The bottlenecks of these methods are that (i) there cannot be given any
guarantee that the procedures actually reproduces the systems behavior as
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most of these algorithms work as black boxes and often do not use explicit
knowledge, e. g. from underlying first principles, (ii) they show unpredictable
behavior and sometimes do not work at all outside of the range where they
were trained, and (iii) there is almost no deeper understanding or further
analysis possible once the results are obtained. Concerning the last two
difficulties, several recent techniques for the inversion of the input-output
structure of (deep) neural networks [37, 39] have been introduced which
might in the near future amend these drawbacks.

To remedy obstacle (i), the current state-of-the-art in the training phase
of universal algorithms includes the use of test sets and validation sets (cross-
correlation, i. e., checking against priorily unknown data) that do not explic-
itly feed into the parameters of the resulting algorithms but instead are used
to value whether a sufficient training quality is reached. However, this re-
veals the most important point and demanding part of this class of solvers:
It is necessary to have sufficient data present or, even better, techniques
such that this can be generated. Unfortunately, scientific data in metabolic
system analysis is often sparse and hard and expensive to acquire. In case
that the data is present to a sufficient amount, the issue of overfitting comes
into play. Overfitting describes the tendency of automatically trained sys-
tems to approximate the noise of the data rather than underlying model
itself. To avoid overfitting, once again the need for apt regularization terms
comes into play.

(d) feasibility problem formulation: The task here is to just find any (approx-
imate) solution that fulfills all (possibly relaxed) constraints and a relaxed
input-output structure (2.1) by a (reproducible and robust) procedure. Put
in other words: The problem is abstracted to the set inclusion

(2.5) Find x ∈ D̃ s.t. xmeas ∈ T x+∆ ,

where ∆ ⊆ Y is chose large enough to include the expected noise level.
Common computational examples include feasibility problem solvers based
on sequential projection methods, see [3] for a classical review on this ap-
proach. The feasibility approach in this formulation reveals the strong con-
nection to set-optimization [26] and robustness [4]. For systems biology
applications, the feasibility approach might be viewed as the most natu-
ral formulation since constraint-based modeling naturally leads to the same
problem mathematical class, that is, a satisfiability problem. As indicated
in (2.5), constraint relaxation is oftentimes of particular importance.

Regularization for this solution concept means that an additional objec-
tive is defined that is to be minimized over the relaxed feasible region D̃.

R(x; p,D, T ) → min
x∈D̃

The great generality of the inverse problem formulation also has its drawbacks:
Apart from the model-related question which constraints should be classified as
hard and which as soft constraints, it is important to notice that it is also not
unique what to choose as parameter and what as input/measurable data or as part
of the evolution operator T .
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2.3. Regularization by Biology-inspired Optimization Principles. For sys-
tems biology and bio-engineering applications, the theory of the evolution of species
by environmental selection is a key for obtaining plausible optimization principles
that serve as the underlying model in (2.2) or as regularization principles: Believ-
able and superior regularization terms R(x) can be based on the expectation of
the researcher that (on top of all the prior model assumptions and constraints) an
additional minimization of a certain goal brings an evolutionary advantage of the
cell culture or organism. This line of reasoning has the advantage that additional
scientific expertise can be brought into the solution procedure on several levels of the
modeling process but it has the drawback that on the side of mathematical analysis
one might not be in the position to rely on positive mathematical properties such
as strict convexity.

Typical design goals based on such evolutionary considerations can be found (by
far not exhaustive) in [8, 20, 30, 34] and the references therein. We will shortly give
an overview on the most common ones and review some of the examples in Section 3
below.

• Cell efficiency: A possible regularization term might implement a mini-
mization a the fluxes required by the cell, that is for the dynamic model
description from (1.1).

(2.6) R(x) = ∥f(·,y(·))∥γ• .

Here, ∥·∥• denotes a semi-norm and γ > 0 an exponent, that might be
introduced for the same reasons as already pointed out for the approximation
problem form of inverse problems (2.3). The possible evolutionary benefit
from a minimization of R is obvious: Maintaining biochemical reactions in
the cell requires energy and valuable precursors and might expose the cell
to a predator. Obviously, it might be necessary to include constraints that
a certain minimum of metabolic activity remains or other criteria are met,
like no drop of vital compounds.

Note that in (2.6) there is no explicit input parameter x in the right-
hand side. The reason is that it depends on the choice of inverse problem
formulation whether the fluxes f , the states y or some other quantity is
expressed by x. Note also that, if the fluxes f (without dependency on y)
are expressed by x, this form of cell efficiency mathematically implements a
Tikhonov-type regularization.

• Growth (a): The probably most often used regularization term in systems
biology is the maximization of biomass production, or the macro molecule
assembly of the cell, respectively

R(x) = −∥yIimportant
(·)∥γ• ,

where Iimportant is an index set, collecting ‘important’ entries of the metabo-
lite vector y. The semi-norm ∥·∥• might be L2-like, including the entire time
course or just measure the absolute value at the final time point. For bacte-
ria in very good external growth conditions, there is high evidence that this
is in fact (at least one of) the most important objectives [42] if one alleges
that such a design goal exists at all. The evolutionary advantage is clear:
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The fastest growing culture will take over the habitat by its sheer size at a
certain point in time.

• Growth (b) Goal: Maximize flux through biomass reaction/macro molecule
assembly fluxes. In this case, the regularization term could be given as

R(x) = −∥fI∗
important

(·,y(·))∥γ• ,

where I∗
important collects relevant fluxes from the entire flux vector f . The

biological reasoning follows the lines of the biomass growth.
• Robustness (a): On the other side of the spectrum of possible design ob-
jectives, a cell is also interested in maximizing its survival time. If the
time interval for the above simulation task is not fixed, this can formally be
expressed as

R(x) = −tend ,

subject to minimal survival requirements (see the ‘cell efficiency’ goal). In
some scenarios, this is indeed contrary to the aforementioned goal of e. g.
maximizing the growth: If the culture is required to feed on a limited amount
of available nutrients (or in the wild: is exposed to recurring droughts) or
breathable air, it is not advantageous to grow as fast as possible but better
to pace themselves in terms of nutrient consumption.

• Robustness (b): In a similar manner, cells benefit if they minimize their
response times in case of sudden changes in their environment. This ranges
from a quick switch of metabolic pathways when certain nutrients are de-
pleted to the minimization of toxic intermediates and/or waste products.

• Robustness (c): In yet another understanding of robustness, some cells max-
imize their nutrient uptake to outperform competitors for the same energy
source. Mathematically, this can again be expressed as

R(x) = −∥fIuptake(·,y(·))∥
γ
• .

As mentioned above, in systems biology, the term ‘robustness’ has a very
broad and somewhat blurred meaning, see [29].

As already said, this list only gives a glimpse on what additional biological intuition
might provide to improve the inverse problem approach to metabolism simulation
and identification problems in biological applications. Of course, also compromises
between several of these design goals might be worth investigating. This leads to
multi-objective optimization (see [53] for a discussion in the context of systems
biology) or even set-valued formulations [26] but is beyond the scope of this paper.

3. Examples

3.1. Description of the Benchmark. We consider the artificial metabolic net-
work depicted in Figure 3. In this setup, there are two nutrients N1 and N2 that the
organism can feed on through the biochemical reactions f1 and f2 to first produce
the internal metabolites M1 and M2 which can later be converted into the biomass
precursor M3 that the cell then uses to build up macromolecules. At this stage,
the system needs to ‘decide’ whether the precursor M3 should directly be used to
create the biomass P itself or whether it should be invested to further improve
the uptake reactions via the production of enzymes E1 and E2 both of which are
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slowly degraded over time by the reactions f8 and f9. For simplicity, we assume all
reactions to be non-invertible.

Figure 3. Schematic illustration of the benchmark, external
metabolites in red, internal metabolites (fast components) in blue,
enzymatic inhibition is indicated by a bar arrow, activation by a
double arrow head. The inhibitory effect of M1 is assumed to be
unknown priorily.

In experimental biology, the effect that can be observed in this situation is the so-
called diauxic shift: The population first ‘concentrates’ on just one of the nutrients
until it is completely depleted. Not until this happens, the metabolic pathways for
processing the ‘second best’ nutrient is activated. In the model, the fact that the
nutrient N1 is ‘better’ than N2 is reflected by the effect of the enzyme concentration
on the uptake reactions: Enzyme E1 is about 100 times more effective in (see the
‘enzyme-capacity constraints’ below) catalyzing the uptake reaction N1 → M1 than
E2 for the reaction N2 → M2.

We distinguish eight metabolic compounds the last five of which are also subjected
to given initial concentrations y(t0 = 0). We wish to simulate the behavior of the
metabolic network model over the course of two days (2x 24 hours).

y(t) =
(
yM1(t) yM2(t) yM3(t) yE1(t) yE2(t)

yP (t) yN1(t) yN2(t)
)⊤ ∈ R8 ,

y(t0 = 0) =
(
y
(1)
0 y

(2)
0 y

(3)
0 0.05 0.05 0.01 10 10

)⊤
,

and t ∈ [0, 48] ,

where y
(i)
0 , i = 1, 2, 3, need to be defined through the algebraic constraints (1.3).

The first three metabolites are quickly adapting internal ones, such that in the
notation of (1.3) we have:

Iint = {1, 2, 3} = {M1,M2,M3} ,
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Imacro = {4, 5, 6, 7, 8} = {E1, E2, P,N1, N2} .
In the sense of constraint-based modeling techniques, the following assumptions

on the model are made: The stoichiometry, i. e. the mass ratio of the metabolites
in the respective reactions, is given by the following stoichiometric matrix

S =



1 0 −1 0 −0.3 0 0 0 0
0 1 0 −1 0 −0.3 0 0 0
0 0 1 1 −0.1 −0.1 −3 0 0
0 0 0 0 1 0 0 −1 0
0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 1 0 0
−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0


.

Upper and lower bounds of the reaction rates are given by the following vectors

lb =
(
0 0 0 0 0 0 0 0 0

)⊤ ∈ R9 ,

ub =
(
∞ ∞ 1 1 1

100 1 1 ∞ ∞
)⊤ ∈ R9 ,

that is for all t ∈ [t0, tend] it holds lb ≤ f ≤ ub. To include the enzymatic effects of
E1 and E2 on the uptake reactions, we furthermore introduce the enzyme-capacity
constraints

f1(t) ≤ 1000 · yE1(t) ,

f2(t) ≤ 1
10 · yE2(t) .

The degradation reactions are dependent on the amount of available enzymes by
the linear inequality relations

1

20
yE1(t) ≤ f8(t) ≤

1

10
yE1(t) ,

1

20
yE2(t) ≤ f9(t) ≤

1

10
yE2(t) .

In the following paragraphs, we will classify existing frameworks that come across
during the modeling process of metabolic networks like this one. Note again, that
the descriptions we propose are not unique.

3.2. Network Inference. As outlined before, building up the metabolic network
model from mass and or atomic stoichiometric relations of the involved metabolites
can theoretically be done in a relatively straightforward manner. However, under-
standing activation and inhibition of reactions is not possible by simple arithmetic,
unless the involved enzyme complexes are all known and explicitly included in the
model which introduces more unknown constants and increases the problem size.
Ways to infer interaction structures in dynamic network models are reviewed in [56].
For the sake of brevity, and since the model is artificial to start with, we will not
fully work out a computational example here but note that network inference can
be understood in terms of the inverse problem framework from Section 2.
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Observation 3.1. The problem of network inference is an inverse problem of type
(2.2) if one considers the following assignments:

• x = Z (from (1.2)) or x = S, X = Rny×nf ,
• T = φ(·;S) (as the flux of the ODE/DAE system)
• xmeas ... time course data of all metabolic compounds. Y = (Rny

≥0)
N , where

N denotes the number of data points.

Typical computational methods in this field use the approximation problem for-
mulation if sufficient data can be measured and regularization is done by sparsity
enforcing p-norms with 0 < p < 1, i. e. 0 ≤ γ⋄ ≤ 1 in (2.3). Strictly speaking, the
feasible region X should only include integer-valued entities for the integer-valued
ratios of atoms in the occurring molecules but (i) this is not relevant for many
macro-molecules, (ii) the condition of the equations is often improved when the
actual value is scaled up or down to fractional values and (iii) this (unnecessarily)
increases the difficulty of the mathematical problem.

3.3. deFBA – A Framework for Resource Allocation Problems in Systems
Biology. Based on the control framework ‘dynamic FBA’ [35], as a dynamic ex-
tension of the classical flux-balance analysis (FBA, see below) and ‘resource balance
analysis’ (RBA, [15]) as a way to include the cost for macro-molecular assembly in
metabolic network models, Rügen et al. [46] and Waldherr et al. [62], respectively,
introduced the frameworks conditional FBA (cFBA) and dynamic enzyme-cost FBA
(deFBA).

Both are optimal control frameworks, [14], that use a strongly condensed, linear
model for the metabolic networks but therefore work even on the genome-scale [45].

In cFBA/deFBA, the consideration of macro-molecular assembly costs is handled
by the introduction of additional ODEs, chemical reactions, respectively, describing
the time evolution of the concentrations of these macro-molecules and different kinds
of linear constraints on the concentrations of different metabolites and their catalysts
at all times. The control variables (in the sense of classical optimal control) are the
fluxes in the right-hand-sides of these dynamic equations and, from the biological
side, upper bounds on their values need to be determined first from the literature.
Note, that the parameter dependence of solutions of optimal control problems is an
area of active research, see [13,27] for recent results.

In its dynamic (i. e. optimal control) form, the framework can be cast as

min
y(·),f(·)

∫ tend

t0

(b(t))⊤ · y(t)dt

0 = SIind,: · f(t) for a. a. t,

ẏ(t) = SImacro,: · f(t)
y(t) ≥ 0 ,

ub ≤ f(t) ≤ ub for a. a. t,

Hy · y(t) +Hf · f(t) ≤ h for a. a. t.

(3.1)

Here, the weight vector b(·) is typically chosen as to maximize a (exponentially dis-
counted) biomass production. Note that the QSSA in this case really substantiates
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a model order reduction step: The internal metabolites completely vanish from the
formulation. The positivity requirement on the compounds y is intuitively clear
from their meaning as metabolite concentrations. For ODE-modeling, this is often
not an important issue because the flow is mostly positivity-preserving, anyway. For
the optimal control task in cFBA/deFBA, on the other hand, this introduces state
constraints which complicates the numerical treatment. The mixed constraints in
the last row correspond to enzyme-capacity constraints as we have seen in the above
example already.

The state-of-the-art method in the context of cFBA/deFBA is to choose a con-
stant time-step implicit time integration method (In the literature, trapezoidal rule
and 1st/3rd/5th order RadauIIA collocation methods, [18] are used) and use a full
parametrization approach of the optimal control task. This leads to a (very large
and often badly scaled) linear optimization problem

min
x

c⊤ · x ,

s. t. A · x ≤ b ,
(3.2)

which can be solved with powerful free and/or proprietary software libraries.
Pontryagin’s Minimum Principle. To obtain necessary optimality conditions and
circumvent the full parametrization procedure, one may introduce the Hamiltonian

H := l0 · (b(t))⊤ · y(t) + (λ(t))⊤ · S · f(t) ,

where the multiplier l0 ≥ 0 can usually be normed to l0 = 1. For the Lagrangian L,
further multipliers µ and ν are introduced

L = H+ (µ(t))⊤ · y(t) + (ν(t))⊤ · SIind,: · f(t) .

Penalty Formulation: To circumvent the difficulties of mixed constraints in optimal
control problems, we furthermore introduce logarithmic penalty terms

h−Hy · y −Hf · f ≥ 0 ⇒ ϕ(t,y,f) := −ϵ
∑
i

ln((h−Hy · y −Hf · f)i)

with a penalty parameter ϵ The adjoint dynamics within the Pontryagin minimum
principle read

λ̇(t) = −∂yL
and are valid on sub-intervals of equal activity of mixed constraints, [14,61]. Adding
the local optimality condition for f :

f(t) = arg min
lb≤u≤ub

H(t,y,u,λ) ,

which can either be stated by the variational formulation or from the necessary
condition of local optimality

0 = ∂uH ,

(which only enforces optimality in the interior of the feasible set for f) forms a
DAE-boundary value problem from the Pontryagin principle, which can be solved
by adaptive finite differences or finite elements in a more stable manner than the
complete parametrization approach presented above.
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Remark 3.2. The choice

b(t) ≡
(
0 0 −1 0 0

)⊤
is a natural one as the organism has an interest in growing fast which is achieved by
accumulating the biomass P (t). One can, however, show that this leads to singular
arcs in the profile and a non-unique solution to the optimal control problem.

Already in [62] it is pointed out that the solutions of deFBA problems oftentimes
are not unique. In practical computations, this of course hampers an efficient nu-
merical treatment. In that respect (and in light of the inverse problem viewpoint
of this paper), we introduce a first regularization term on the objective vector b as

b⇝ b+
(
ϵ ϵ 0 0 0

)⊤
.

This step can itself be interpreted as a biologically inspired regularization, since the
production and maintenance of enzymes in the cell is a costly process.

Remark 3.3. In the original formulation of cFBA/deFBA, the introduction of en-
zymes is a modeling aspect of the framework itself. In fact, many publicly available
metabolic network models concentrate on internal metabolism and many macro-
molecules (enzymes, ribosomes etc.) need to be added manually, anyway, if one
is interested in solutions that consider enzyme-costs (or realistic cell growth, for
that matter). The introduction of this macro-molecular apparatus with enzymes,
ribosomes, and maybe even DNA/RNA replication costs might itself be viewed as a
regularization: Taking simply the presence of proteins as control variables would in
general lead to jumps in their concentrations. This is biologically not meaningful,
especially the allocation of macro-molecules is a time consuming process compared
to other adaptations in a cell.

In Figure 4, the results of the deFBA model with the adapted weight vector is
displayed. The diauxic shift can clearly be recognized: First, the cell increases the

Figure 4. Solution of the deFBA problem, right: metabolite con-
centrations scaled by their maximum value over the time interval

amount of enzyme E1 until its scarcity no longer defines an upper bound for the
uptake of nutrient N1, which then gets quickly consumed. At the same time, the
cell can slowly start feeding on nutrient N2 and to build up the necessary enzyme
for that. The biomass-curve P (t) first increases strongly, then almost completely
saturates for a moment until sufficient E2 is ready to fully concentrate on the con-
sumption of the second energy source. When that is also exhausted, all reactions
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come to an end; the enzyme degradation reactions are subjected to lower bounds
such that these also take some time. Notice, how for this simple example, we already
have more than five qualitatively completely different phases in the experiment.

Observation 3.4. The problem structure of deFBA can be understood in terms
of the inverse problem framework (2.2) for the choices

• x := f(t) for t ∈ [t0, tend],
• T = ∅, Y = ∅,
• X = L∞(Rnf )

• D = {f(·) ∈ X : lb
L2

≤ f
L2

≤ ub, SIind,: · f
L2

= 0, and Hy · y+Hf · f
L2

≤ h, y ≥
0 for y solving ẏ = SImacro,: · f}

where L∞(Rnf ) denotes the space of bounded functions and
L2

• means that the
relation has to hold almost everywhere on [t0, tend].

The solution procedure within deFBA follows the feasibility formulation approach
with the bio-inspired regularization as indicated in the first line of (3.1).

3.4. Universal Algorithms. As outlined in Section 2 above, the recent progress in
availability of powerful software libraries for artificial intelligence, usually by means
of neural networks in its various forms [22, 41], has lately lead to a spike in the re-
search activities in this area. Having a computational method like cFBA/deFBA at
hand one is no longer strictly required to rely on expensive experimentally obtained
time series data of metabolite concentrations to train the algorithms.

A proof-of-concept for the inference of logical rules in metabolic systems by means
of neural networks was presented in [44]: From a simple setup of a neural network,
logical rules like ‘if metabolite A is present, flux B must be completely turned off.’
were obtained. Such rules can be used for cross-species analysis, for verification
of the cFBA/deFBA models, and also to use them in more refined models whose
simulation requires less computational effort. Apart from the pure ODE/DAE-
modeling (which we will address in Paragraph 3.6 below) different ‘dynamic versions’
of FBA have been proposed.

3.5. Flux-Balance Analysis (FBA). The use of linear programming for bio-
engineering and systems biology purposes has a long history. However, the work of
Palsson and co-workers [58], see also [42] for a review, has paved the road for the
excessive and somewhat standardized use of the techniques.

In its classical form, FBA aims at finding the biochemical fluxes at a fixed point in
time t∗ assuming that the entire metabolism has already reached a steady-state, i. e.
Iint = {1, 2, . . . , ny} in (1.3). Like in cFBA/deFBA, for the fluxes we additionally
assume upper and lower bounds such that the introduction of a (linear) objective
like biomass flux maximization

min
f feasible

−fbiomass

leads to an LP (3.2), defining the fluxes.
To obtain a dynamic version of FBA, so-called iterative FBA (or, not consistently

sometimes also called dynamic FBA) has been introduced. As the name suggests,
the fluxes are fed into an (typically explicit) algorithm for the time integration of the
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biomass reaction which can be used to update metabolite concentrations and this
procedure is iterated, see Figure 5. In the language of control theory, this can be

Figure 5. Schematic illustration of iterative versions of FBA

seen as an open loop control task. Iterative FBA can be combined with logical rules
leading to so-called regulatory FBA (rFBA): Here, in every step before the solution
of the LP, the logical rules are checked and potential knockout conditions (upper
and lower bounds of certain fluxes are set to zero) are added to the constraints
or existing knockouts released. Information like the rules acquired from universal
algorithms (see Paragraph 3.4) or model checking algorithms can then be kept in
their discrete/logical form and directly build into the semi-dynamic models.

Observation 3.5. (Iterative, regulatory) FBA can be regarded as an (iterative)
application of the inverse problem framework (2.2), by means of the choices

• x = f(t∗),
• T = ∅, Y = ∅,
• p = {t∗, ⟨current set of knockout fluxes⟩}
• X = Rnf , D = {f : S · f = 0, lb ≤ f ≤ ub}

Using the biomass flux objective function is a bio-inspired regularization in the sense
of the feasibility approach.

Remark 3.6. The bad conditioning of the inverse problem is particularly apparent
for this framework: While the determination of the optimal value of an LP is
usually considered a (mostly well-conditioned) standard problem in optimization
and numerical mathematics, in FBA one solves for the solution vectors. Here,
small input data changes can lead to the solution jumping from one corner of the
feasible region to the next with possibly large impact on the solution which is
processed further on. A simple regularization in terms of efficiency (corresponding
to Tikhonov regularization again) can resolve this issue easily, but the application
of linear programming solvers is no longer possible in that case.

In realistic examples, the solution space of the FBA problems is almost never
unique as shown for many case studies, [25]. The success and the very existence of
flux-variability analysis (FVA, i. e. a framework to enumerate all possible flux com-
binations that solve the LP) shows that the non-uniqueness is in fact an important
issue and not just a theoretical aspect.
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Remark 3.7. For iterative FBA and cFBA/deFBA, we completely neglected the
evolution operator T and measurable data xmeas. This classification is obviously
not the only possibility since a time evolution is at the basis of all these modeling
frameworks. Nevertheless, both concepts fall into constraint-based models in sys-
tems biology such that this completely constraint-based feasibility approach seems
to be the most reasonable one.

3.6. Parameter Estimation. As a last example, we come back to the ODE mod-
eling of metabolic networks. If time series data (not necessarily in abundance as
for universal algorithms) is available and sufficient model information/expertise to
refine the optimal control model from cFBA/deFBA, the system identification pro-
cedure can be recast as a parameter estimation problem, see the monographs [47]
and [10] for a general introduction and applications in systems biology and [59] for
a review.

In terms of a inverse problem reformulation, this is probably the most straight-
forward example as it is an approximation problem to start with. For the proposed
benchmark, the following ansatz functions for the flux vector were chosen

f1 = p1 · yN1(t) · 10 ·
yE1(t)

p4

pp43 + yE1(t)
p4

,

f2 = p2 · yN2(t) ·
1

10
· yE2(t)

p6

pp65 + yE2(t)
p6

· 1

pp87 + yM1(t)
p8

,

f3 =
yM1(t)

p9 + yM1(t)
,

f4 =
yM2(t)

p10 + yM2(t)
,

f5 =
1

100
· yM1(t) · yM3(t)

p11 + yM1(t) · yM3(t)
,

f6 =
yM2(t) · yM3(t)

p12 + yM2(t) · yM3(t)
,

f7 =
yM3(t)

p13 + yM3(t)
,

f8 =
1

10
· yE1(t)

1 + yE1(t)
,

f9 =
1

10
· yE2(t)

1 + yE2(t)
,

where the bounds for the fluxes (if not included through activation/inhibition terms)
are explicitly built in already. The inhibition function in f2 symbolizes the inhibitory
part that could stem from a rule ‘If metabolite M2 is present, there is no need for
activating flux f2.’ The mathematical problem is to find parameter values p ∈ R13

such that the deviation from given data points is as small as possible.
For our experiment, the optimization was performed using the simplex-algorithm

of Nelder and Mead [40], known for its robustness, with additional penalty terms to
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avoid negative parameter values (log-penalty, see above) and a (bio-inspired) regu-
larization by means of a quadratic penalty term to forbid the internal metabolites to
accumulate too much. The latter regularization is closely related to the Levenberg–
Marquardt method [10] for accelerating descent methods in general nonlinear pro-
gramming problems.

The time integration was performed using the implicit (NDF) Matlab time inte-
gration method ode15s.m [49] and the given data were obtained from cFBA/deFBA
with interpolated values at 20 equally distributed time instances, see Figure 6.

We obtained the solution vector

p ≈
(
0.563 1.486 0.398 2.100 0.408 1.7623 0.653 0.681 1.983 0.783

0.121 0.364 1.828
)⊤

and the results are also included into Figure 6.

Figure 6. Results of the parameter estimation problem and given
data points for nutrients N1, N2 and biomass P (ODE results in red
solid line)

Observation 3.8. The parameter estimation problem can be cast as the inverse
problem in the sense of (2.2) for the choices:

• x = p, X = R13,
• T : p → {y(ti)}20i=1, such that ẏ(t) = Sf(t,y(t);p(t)) for all t ∈ [t0, tend].

For out experiment, we kept out the enzyme-capacity constraints for the up-
take reactions, which would have introduced nonlinear constraints (and not have
improved the solution).

Remark 3.9. As we use penalty techniques to ensure the positivity of the parame-
ters, this requirement is viewed as a soft constraint. Alternatively, the classification
could have included these as hard constraints D = {p : p ≥ 0}.
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4. Conclusion

The formulation of various problems at almost all stages of the model building
and simulation process in systems biology offers a multitude of benefits: It allows for
a more standardized and therefore better communication and clearer representation
of the identification tasks, which is crucial not at last because of the large size and
complicated structure that these models show very often. Inverse problems open
the possibility to use the same theoretical background and software libraries on
various stages. Once such a general framework is established, it simply allows for
construction of new computational frameworks by combining different techniques
and regularization terms inspired by evolutionary principles.

So far, we did not mention further aspects of inverse problems in systems biology
such as (inverse) bifurcation analysis which may be seen as an example of qualita-
tive inverse problems, spatially distributed phenomena, explicit stochasticity in the
models, the explicit consideration of thermodynamics, or chemical reaction network
theory in general; to this point, we have in fact merely scratched the surface of this
vast emerging topic.

Our next steps in this direction will include the use of iterative projection tech-
niques for the solution of the feasibility problem form of these inverse problems
and the exploitation of bio-inspired optimization principles on other stages. An
important milestone for this field would lie in the establishment of a clear roadmap
or workflow on how to uniquely classify existing frameworks but such a workflow
would have to be the combined effort from various sides within the systems biology
community.
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