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MINIMAL SOLUTIONS OF SET OPTIMIZATION PROBLEMS

ELISABETH KOBIS AND THANH TAM LE

ABSTRACT. In this paper, a novel solution concept for set optimization problems
is established. In particular, we introduce the notion of strong minimal solutions
order to fill the gap between the existing concepts of strict and ideal minimal
solutions. Moreover, we develop numerical procedures to obtain strong, strict
and ideal minimal solutions of set optimization problems. Specifically, several
extensions of the well-known Jahn-Graef-Younes method to set optimization are
proposed under broad assumptions. Our methods can highly reduce the numeri-
cal effort that originates from the comparison of sets that is involved when solving
set optimization problems.

1. INTRODUCTION

It is well known that set optimization has recently been investigated intensively
because of its several important applications, see [7, 8, 9, 10, 11]. In this paper,
we are concerned with the so-called set approach in order to define solutions of set
optimization problems. The main idea of this concept is based on comparisons of
sets in image space of the objective function, see [15, 16]. We investigate not only
known but also novel solution concepts in order to fulfill the necessity of deriving
types of solutions which will be useful from the mathematical point of view as well
as from the practical perspective.

The main goal of this manuscript is deriving numerical methods for computing
different types of solutions for set optimization problems. In the literature, there
only exist few algorithms for solving set-valued optimization problems. A descent
method given by Jahn [4] under convexity assumptions computes approximations
of minimal elements. This approach is also further investigated in [8, 11]. In this
paper, while using the so-called set approach, we extend the so-called Jahn-Graef-
Younes method, which was introduced by Younes [17], Jahn and Rathje [6] for
the case of vector optimization. The advantage of this procedure is that it is not
necessary to utilize the transitive property of set relations as well as the convexity
of the sets under consideration. In addition, our method can reduce the numerical
effort while sorting out solutions which do not belong to the set of desired solutions.

This paper is organized as follows: In Section 2, we recall and introduce different
solution concepts for set optimization problems. We also investigate properties and
relationships among these solution notions. Section 3 involves existence results for
set optimization, where the semicontinuity of the objective function plays a key
role. In Section 4, we derive numerical methods for computing strong, strict and
ideal minimal solutions of a given set optimization problem. For an illustration, we
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deal with a detailed example, where the objective function is not a convex-valued
mapping. Section 5 concludes this work.

2. PRELIMINARIES

Throughout this manuscript, let X,Y be linear spaces, and denote the power set
of Y without the empty set by

P(Y):={ACY | Ais nonempty}.

Let S C X be a nonempty set, F': S = Y be a given set-valued map and < be a
set relation, which is a binary relation among sets. If for some A, B € P(Y), A < B
and B < A holds, then we denote A ~ B. Furthermore, for A € P(Y), we define
[A] :={B € P(Y) | B~ A}. We denote the family of sets |J F(x) by F(S). Let

r€S
us consider the problem of minimizing the set-valued map F', denoted by
2.1 in F'(x).
(2.1) min F(z)

Several notions of minimality are collected in the definition below (see [5]).

Definition 2.1. Consider problem (2.1) in which the set relation < and z € S are
given. We say that:

(a) 7 is a minimal solution of problem (2.1) w.r.t. < if
x € S,F(z) < F(z) implies F(z) = F(x).

We denote by Min(F'(S), <) the set of all minimal solutions of problem (2.1)
w.r.t. <.
(b) Z is a strong minimal solution of problem (2.1) w.r.t. < if

x € S,F(z) % F(z) implies F(z) = F(x).

We denote the set of all strong minimal solutions of problem (2.1) w.r.t. <
by SoMin(F(S), <X).

(c) Z is a strict minimal solution of problem (2.1) w.r.t. < if
xz € S,F(z) < F(z) implies T = x.

We denote the set of all strict minimal solutions of problem (2.1) w.r.t. <
by SiMin(F(5), <).
(d) z is an ideal minimal solution of problem (2.1) w.r.t. =< if

VaeeS\{z}: F(z) =< F(x).

We denote the set of all ideal minimal solutions of problem (2.1) w.r.t. <
by IMin(F(S), <).

Remark 2.2. (1) The reason for deriving the definition of strong minimal so-
lutions is that we would like to introduce a new useful solution concept
concerning comparisons of elements in the image space, which includes the
definition of strict minimal solutions where the comparison of elements in
the pre-image space is involved. In addition, from the practical point of
view, it is more appropriate if we consider this concept since we often take
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the set S containing different elements. Observe also that if < is antisym-
metric then a minimal solution is also a strong minimal solution, see [5,
Remark 5.1 (ii)]. In addition, we can see that if z € SoMin(F'(S), <), then
for all y € S, F(y) # F(z) it holds that F(y) A F(z).

(2) Let Y = R, C = R’i, and F': X — Y. Suppose that < is given by the
partial ordering <¢, where for y1,y2 € Y, we have y; <¢ yo iff y1 € yo — C.
Then & € Min(F(S), <) = SoMin(F(S), =), which means that = is a Pareto
optimal solution (see Ehrgott [1]). Moreover, € SiMin(F(S), <) means
that Z is a strictly Pareto optimal solution as defined by Ehrgott [1]. In
that sense, the above definitions are meaningful extensions for minimality
notions from the vector-valued to the set-valued case. In the same setting,
if Z is an ideal minimal solution, then g := f(Z) is an ideal point as defined
by Ehrgott [1].

The following result is straightforward.

Lemma 2.3. The relation
SiMin(F'(S), <) C SoMin(F(5), <)
holds true. Moreover, if < is reflexive, then we have
SoMin(F'(S), <) € Min(F(S), <) and IMin(F(S), <) € Min(F(S), <).

The converse inclusions of the relations stated in Lemma 2.3 are generally not
fulfilled, which the following example illustrates.

Example 2.4. Let S = {x1,22}, F : S = R? be defined by
Pay={ WER 20 <y -1}, a=n,
{yeR? | y,y2 >0, yo=y1 — 1}, = =12,
We use the set relation < defined by
A=¢B <= ACB-C

with C' := R2. Then both z1,z2 € Min(F(5), <), but z1,z2 ¢ SoMin(F(S), <).
Now assume that F(z) := {y € R? | yo < y1 — 1 y1,92 > 0} for x € S = {z1, 22}
If x1 # w9, then x1, 2 € SoMin(F(5), <), but z1,x2 ¢ SiMin(F(S), X). If 21 = z9,
then x1,z9 € SiMin(F(5), X).

Lemma 2.5. Let the set relation < be reflexive and suppose that T € IMin(F(S5), <).
Define S :=={x € S| F(z) ~ F(z)}. Then

IMin(F(S),<) € S.
Conwversely, if = is additionally transitive, then

IMin(F(S), <) 2 S.
Proof. Let x € IMin(F(S),=). If z = 7, there is nothing to show. Therefore, we
assume = # Z. From z,z € IMin(F(5), %), we immediately obtain F'(z) ~ F(Z).

Conversely, let x € S. Again, we assume = # T, since otherwise there is nothing
to show. Then F(z) < F(z) and F(z) < F(z). Because z € IMin(F(S), =) and
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= is transitive, we get F(z) < F(z) <X F(Z) for all € S\ {z}. This means that
x € IMin(F(S), X). O

We will use the result of the following Corollary in Algorithm 4.20.
Corollary 2.6. If z € IMin(F(S), <) and < is reflexive and transitive, then
IMin(F(S), %) ={z € S| F(z) ~ F(Z)}.

The above result does not hold if =< is not transitive, which the following example
shows.

Example 2.7. Let Y = R? and let the set relation be given by the possibly set
order <=:=<%, (see also [7, Page 51]) for A, B € P(Y) by

A=lB = 3JacA IbeB:acb-C

with C' := R%. Let S = {x1, 22,23} and F(z1) = {(0,0),(2,2)}, F(z2) = {(1,1)}
and F(z3) = {(2,0.5)}. Then z; € IMin(F(S), =), since F(z1) =¥ F(z;) and
F(21)=LF(xz3). It also holds that F(x;) ~ F(x2), but zo ¢ IMin(F(S), =), as
F(z2) A F(x3).

Proposition 2.8. Let F': X =2 Y be a set-valued map, <X be a given set relation
and S C X be a nonempty subset of X. Then, we have the followmg inclusions:

(i) If < is Teﬂemwe then SiMin(F'(S), <) C {i eS| [F( ={F(z }}
(ii) SoMin(F(S), =) C {z € S| [F(z)]C{F(z) : F(z) = }}

(iii) If there are x; ;é x9, 1,22 € IMin(F(S), X) then SiMin(F(S), <) =
(iv) If there are x1 # xa,x1, 2 € SIMIn(F(S), <) then IMin(F(S), =) =

NAPNabNa N eV

Proof. (i) Let z € SiMin(F'(S), <) and suppose by contradiction that [F(Z)] #
{F(z)}. Then, we have {F(z)} Z [F(z)] or [F(z)] € {F(z)}. The first
assertion immediately yields a contradiction to the reflexivity of <. If
[F(z)] € {F(2)}, then there exists some = € S such that F(x) =< F(Z).
Taking into account z € SiMin(F'(S), <), it holds that x = z. That yields a
contradiction to [F'(z)] € {F(z)}.

(ii) Let z € SoMin(F(S),=<) and suppose by contradiction that there is

' € S such that F(2') € [F(z)],F(2') # F(z). Since F(z2') € [F(z)],

we get that F(2) < F(Z). Taking into account z € SoMin(F(S), <),

it holds that F(a') = F(i) a contradlctlon Thus, SoMin(F(S), =) C

F(x)

{z €S| [F@)c{F(z): (2)}}.

(iii) Suppose by contradiction that there is # € SiMin(F(5),x). If oy = =
(x2 = T, respectively), it is obvious that F(x2) < F(z) (F(x1) = F(Z),
respectively). This implies o = Z = x1, a contradiction to x; # xy. If

x1 # T and x9 # T, We have that
z1 € IMin(F(S),X) = F(x1) R F(Z) = T =21

and
x9 € IMin(F(S), =) = F(x2) 2 F(Z) = T = .

Therefore z1 = 3, a contradiction.
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(iv) Suppose that there is z € IMin(F'(S), X). If 21 = & (2 = Z, respectively),
it is obvious that F(z) < F(x2) (F(z) <X F(x1), respectively). Because

x9 € SiMin(F'(S), X) (x1 € SiMin(F'(S), <), respectively), this implies zo =
T = x1, a contradiction. If 1 # T and x4 # %, we have that

x1 € SIMin(F(S),%) = F(z) 2 F(z1) =21 =2

and
x9 € SIMin(F(S), =) = F(z) X F(x2) = x2 = T.

Therefore x1 = x2, a contradiction.

Remark 2.9. Similar results as parts (iii) and (iv) in Proposition 2.8 for minimal
elements of a family of sets are given in [14].

The following notion of external stability of a solution set will be used in some
results in Section 4.

Definition 2.10 (External Stability). We say that Min(F'(S), <) (SoMin(F(.5), =<
), SiMin(F(S), =), IMin(F(S), =), respectively) is externally stable if for all = ¢
Min(F(5), =) (x ¢ SoMin(F(S),=), = ¢ SiMin(F(S5), <), « ¢ IMin(F(5), <),
respectively), there exists some z € Min(F(5), =) (z € SoMin(F(S),=X) , T €
SiMin(F'(S), <) , # € IMin(F'(S), =), respectively) such that F(z) < F(x).

A sufficient condition for external stability of the set Min(F(S), <) is derived
in [13]. We can easily obtain from Definition 2.1 that if the set IMin(F'(S), <) is
nonempty, then it is externally stable. In the following, we give sufficient conditions
for the set of strong and strict minimal solutions of problem (2.1) to be externally
stable.

Lemma 2.11. Let S C X be a set consisting of finitely many elements and let the
set relation < be transitive and antisymmetric. Assume that the set SoMin(F(S), <)
is nonempty, then SoMin(F'(S), =) is externally stable.

Proof. Let some x € S be given, and assume that x is not a strong minimal solution
of F(S) wr.t. <. Then there exists some z; € S such that F(z;) < F(x) and
F(z) # F(z1). If 21 € SoMin(F(S), =), then there is nothing to show. If z; ¢
SoMin(F(S), =), then there exists some z9 € S with F(z2) = F(z1) and F(z1) #
F(z2). This procedure continues until a strong minimal solution is found. Suppose
that it does not. Because the set S is finite, we would eventually obtain an element
which is equal to an element that has already been investigated. Let some j €
N be given such that z; ¢ SoMin(F'(S),=<). Then, there exists z;;1 such that
F(xzj41) = F(z;) and F(zj41) # F(x;). Without loss of generality, we assume that
F(xj41) = F(x;) for some i < j. Due to the transitivity of <, we get F(zj11) =
F(xzj) X F(xj11) = F(x;). By the antisymmetry of <, we obtain F(z;) = F(xj4+1),
which is a contradiction. Therefore, the procedure stops with a strong minimal
solution. O
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Lemma 2.12. Let S C X be a set consisting of finitely many elements and let the
set relation = be transitive and antisymmetric. Assume that the set SiMin(F'(S), <)
is nonempty, then SiMin(F'(S), X) is externally stable.

Proof. We follow the same lines given in the proof of Lemma 2.11. O

3. EXISTENCE RESULTS

Existence results for set optimization are investigated by many authors in the
literature, see [7]. In this part, we briefly recall a recent result which is introduced
in [5] to derive some corresponding conditions for the existence of a strong (strict)
minimal solution set of the problem (2.1). We use the following definition of semi-
continuity of a set-valued map w.r.t. a preorder < (see [5]).

Definition 3.1 (Semicontinuity). Let S C R™. The set-valued mapping F': S =
R™ is called semicontinuous at z € S w.r.t. the preorder < if F(zZ) € V, where
V:={T € A|T A V} for some V € P(R™), implies that there exists a neigh-
borhood U of  in R™ such that F(z) € V for all z € U. In other words, F is
semicontinuous at z if

F(z) AV for some V € P(R") = 3U(@Z): F(z) AV Vzel.
F' is called semicontinuous on S w.r.t. < if F'is semicontinuous w.r.t. < at every
Tz eSs.

An equivalent characterization of the semicontinuity w.r.t. the preorder < is
presented as follows.

Proposition 3.2. [5, Proposition 4.3] The following assertions are equivalent:
(i) F is semicontinuous at T € S w.r.t. the preorder <.
(ii) The level set w.r.t. the preorder of F' at F(Z)
Lp(F(7)) = {x €S| F(z) = F(7)}
s closed.

Now, we have the following existence result for the set Min(F'(S), =<). The proof
of this is based on the completeness property of the set F(S), see [5, Theorem 4.1,
Theorem 5.1] for more detail.

Corollary 3.3 ([5]). Suppose that S is compact and that F is semicontinuous on
S w.r.t. the preorder <. Then Min(F(S), <) # 0.

Observe that if < is antisymmetric, then Min(F(S), <) = SoMin(F(5), <), see
also [5, Remark 5.1 (ii)]. Therefore, we obtain the following result concerning the
existence of strong minimal solutions of the problem (2.1) by applying Corollary
3.3.

Lemma 3.4. Suppose that S is compact and that F is semicontinuous on S w.r.t.
the antisymmetric preorder <. Then, SoMin(F(S), <) # (.

The following lemma illustrates relationships between two sets of strict minimal
solutions and strong minimal solutions of the problem (2.1).
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Lemma 3.5. If for all x1,x9 € S, 11 # x2, F(x1) # F(x2), then
SiMin(F(S), <) = SoMin(F(S), <).

The following result is a consequence of Lemmas 3.4 and 3.5.

Lemma 3.6. For all x1,x9 € S, x1 # xo, let F(x1) # F(x2). Suppose that S is
compact and that F is semicontinuous on S w.r.t. the antisymmetric preorder <.
Then SiMin(F(S), <) # 0.

4. NUMERICAL METHODS FOR DETERMINING MINIMAL SOLUTIONS

Efficient algorithms for finding minimal solutions of the problem (2.1) have al-
ready been proposed and thoroughly investigated in [13]. However, sometimes the
set Min(F'(S), =) can be quite large, and one is interested in a smaller set. There-
fore, in this section we are concerned with developing numerical methods for finding
strong, strict and ideal minimal solutions of the problem (2.1).

In the literature, there already exist some algorithms for solving set-valued op-
timization problems. Jahn [4] proposes a descent method that generates approxi-
mations of minimal elements of set-valued optimization problems under convexity
assumptions on the considered sets. Specifically, in [4], the set less relation is used
and characterized by means of linear functionals. More recently, in [8, 11], the au-
thors propose a similar descent method for obtaining approximations of minimal
solutions of set-valued optimization problems.

In this section, we are concerned with finding strong / strict / ideal minimal
solutions of the problem (2.1). Note that a finite family of sets F'(S) can also be
computed by an appropriate discretization of the outcome sets of the considered
(continuous) set optimization problem.

Remark 4.1. Note that it is also possible to use scalarizing methods to compare
elements in the family of sets F(S) = {F(x)| z € S}. These methods are also
investigated in many publications for several kinds of set relations, see, for instance
8, 11, 12, 13, 14].

4.1. Strong Minimal Solutions. It is our goal to extend the well-known Jahn-
Graef-Younes method, which was introduced in the dissertation by Younes [17],
Jahn and Rathje [6] (compare also Jahn [3, Section 12.4]) for determining minimal
elements in the vector-valued case, where Y = R"™. The Jahn-Graef-Younes method
selects minimal elements of a set of finitely many elements. Its advantage is that
this method reduces the numerical effort by excluding elements which cannot be
minimal for a given set. Eichfelder [2] formulated corresponding algorithms for
vector-valued problems with a variable ordering structure. A first extension of this
method to set optimization is given in [13], where algorithms that deal with minimal
solutions of the problem (2.1) are proposed.

In this section, we extend this method to the set-valued case in order to obtain
strong minimal elements of a family of finitely many sets. We propose several ex-
tensions of the Jahn-Graef-Younes method under different, very broad assumptions.
We extend the idea of such a method to set optimization problems, where we as-
sume that a family of finitely many sets F(S) is given and minimal, strong minimal
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and strict minimal elements, respectively, of F'(S) are to be identified. When the
family of sets F'(.S) is given by a large number of elements, it may take a long time
to compare the sets pairwise according to Definition 2.1. Our approach is especially
useful if each comparison of sets is rather expensive, as our proposed method can
reduce the number of comparisons of sets.

The following algorithm filters out solutions of the problem (2.1) which are not
strong minimal.

Algorithm 4.2 (Jahn-Graef-Younes method for sorting out points that are not
strong minimal solutions of the problem (2.1)).

Input: S :={x1,...,xn} C X, mapping F : X =2 Y, set relation <
% initialization
T = {561}
% iteration loop
for j=2:1:mdo

if <F(a:) = F(zj), r€T = F(z;) = F(a:)) then

T =T U{z;}
end if

end for
Output: T

Algorithm 4.2 is a reduction method which sorts out sets that cannot be minimal.
In the if-statement of Algorithm 4.2, each element is compared only with elements
that have been considered so far (which belong to the set 7)), so it is not necessary
to compare all elements with each other pairwise, which can reduce the computation
time of determining minimal elements significantly. The theorem below shows that
all strong minimal solutions of the problem (2.1) are contained in the output set 7
generated by Algorithm 4.2.

Theorem 4.3. (1) Algorithm 4.2 is well-defined.
(2) Algorithm 4.2 generates a nonempty set T C S.
(3) Ewvery strong minimal solution of problem (2.1) also belongs to the set T
generated by Algorithm 4.2.

Proof. As (1) and (2) are obvious, we only prove part (3). Let x; be a strong
minimal solution of problem (2.1), but assume that z; ¢ 7. Clearly j # 1. As z;
is a strong minimal solution of problem (2.1), we have

zeS, F(z) 2 F(zj) = F(z;) = F(x).
Since T C .S, we have
F(l‘)jF(l']), reT = F(iL']):F(.%')

But then the condition in the if-statement is fulfilled and z; is added to 7, which
is a contradiction to our assumption. Il
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Remark 4.4. Notice that the set relation < does not need to be transitive in
Algorithm 4.2, in contrast to descent methods (see Jahn [4]), which rely on the
transitivity of the considered set relation. Moreover, notice that the if-condition in
Algorithm 4.2 can be replaced by
VaeT, Flx) A F(xj) or F(z) = F(x;).

When the for-loop derived in Algorithm 4.2 is performed backwards on the out-
come set T, then it is possible to obtain all strong minimal solutions of the problem
(2.1). This procedure is described in the next algorithm. Here, the external stability

assumption on the set SoMin(F'(.S), <) is essential in order to compute all strong
minimal solutions of the problem (2.1).

Algorithm 4.5 (Jahn-Graef-Younes method with backward iteration for finding
strong minimal solutions of the problem (2.1), where SoMin(F(5), <) is externally
stable).

Input: S :={z1,...,xm} C X, mapping F': X =3 Y, set relation <

% initialization

T :={z1}

% forward iteration loop

for j=2:1:mdo

if | F(z) X F(zj), x€T = F(xj) = F(z:)) then

T:=TU {.%']}
end if
end for
{3}1,...,.@‘”} =T
U:={x,}

% backward iteration loop
forj=p—1:-1:1do
if (F(:U) 2 F(z;), xeld = F(z;) = F(;v)) then
U:=UU{zx;}
end if

end for
Output: U

Remark 4.6. In the worst-case, the computational complexity of Algorithm 4.5 is
O(m?), depending essentially on the cardinality of the set 7, generated after the
forward iteration.

Theorem 4.7. Let the set of strong minimal solutions SoMin(F'(S), <) be nonempty
and externally stable. Then, the output U of Algorithm 4.5 consists of exactly all
strong minimal solutions of problem (2.1).

Proof. Let U := {x1,...,24}. By (3) of Theorem 4.3, we know that all strong
minimal solutions of problem (2.1) are contained in 7 as well as in . Now, we
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prove that every element of U is also a strong minimal solution of problem (2.1).
Let z; € U be arbitrarily chosen. By the forward iteration of Algorithm 4.5, we
obtain

Vi<j(i>1): F(z;) 2 F(z;) = F(x;) = F(x;).
The backward iteration of Algorithm 4.5 yields

Vi>j(i<q): F(z;) < F(x;) = F(x;) = F(x;).
This means that
(4.1) Vi#j(1<i<q): F(a;) 2 Fzj) = F(zj) = F(x).
(4.1) implies that

vV x; EU\{CE]} : F(l’l) jF(x]) - F(l’]) :F(Jil)

Therefore, we can conclude that x; € SoMin(F (i), <). Now suppose that z; ¢
SoMin(F'(S),=<). Then, as SoMin(F(5), <) was assumed to be externally stable,
there exists a strong minimal solution z in SoMin(F'(S), =) (especially, F(z) #
F(z;)) with the property F'(z) < F(x;). Since z is a strong minimal solution of
problem (2.1), Theorem 4.3, 3. implies that z € U. Therefore, by (4.1), F(z;) =
F(z), a contradiction. O

Remark 4.8. Notice that in Theorem 4.7 we do not pose any assumptions on the
set relation <. In a corresponding result ([13, Theorem 4.12]), which is concerned
with finding minimal solutions of a family of finitely many sets, antisymmetry of
the relation < is required.

Finally, we propose the following algorithm that does not rely on antisymmetry or
external stability of the set relation <. The idea stems from Eichfelder [2, Algorithm
1], who gave a similar numerical procedure for finding minimal elements in vector
optimization with a variable ordering structure. In the following algorithm, a third
for-loop is added which compares the elements that were obtained in the set U by
Algorithm 4.5 with all remaining elements in S\ .

Algorithm 4.9 (Jahn-Graef-Younes method with backward iteration for finding
strong minimal solutions of problem (2.1)).

Input: S :={x1,..., 2} C X, mapping F': X =2 Y, set relation <
% initialization

T :={x1}

% forward iteration loop

for j=2:1:mdo

if (F(m) = F(zj), x €T = F(x;) = F(:z:)) then

T :=TU{z,}
end if
end for
{xl,...,xp} =T
U:={x,}

% backward iteration loop
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forj=p—1:-1:1do
if <F(m) = F(z;), el = F(:vﬂzF(m)) then

U =Uu {:Uj}
end if
end for
{z1,... 24} =U

V=10
% final comparison
for j=1:1:¢qdo
if ( F(r) 2 F(zj), x€ S\U = F(xj) = F(ZL‘)> then
V.=VUu {wj}
end if

end for
Output: V

Theorem 4.10. Algorithm 4.9 consists of exactly all strong minimal solutions of
problem (2.1).

Proof. Let z; be an arbitrary element in V. We show that z; € SoMin(F'(5), <). It
holds that z; € U, as V C U, and
F(z) X F(zj), x € S\U = F(z;) = F(x).
Suppose that x; ¢ SoMin(F'(S),=). Then, there exists some z € S such that
F(z) =% F(z;) and F(z;) # F(x). If © ¢ U, then this is a contradiction. If z € U,
then z € SoMin(F(U), <) (compare the proof of Theorem 4.7). Since z; € U, and
xj is also strong minimal in I/, we obtain from F(z) < F(x;) that F(z;) = F(x), a
contradiction.
Conversely, let 2; € SoMin(F'(S),=<). Then, we get
F(z) R F(zj), x€ S = F(x;) = F(x).

Now suppose that z; ¢ V. Then there exists some z € S\U with F(z) < F(x;) and
F(z;) # F(z). As z; € SoMin(F'(S), =), we get F'(z;) = F(x), a contradiction. [

Example 4.11. We will illustrate the method for deriving the set of strong solutions
for the following problem:

: i 1t <!
(4.2) Min F(S) w.r.t mivy
where a,b > 0,7 > 0, S = {(z1,11),..., (@r,yx)} € R% j € {1,...,k} and F :
R? = R? determined as
{(u,v) € R?| (u—x;)? + (v —y;)? =r*} if mod (j,3) =0
{(u,v) € R?| Ju — x|, |v —y;| < &} if mod (5,3) =1
{(uv) R} u>zj— 5 v>y; -5 v+u<y +a}
UWu+v > (x;+yi), v—u>y —xz, v—y| < %} else,
and A j]lR2 B is the lower set order relation defined by A+R?% D B for A, B € P(R?).
+

F(xj,y;) =
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127

%_j lv_i

10.49569 [0.008598
0.161157| 0.008707 Tr
0.003015| 0.947034
0.069465| 0.039968 08
0.003893| 0.220735
0.008142| 0.037274
0.001533| 0.845506
0.995213| 0.003356
0.366188| 0.015826
0.306633| 0.005631
0.881342| 0.004156 0.2r
0.143987| 0.01434
0.006202| 0.161529
0.153872| 0.027098

06

0.4

FIGURE 1. Strong solutions of the problem (4.2) and their images

Observe that the set-valued function F' is not convex-valued. We use the Algo-
rithm 4.5 to derive the set of strong solutions of problem (4.2). The Figure 1 depicts
the images of strong solutions for the problem (4.2), where k& = 500;7 = 0.04;a =
0.05;b = 0.03. We also show the result concerning solutions of this problem when
the input data is taken arbitrarily. In this case the set of strong solutions and
strict solutions of (4.2) are identical (Lemma 3.5). In addition, taking into account
Proposition 2.8, it holds that IMin(F(S), iji ) =0.

4.2. Strict Minimal Solutions. In this section, we are concerned with computing
strict minimal solutions of the problem (2.1). The following method is a filtering
algorithm that sorts out solutions of the problem (2.1) which are not strict minimal.

Algorithm 4.12 (Jahn-Graef-Younes method for sorting out points that are not
strict minimal solutions of the problem (2.1)).

Input: S :={x1,..., 2} C X, mapping F: X =2 Y, set relation <
% initialization
T :={z1}
% iteration loop
for j=2:1:mdo

if (F(m) < F(zj), x€T = x; = m> then

T:=TU {xj}
end if

end for
Output: T
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We refrain from giving the proof of the following theorem, as it is similar to that
of Theorem 4.3.

Theorem 4.13. (1) Algorithm 4.12 is well-defined.
(2) Algorithm 4.12 generates a nonempty set T C S.
(3) Ewvery strict minimal solution of problem (2.1) also belongs to the set T
generated by Algorithm 4.12.

Remark 4.14. Moreover, notice that the if-condition in Algorithm 4.12 can be
replaced by

VaeeT, Flx) A F(xj) or x = z;.

Algorithm 4.15 (Jahn-Graef-Younes method with backward iteration for finding
strict minimal solutions of the problem (2.1), where SoMin(F'(5), <) is externally
stable).

Input: S :={z1,...,zm} C X, mapping F' : X =3 Y, set relation <

% initialization

T :={z1}

% forward iteration loop

for j=2:1:mdo

if | F(z) 2 F(zj), 7€T = mj:x> then

T:=TU {.Z']}
end if
end for
{1, . zp} =T
U:={x,}

% backward iteration loop
forj=p—1:-1:1do
if | F(z) X F(z;), vcU = x4 :x> then
U:=UU{zx;}
end if

end for
Output: U

Remark 4.16. The computational complexity of Algorithm 4.15 depends essen-
tially on the cardinality of the set T, generated after the forward iteration. In the
worst-case, the computational complexity of this algorithm is O(m?).
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Theorem 4.17. Let the set of strong minimal elements SoMin(F(S), <) be nonempty
and externally stable. Then, the output U of Algorithm 4.15 consists of exactly all
strong minimal solutions of problem (2.1).

Algorithm 4.18 (Jahn-Graef-Younes method with backward iteration for finding
strict minimal solutions of problem (2.1)).

Input: S :={x1,...,2n} C X, mapping F : X =2 Y, set relation <
% initialization

T :={x1}

% forward iteration loop

for j=2:1:mdo

if <F(:c) < F(zj), x€T = z; = a:) then

T = TU {CL‘]}
end if
end for
{z1,...,xp} =T
U:={zp}

% backward iteration loop
forj=p—1:-1:1do

if | F(z) X F(zj), reld = a:j:x> then

U =uUuu {x]}
end if
end for
{z1,...,24} =U

V=10
% final comparison
for j=1:1:qdo
if <F(m) = F(zj), € S\U = zj= x) then

Vi=VU{z;}
end if
end for
Output: V

Theorem 4.19. Algorithm 4.18 consists of exactly all strict minimal solutions of
problem (2.1).

4.3. Ideal Minimal Solutions. In this section, we propose an algorithmic pro-
cedure that finds all ideal minimal solutions of the problem (2.1), provided that
this solution set is nonempty. In the following algorithm we make use of the state-
ment given in Corollary 2.6, which says that if an ideal minimal solution € S
is found, then the set of ideal minimal solutions consists of all point = € S which
satisfy F'(z) ~ F(Z) provided that < is reflexive and transitive, and vice versa. If
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xj € IMin(F(S), <), then
z ¢ IMin(F(5), %) = az¢{ze€S|F(z)~F(z;)}.

Therefore, in the if-loop of the following algorithm, we proceed as follows: In order
to check whether a point z; is an ideal minimal solution, we have to check whether
F(xzj) =% F(x) holds for z € IMin(F(S5), <).

Algorithm 4.20 (Method for obtaining ideal minimal solutions of the problem
(2.1)).
Input: S :={x1,...,xn} C X, mapping F : X =2 Y, set relation <
% initialization
T:=0
num(7) :=0
% iteration loop
forj=1:1:mdo

if num(7) = 0 then

if VoeS\{z;}: F(z;) 2 F(z) then

T:=TU{z;}
num(7):=num(7) + 1
end if
else if 3z €T\ {z;}: F(z;) X F(x) then
T :=TU{z;}
num(7):=num(7) + 1
end if
end for
Output: T

Remark 4.21. By using directly Definition 2.1, the computational complexity of
Algorithm 4.20 is O(m?). In this algorithm, instead of comparing all pairs in the
image space F(S), we are concerned with elements in a smaller set F(7) when
T is nonempty. By doing this, the computing time will be reduced. However,
it is more convenient if we step by step eliminate the points that are not ideal
minimal solutions of the problem (2.1) as follows. Recall also that we have from
Proposition 2.8 (iv) the following implication

x1 # T2, 11,2 € SIMIn(F(S), %) = IMin(F(S),=<) = 0.

Therefore, the following algorithm will be used in case the number of distinct strict
minimal solutions, computed by Algorithm 4.15, is smaller than two.

Algorithm 4.22 (Jahn-Graef-Younes method with backward iteration for obtain-
ing ideal minimal solutions of the set-valued optimization problem (2.1)).

Input: S :={z1,...,zn} C X, mapping F' : X =3 Y, set relation <
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% initialization
T = {:L'l}
% iteration loop
for j=2:1:mdo
ifVveeT: F(z;) 2 F(x) then

T :=T U{z,}; break

end if
T :={x1,....,x1}
U :={xk}
end for

foril=k—-1:—-1:1do
if Ve el : F(z;) < F(z) then

U Z:Z/{U{:El}

Output: U

Remark 4.23. The computational complexity of Algorithm 4.22 depends essen-
tially on the cardinality of the set T, generated after the forward iteration. In the
worst-case, the computational complexity of this algorithm is O(m?).

Theorem 4.24. The following assertions hold true for the Algorithm 4.22.

(a)
(b)

Proof.

IMin(F(S), <) C 7.
U = IMin(F(S), x), provided that IMin(F(S), <) is externally stable and <
s transitive.

(a) Suppose that there exists x; € IMin(F(S), <) but x; ¢ T. By Defi-
nition 2.1, it holds that
Ve e S\ {z;}: F(z;) =2 F(x).
Obviously, 7 C S\ {z;}. Therefore,
Ve e T : F(x;) 2 F(x).

However, by this property, z; will be added to the set T, a contradiction.
First, we will prove that IMin(F'(S), %) C U. Indeed, let z; € IMin(F(S), <
),j € {1,...,k} and suppose that z; ¢ U. Of course, j # k and since
xj € IMin(F(S), <), we have that F(z;) < F(z), Yo € U. By this condition,
x; is added to U, a contradiction.

To this end, we will prove that & C IMin(F(S), =). Take z; € U. We get
from the forward iteration that

Vi < s Ti 7é ZTj: F(.ZC]) = F(.%'Z)
Moreover, the backward iteration yields
Vi > j,x #xj Fay) 2 F(x).

Therefore, for all € U \ {z;} we have that F(z;) <X F(x), ie., z; €
IMin(F(U), =<). Suppose by contradiction that z; ¢ IMin(F(S), <). Since
IMin(F(S), =) is externally stable, there is z € IMin(F(S),=<) C U such
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that F'(Z) =< F(x;). In addition, since IMin(F(S), %) C U such that F/(Z) =
F(z;), = € U and thus F(x;) = F(z). This implies that F(z;) ~ F(Z).
Taking into account the transitivity and reflexivity of <, it follows from
Corollary 2.6 that z; € IMin(F'(S5), <), a contradiction.

U

5. CONCLUSIONS

In this paper, we investigate the problem of minimizing a set-valued map. In
particular, we are concerned with strong, strict and ideal minimal solutions of the
problem (2.1). We propose numerical algorithms that reduce the numerical effort
while sorting out solutions that are not strong, strict or ideal minimal solutions and
extended this method to select the sets which are strong, strict or ideal minimal
solutions. Our approach can be regarded as an extension of the well-known Jahn-
Graef-Younes method. More research shall be done on the implementations of our
proposed algorithms to specific applications of set optimization problems.
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