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Our arguments are based on the existence of Lagrangian submanifolds satisfying
a condition, so called “Maslov quantization condition” and the “Eigenvalue Theo-
rem” by A. Weinstein (cf. [18, 19, 22]). We explain an aspect of the behaviour of
Lagrangian submanifolds under submersions and the main results are direct conse-
quences of the Eigenvalue Theorem.

In §2 we recall local parametrizations of Lagrangian submanifolds by phase func-
tions and explain the construction of the conic Lagrangian submanifold from a com-
pact Lagrangian submanifold. Here we treat a part of the proof of the Eigenvalue
Theorem 5.1 in a simple way (cf. [5, 13,22,23]).

In §3 we discuss the behaviour of Lagrangian submanifolds under submersions
and in §4 their behaviour with respect to the Maslov quantization condition.

In §5 we explain our main results after recalling the Eigenvalue Theorem from
[22] with a short description of its proof, although we do not enter into the details on
the theory of Fourier integral operators and the theory of Lagrangian distributions
(cf. [10, 13]), since our main subject is to describe the behaviour of Lagrangian
submanifolds under Riemannian submersions.

Finally in §6 we discuss a similar existence theorem of eigenvalues of the sub-
Laplacian for the most simple case of a sub-Riemannian structure.

In the Appendix, we give a definition of the Maslov class of two Lagrangian
subbundles in a symplectic vector bundle based on the Maslov index for arbitrary
paths (cf. [4, 5, 7, 9, 13]) and give proofs of several basic properties of the Maslov
class.

2. Lagrangian submanifold and its parametrization by phase
functions

Let X be a smooth manifold and πX : T ∗(X) → X the natural projection map
from the cotangent bundle T ∗(X) to the base manifold X.

The intrinsic (or canonical) one-form on the cotangent bundle T ∗(X) is denoted
by θX . It is also called the Liouville one-form, and we denote its differential dθX

by ωX := d θX . The two-form ωX defines the intrinsic symplectic structure on the
space of the cotangent bundle.

Let x1, . . . , xn be local coordinates defined on an open subset U ⊂ X (put
dimX = n), then we always consider the local coordinates on the open subset
(πX)−1(U) = T ∗(U) ∼= U ×Rn given by x1, . . . , xn, ξ1, . . . , ξn, which corresponds to

the cotangent vector
n∑

i=1
ξidxi ∈ T ∗

x (X). So often we denote the element in T ∗(X)

by (x, ξ)←→
∑
ξidxi.

With these coordinates on (πX)−1(U) the canonical one-form θX is expressed as∑
ξidxi.
There are two meanings of the expression

∑
ξidxi, however they will be distin-

guished suitably without confusion.
A closed n−dimensional submanifold L (n = dimX) in the cotangent bundle

T ∗(X) is said to be a Lagrangian submanifold, if the two-form ωX vanishes on it,
that is at each point (x, ξ) ∈ L the tangent space T(x,ξ)(L) is a Lagrangian subspace
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in the symplectic vector space T(x,ξ)(T
∗(X)). In this case the canonical one-form is

a closed form on L and it defines a de Rham cohomology class [θX |L] ∈ H1
dR(L).

Let L be a Lagrangian submanifold. Then for any point p ∈ L, there exists a
coordinate neighborhood U of πX(p), an open subsetD in Rk and a smooth function
ϕ ∈ C∞(U ×D) satisfying the following properties:

Put

Cϕ =

{
(x, η) ∈ U ×D

∣∣∣ ∂ϕ(x, η)
∂ηj

= ϕηj = 0, 1 ≤ j ≤ k = dimD

}
Then,

the one-forms
{
dϕηj

}k
j=1

are linearly independent on Cϕ,(2.1)

the map ρϕ : Cϕ ∋ (x, η) 7−→ (x;ϕx)←→
n∑

j=1

∂ϕ(x, η)

∂xj
dxj(2.2)

=
n∑

j=1

ϕxjdxj ∈ L ⊂ T ∗(X)(2.3)

and the map ρϕ is a diffeomorphism between Cϕ and ρϕ(Cϕ) =: Lϕ ⊂ L, when we
take U (and D) small enough, since the differential dρϕ is injective.

Relations of the map ρϕ and other maps can be seen from the commutative diagram:

(2.4) T ∗(U ×D)

πU×D

��

πU
∗(T ∗(U))? _

χπUoo
pπU // T ∗(U) �

� // T ∗(X)

πX

��

Cϕ

dϕ|Cϕ

ggOOOOOOOOOOOOO
I i

wwnnn
nnn

nnn
nnn

n
ρϕ // Lϕ

- 

<<yyyyyyyyy
� � //

πX
|Lϕ ##F

FF
FF

FF
FF

L
, �

::uuuuuuuuuu

πX
|L

$$J
JJ

JJ
JJ

JJ
JJ

U ×D

dϕ

OO

πU

// U � � // X

where πU : U×D → U is the projection map. The map pπU is the natural projection
map from the induced bundle πU

∗(T ∗(U)) on U ×D to the original bundle T ∗(U)
and it is a submersion. The map χπU := (dπU )

∗ is the dual map of the differential
dπU : T (U ×D)→ πU

∗(T (U)) and it is an embedding. Also note that

πX ◦ pπU = πU ◦ πU×D ◦ χπU .

The subset Cϕ can be characterized as

Cϕ =
{
(x, η) ∈ U ×D | dϕ (x, η) ∈ χπU (πU

∗(T ∗(U))
}
.

We call Cϕ or ρϕ(Cϕ) = Lϕ a local parametrization of L by a phase-function-
triple (U ×D,ϕ, ρϕ), where we always assume that the open subset U is taken small
enough for the map ρϕ to be a diffeomorphism.

By the properties of the phase function, we see from the diagram above that
on dϕ(Cϕ) the map pπU is injective and there is a unique smooth map sϕ : Lϕ →



376 K. FURUTANI AND M. TAMURA

πU
∗(T ∗(U)) such that χπU ◦ sϕ ◦ ρϕ = dϕ on Cϕ. Using this fact and a general

formula that (df)∗(θX) = df , f ∈ C∞(X), df : X → T ∗(X), we have

Proposition 2.1. Let L be a Lagrangian submanifold in T ∗(X) and ϕi (i = 1, 2)
two phase functions around a point p ∈ L defined on Ui×Di, where π

X(p) ∈ U1
∩
U2

and Di open subset in Rki (i = 1, 2). They parametrize locally around a point p ∈ L
together with the maps ρϕi

: Cϕi
→ Lϕi

.
Put the functions ψi ∈ C∞(Lϕi

) by ψi := ϕi ◦ ρϕi
−1. By the definition of the map

ρϕi
, we have dψi = θX |L on Lϕi

, and

0 = dψ1 − dψ2 = d(ψ1 − ψ2).

Hence the difference ψ1 − ψ2 is locally constant on Lϕ1

∩
Lϕ2.

Now let L be a Lagrangian submanifold and {Lϕi
} a covering by local parametriza-

tions defined by the phase-function-triples

Pft(L) := {(Ui ×Di, ϕi, ρϕi
)}i∈S ,

L =
∪
i∈S

Lϕi
.

Then,

Proposition 2.2. The set of locally constant functions{
cij = ϕj ◦ ρϕj

−1 − ϕi ◦ ρϕi

−1 : Lϕj
∩ Lϕi

→ R
}
i j∈S

defines an 1-Čech cocycle with the values in R, that is its cohomology class corre-
sponds to the de Rham cohomology class of θX |L according to the fine resolution of
R-constant sheaf RL on L by the sheaves of differential forms on L.

Remark 2.3. From the diagram (2.4) we can see the basic relation (cf. [13]):

k − rank

(
∂2ϕi
∂ηjηℓ

)
= n− rank (dπX |Lϕ

),

since the tangent vectors
∑n

ℓ=1 aℓ
∂

∂xℓ
+
∑k

j=1 bj
∂

∂ηj
of Cϕi

mapped to zero by the map

πX |Lϕi
◦ ρϕi

= πU |Cϕi
is of the form

∑k
j=1 bj

∂
∂ηj

and satisfies
∑k

j=1 bj
∂2ϕi(x,η)
∂ηj∂ηℓ

= 0

for 1 ≤ ℓ ≤ k.

The positive real numbers λ ∈ R+ act on T ∗(X)\{0},

(x; ξ)←→
∑

ξidxi 7−→ λ
∑

ξidxi =
∑

λξidxi ←→ (x;λξ),

where T ∗(X)\{0} means the zero section removed cotangent space and we call it
the punctured cotangent bundle and sometimes we denote it by T ∗

0 (X). By this
action we call the space T ∗

0 (X) a cone bundle over the quotient space T ∗
0 (X)/R+

which becomes naturally a contact manifold and its contact form is defined in the
natural way from the canonical one-form θX . We call it the cotangent sphere bundle
denoting by S∗(X).

If a Lagrangian submanifold L ⊂ T ∗
0 (X) (closed in T ∗

0 (X)) is invariant under the
action of R+, we call it a conic Lagrangian submanifold. On such a Lagrangian
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submanifold the canonical one-form θX vanishes. Conversely, if the canonical one-
form vanishes on a closed n-dimensional submanifold in T ∗

0 (X), then it is a conic
Lagrangian submanifold and in this case the phase functions ϕ can be taken as
defined on an open cone, that is, the phase function ϕ ∈ C∞(U ×D), where D is
an open set in Rk\{0} and is invariant under the scalar action of R+ on Rk\{0}.
Moreover the phase function ϕ = ϕ(x, η) ∈ C∞(U ×D) is homogeneous of degree 1
with respect to the variable η ∈ D ⊂ Rk\{0}.

We call a Lagrangian submanifold L ⊂ T ∗
0 (X) “quasi-integral ” (or “integral)”,

if there exists a positive constant c0 (integral in case c0 = 1) such that the de
Rham cohomology class c0[θ

X
|L] is in Ȟ

1(L,ZL) ⊂ Ȟ1(L,RL) ∼= H1
dR(L), where the

inclusion is the induced map from the natural inclusion map ZL ⊂ RL of constant
sheaves and the natural isomorphism between the de Rham cohomology group and
the Čech cohomology group (cf. [1]). This is equivalent to assume that for any
smooth closed curve {γ(t)} in L, the integral

(2.5) c0

∫
γ
θX ∈ Z.

Hence, in this case the Lagrangian submanifold

L0 := c0 · L = {(x, c0ξ) | (x, ξ) ∈ L}

is integral and the cohomology class [θX |L0
] ∈ Ȟ1(L0,ZL0).

Remark 2.4. By the induced map Ȟ1(c0 · L,Zc0·L) → Ȟ1(L,ZL) from the diffeo-

morphism L
≈→ c0 · L, the class [θX |c0·L] is mapped to the class c0 · [θX |L].

By (2.5), if L ⊂ T ∗
0 (X) is an integral Lagrangian submanifold then for any positive

integer k ∈ N, k · L is also integral.

Proposition 2.5. Let L be an integral Lagrangian submanifold in T ∗
0 (X). Then,

(1) There exists a function ϑ : L→ U(1) (mod C∞(L)) such that ϑ is mapped to
the cohomology class [θX |L], that is ϑ expresses the cohomology class [θX |L] through

the connecting homomorphism δ : C∞(L,U(1)) → Ȟ1(L,ZL) associated with the
exact sequence of sheaves on L:

{0} −→ ZL −→ F(L,R)
f 7→e2π

√
−1f

−→ F(L,U(1)) −→ {0},
where F(L,R) is the sheaf of germs of real valued smooth functions on L and
F(L,U(1)) is a sheaf of germs of smooth functions taking values in U(1).

In fact, once we fix a set of a covering of L by local parametrizations {Lϕi
}, by

the phase-function-triples Pft(L) := {(Ui ×Di, ϕi, ρϕi
)}, then a function ϑ is given

by ϑ = e2π
√
−1ϕi◦ρϕi

−1
on Lϕi

, since

e
2π

√
−1

(
ϕj◦ρϕj

−1−ϕi◦ρϕi
−1

)
≡ 1

on Lϕi

∩
Lϕj

.

(2) Let

L̂ =
{
(x; τ · ξ , ϑ(x; ξ) ; τ)

∣∣∣ (x; ξ) ∈ L, τ > 0
}
.
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Then L̂ is a conic Lagrangian submanifold in T ∗
0 (X)× T ∗

0 (U(1)).
In fact, it is covered by local parametrizations defined by the phase-function-triples

Pft(L̂) := { (Ui × D̂i, ϕ̂i, ρϕ̂i
) },

where we define a conic open subset D̂i ⊂ Rki+1\{0} by

D̂i =
{
(v, τ) ∈ Rki × R+

∣∣∣ 1/τ · v ∈ Di

}
and a phase function ϕ̂i by

C∞(Ui × R× D̂i) ∋ ϕ̂i(x, t, v, τ)

:= τϕi(x, 1/τ · v) + τ t, (x, 1/τ · v) ∈ Ui ×Di, τ > 0, t ∈ R.

Proof. The assertion with respect to the (local) parametrization is essentially proved
in the papers [13] and also [23].

Let’s consider the equations:

∂ϕ̂i(x, t, v, τ)

∂vj
=
∂ϕi
∂ηj

(x, 1/τ · v) = 0

and

∂ϕ̂i(x, t, v, τ)

∂τ
= ϕi(x, 1/τ · v)−

k∑
j=1

vj
τ

∂ϕi
∂ηj

+ t = ϕi(x, 1/τ · v) + t = 0.

Then we can characterize the set

Cϕ̂i
= { (x, t, v, τ) | (x, 1/τ · v) ∈ Cϕi

, t+ ϕi(x, 1/τ · v) = 0, τ ∈ R+ } .

Note that we may assume that the range of the phase functions ϕi on Ui ×Di are

included in a sufficiently small interval so that the values e−2π
√
−1ϕi are included in

a small arc and the maps ρϕ̂i
are given as

ρϕ̂i
: Cϕ̂i

∋ (x, t, v, τ) 7→
(
τ

n∑
j=1

∂ϕi
∂xj

(x, 1/τ · v)dxj , τdt
)

∈ L̂ϕ̂i
⊂ T ∗

0 (Ui)× T ∗
0 (U(1)),

where τdt ∈ T ∗
e−2π

√
−1ϕi(x,1/τ ·v)

(U(1)).

□

Corollary 2.6. Let L ⊂ T ∗
0 (X) be an integral Lagrangian submanifold, then the

corresponding conic Lagrangian submanifold k̂ · L is given as

k · L =
{
(x ; τkξ , ϑk(x ; ξ), τ)

∣∣ (x; ξ) ∈ L, ϑ : L→ U(1), τ > 0
}
,

where ϑ : L→ U(1) is the map constructed in (1) in the preceding Proposition (2.5).
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Let L ⊂ T ∗
0 (X) be a Lagrangian submanifold and we assume that k ·L is integral

with a positive integer k. Let ϑ : k ·L→ U(1) be the map constructed in the above
Proposition 2.5 and consider a manifold

(2.6) L =
{
(x; ξ , e2π

√
−1 s) ∈ L× U(1) | ϑ(x ; k · ξ) = e2π

√
−1 k s

}
.

Since the map ϑ(x ; k · ξ) is given locally by ϑ(x ; k · ξ) = e2π
√
−1 k ϕ◦ρϕ−1(x,ξ) with a

non-degenerate phase function ϕ of L, dϕ ̸= 0 (because L ⊂ T ∗
0 (X)), the subset L

is a smooth submanifold in L× U(1) and is a k-hold covering of L.
Now consider the map

ρ̃ : L× R+ −→ T ∗
0 (X)× T ∗

0 (U(1)),(2.7) (
x; ξ , e2π

√
−1 s, τ

)
7−→

(
x; τξ , e−2π

√
−1 s; τ

)
=

(
τ

n∑
i=1

ξidxi , τdt

)
∈ T ∗

0 (X)× T ∗
0 (U(1)),

where dt ∈ T ∗
e−2π

√
−1 s(U(1)). Then

Proposition 2.7. The map ρ̃ is an embedding and the image is a closed conic
Lagrangian submanifold in T ∗

0 (X)× T ∗
0 (U(1)).

If k = 1, that is if L is integral, the submanifold L is the graph of the map ϑ
constructed in Proposition 2.5 and the image by this map coincides with the conic
Lagrangian submanifold L̂, so we also denote ρ̃(L× R+) by L̂.

3. Submersion and Lagrangian submanifold

Let φ : M → N be a surjective submersion (dimM = m ≥ dimN = n, d :=
m− n). Then we have a commutative diagram:

T ∗
0 (M)

πM

&&MM
MMM

MMM
MMM

M
φ∗(T ∗

0 (N))? _
χφo

πM◦χφ

��

pφ // T ∗
0 (N)

πN

��
M φ

// N,

where the map pφ is the natural projection from the induced bundle to the original
(cotangent)bundle. It is also a submersion. Since the map dφ is surjective by the
assumption, the space φ∗(T ∗

0 (N)) is regarded as a submanifold in T ∗
0 (M) through

the dual map χφ = (dφ)∗ of the differential dφ : T (M)→ φ∗(T (N)) (see (2.4)).

In the followings we assume the manifolds are compact and orientable.

We can find a local coordinates system (x, y) = (x1, . . . , xn; y1, . . . , ym−n)) ∈
U × V ∼= W ⊂M , U × V ⊂ Rn ×Rm−n, around a point p ∈W ⊂M and φ(p) ∈ U
∼= U , U ⊂ N , such that the map φ is realized as the projection (x, y)

πU7−→ x.
Then the canonical two-forms ωM and ωN are expressed locally as

ωM =
∑

dξi ∧ dxi +
∑

dβj ∧ dyj , and

ωN =
∑

dξi ∧ dxi
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with respect to the induced coordinates on (πM )−1(W ) and (πN )−1(U), respectively.
By these expressions it is apparent that

(3.1) pφ
∗(ωN ) = χφ

∗(ωM ).

Let L be a Lagrangian submanifold in T ∗
0 (N). Since the map pφ is a submersion,

pφ
−1(L) is a submanifold and dim pφ

−1(L) = dimN + (fiber dim of φ) = dimM .
More generally,

Proposition 3.1. If L is an isotropic submanifold (that is, it is closed and the
canonical one-form vanishes on it), then pφ

−1(L) is also isotropic.
Also if L is conic, then pφ

−1(L) is conic, and if L is compact, then pφ
−1(L) is

also compact, since we assumed M is compact.

On the other hand, let L̃ be a Lagrangian submanifold included in

L̃ ⊂ φ∗(T ∗
0 (N))

χφ
↪→ T ∗

0 (M).

Then,

Proposition 3.2. We assume pφ
−1(pφ(L̃)) = L̃ (as a set), then pφ(L̃) is a La-

grangian submanifold in T ∗
0 (N).

In particular, if the fibers of the submersion φ are connected, then the condition
pφ

−1(pφ(L̃)) = L̃ is automatically satisfied.

Proof. Let πU : U×V ∋ (x, y) 7−→ x ∈ U be local coordinates as before realizing the
map φ, where U × V ∼=W ⊂M . Then points within this coordinates are identified
with the points (x, y ; ξ, β)←→

∑
ξidxi +

∑
βjdyj ∈ T ∗

(x,y)(W ) and mapped as

pφ : φ∗(T ∗
0 (N))(x,y) ∋ (x, y; ξ, 0) 7−→ (x; ξ)←→

∑
ξidxi ∈ T ∗

x (N).

By the assumption, we have L̃
∩
W = pφ

−1
(
pφ(L̃)

)∩
W ∼= pφ(L̃)×V . Hence pφ(L̃)

must be a submanifold in N and so there are functions {fi(x)}ni=1 depending on

the variables x such that these are the local defining functions of pφ(L̃). Now the
Lagrangian property of pφ(L) follows as before by making use of (3.1). □

So in the both directions, a submanifold being Lagrangian is rather a mild con-
dition in relation to submersions.

Let φ :M → N be a submersion as before (both are compact and orientable).
Let L be an integral Lagrangian submanifold in T ∗

0 (N) and we take a small
coordinates neighborhoodW of an arbitrary point p ∈ pφ

−1(L),M ⊃W ∼= U×V ⊂
Rn × Rm−n such that the projection map πU : U × V → U ∼= U ⊂ N realizes
the submersion φ and also there is an open subset D in Rk and a phase function
ϕ ∈ C∞(U×D) parametrizing the Lagrangian submanifold L around a point pφ(p).

Then the pull-back of ϕ to U ×V ×D is a phase function of pφ
−1(L) parametriz-

ing a neighborhood around the point p, which we denote by ϕ̃ := pφ
∗(ϕ), that is

ϕ̃(x, y, η) = ϕ(x, η). Then the map ρϕ̃ and Cϕ̃
∼= Cϕ ×D is

ρϕ̃ :Cϕ̃ =

{
(x, y, η, 0)

∣∣∣ ∂ϕ
∂ηj

(x, η) = 0, 1 ≤ j ≤ k = dimD

}
∋ (x, y, η, 0)
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7−→
(
x, y ;

∂ϕ(x, η)

∂x1
, . . . ,

∂ϕ(x, η)

∂xn
, 0

)
= (x, y ;ϕ′x, 0) ∈ pφ

−1(L)ϕ̃.

By the form of the phase functions for pφ
−1(L),

Proposition 3.3. If L ⊂ T ∗
0 (N) is integral, then the Lagrangian submanifold

pφ
−1(L) is also integral. If L̃ is an integral Lagrangian submanifold in φ∗(T ∗

0 (N))

satisfying the condition pφ
−1(pφ(L̃)) = L̃, then pφ(L̃) is also an integral Lagrangian

submanifold.

Let φ :M → N be a submersion as above. Then the map φ× Id :M × U(1)→
N×U(1) is also a submersion. We denote φ×Id by φ̂. Then from all the arguments
above we have

Proposition 3.4. Although there is no uniqueness of the construction of the conic
Lagrangian submanifold L̂ in T ∗

0 (N) × T ∗
0 (U(1)) from a given integral Lagrangian

submanifold L ⊂ T ∗
0 (N), if once we fix a covering {Lϕi

} of L by local parametriza-
tions defined by phase-function-triples Pft(L) = {(Ui×Di, ϕi, ρϕ)}, then the resulting

conic Lagrangian submanifolds ̂pφ−1(L) and pφ̂
−1(L̂) in T ∗

0 (M)×T ∗
0 (U(1)) coincide,

where the map pφ̂ is the natural projection map from the induced bundle:

T ∗
0 (M × U(1))

πM×U(1) ))SSS
SSSS

SSSS
SSS

φ̂∗(T ∗
0 (N × U(1)))? _

χφ̂=(dφ̂)∗
o

πM×U(1)◦χφ̂

��

pφ̂ // T ∗
0 (N × U(1))

πN×U(1)

��
M × U(1)

φ̂=φ×Id
// N × U(1).

4. Maslov quantization condition

Let X be a compact oriented Riemannian manifold with a Riemannian metric
gX . We denote its dual inner product on the cotangent bundle T ∗(X) by QX

x (ξ, η)(
ξ :=

∑
ξidxi, η :=

∑
ηidxi ∈ T ∗

x (X)
)
.

In this section we recall the Maslov quantization condition. This has a long
history and there are many articles. Among them here we only cite [5, 10,22].

The function T ∗(X) ∋
∑

ξi dxi 7→ QX
x (ξ, ξ) coincides with the principal symbol

of the Laplacian ∆X , σ(∆X)(x; ξ) = QX
x (ξ, ξ).

Let L be a compact Lagrangian submanifold in T ∗
0 (X), then the Maslov quanti-

zation condition for L says that

(4.1)



Mas[1]: σ∆X
∣∣L ≡ EL = constant (> 0) on L,

Mas[2]: for any (smooth) closed curve {γ} in L,
1

2π

∫
γ
θX − 1

4
< mL, γ > ∈ Z,

where mL is a cohomology class ∈ H1(L,Z), called
Maslov class of L, which is explained in the Appendix,

Mas[3]: there exists a positive ”invariant” measure dµL on L,
that is the measure dµL is a nowhere vanishing highest
degree differential form which is ”invariant” under the
geodesic flow action.
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Note that by the condition Mas[1], L itself is invariant under the geodesic flow
action.

The condition Mas[2] is usually called the Maslov quantization condition (also it
is sometimes called corrected Bohr-Sommerfeld quantization condition, see [10]).

Proposition 4.1. Let Pft(L) := { (Ui × Di, ϕi, ρϕi
) } be a set of phase-function-

triples defining a covering of the Lagrangian submanifold L. Then by the condition

Mas[2] the functions {e
√
−1ρ−1

ϕi
◦ϕi}, each of which is defined on Lϕi

= ρϕi
(Cϕi

),
define a global section of the Maslov line bundle (see A.3), which we denote by
sPft(L), although it depends on the chosen covering of L by phase-function-triples
Pft(L) = { (Ui ×Di, ϕi, ρϕi

) }.

Proposition 4.2. Let L ⊂ T ∗
0 (X) be a compact integral Lagrangian submanifold.

We denote the composition of the map ρ̃−1 : L̂ → L × R+ = L × R+ and the

projection L× R+ → L by pL : L̂→ L. Then

p∗L(mL) = mL̂,(4.2)

p∗L(sPft(L)) = sPft(L̂),(4.3)

when we fix a covering of L by phase-function-triples Pft(L) = {(Ui ×Di, ϕi, ρϕi
)}

and the covering of L̂ by associated phase-function-triples, Pft(L̂) = {(Ui×D̂i, ϕ̂i, ρ̃ϕ̂i
)}.

The map p∗L on the space of sections is defined in the obvious way.

The proof of the above Proposition 4.2 is given based on the following data in
Proposition 4.3 and Proposition 4.4 and we explain it in the Appendix.

We denote the vertical subbundle of the projection map πX : T ∗(X) → X by
VX := Ker dπX . Let L ⊂ T ∗

0 (X) be a compact integral Lagrangian submanifold.

we express bases of the tangent spaces of T (L) and T (L̂) and intersections with

each of vertical subbundles VX and VX×U(1)(:= Ker dπX×U(1)) in terms of local
coordinates and a phase function. So let (U ×D,ϕ, ρϕ) be a phase-function-triple
and consider the map

Wϕ : U ′ ×D′′ → U ×D
ρϕ→ U × Rn ∼= T ∗(U),(4.4)

Wϕ : U ′ ×D′′ ∋ (x′, η′′) 7→ (x′, x′′(x′, η′′), η′(x′, η′′), η′′) 7−→(
x′, x′′(x′, η′′);ϕx1(x

′, x′′, η′, η′′), . . . , ϕxn(x
′, x′′, η′, η′′)

)
∈ U × Rn,

where we may assume that variables x′′ = (xp+1, . . . , xn) and η′ = (η1, . . . , ηr) are
solved by the variables x′ = (x1, . . . , xp) and η′′ = (ηr+1, . . . , ηN ) in the equations
∂ϕ
∂ηℓ

= 0, ℓ = 1, . . . , N . Then we have

∂

∂xi
7−→ ∂

∂xi
+

n∑
j=p+1

∂xj
∂xi

∂

∂xj
+

n∑
k=1

∂ϕxk

∂xi

∂

∂ξk
, 1 ≤ i ≤ p,(4.5)

∂

∂ηβ
7−→

n∑
j=p+1

∂xj
∂ξβ

∂

∂xj
+

n∑
k=1

n∑
j=p+1

∂2ϕ

∂xj∂xk

∂xj
∂ηβ

∂

∂ξk
,(4.6)

β = r + 1, . . . , N.

Hence
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Proposition 4.3. The intersection T(x;ξ)(L) ∩ VX(x;ξ) is

T(x;ξ)(L) ∩ V(x;ξ) =


n∑

k=1

 N∑
β=r+1

n∑
j=p+1

cβ
∂2ϕ

∂xj∂xk

∂xj
∂ηβ

 ∂

∂ξk

 ,

where the coefficients {cβ}Nβ=r+1 must satisfy the condition

(4.7)

N∑
β=r+1

cβ
∂xj(x

′, η′′)

∂ηβ
= 0, j = p+ 1, . . . , n.

Since the embedding L×R+ → L̂ ⊂ T ∗(X)× T ∗(U(1)) = T ∗(X ×U(1)) is given
locally by

(x′, η′′, τ) 7→ (x; ξ, τ) 7→ (x; τ · ξ , −2πϕ(x, ξ); τ),
we have

∂

∂xi
7−→ ∂

∂xi
+

n∑
j=p+1

∂xj
∂xi

∂

∂xj
+ τ

n∑
k=1

∂ϕxk

∂xi

∂

∂ξk
− 2π

∂ϕ

∂xi

∂

∂t
,(4.8)

∂

∂ηβ
7−→

n∑
j=p+1

∂xj
∂ξβ

∂

∂xj
+ τ

n∑
k=1

n∑
j=p+1

∂2ϕ

∂xj∂xk

∂xj
∂ηβ

∂

∂ξk
(4.9)

− 2π
∂ϕ

∂ηβ

∂

∂t
, β = r + 1, . . . , N,

∂

∂τ
7−→

n∑
k=1

ξk
∂

∂ξk
+

∂

∂τ
.(4.10)

Hence again we have

Proposition 4.4.

T(x;ξ, t;τ)(L̂) ∩ T(x,t; ξ,τ)(T ∗(X × U(1)))(4.11)

=


n∑

k=1

 N∑
β=r+1

n∑
j=p+1

cβ
∂2ϕ

∂xj∂xk

∂xj
∂ηβ

 ∂

∂ξk

 ,(4.12)

where t = −ϕ(x, η), (x, η) ∈ Cϕ and the coefficients {cβ}Nβ=r+1 satisfy the same

condition as (4.7).

Proof. It will be enough to prove

N∑
β=s+1

cβ
∂ϕ

∂ηβ
= 0.

Then on Cϕ

N∑
β=r+1

cβ
∂ϕ(x′, x′′(x′, η′′), η′(x′, η′′), η′′)

∂ηβ
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=

N∑
β=r+1

cβ


n∑

j=p+1

∂ϕ

∂xj

∂xj
∂ηβ

+

r∑
α=1

∂ϕ

∂ηα

∂ηα
∂ηβ

+
∂ϕ

∂ηβ

 = 0,

by the condition (4.7). □

In the proof of Theorem 5.1 both of the conditions Mas[1] and Mas[3] are required
for the construction of an operator.

Proposition 4.5. Let L be a compact Lagrangian submanifold in T ∗
0 (X). Let {γ(s)}

be a closed curve in L, then for any positive real number A > 0

< mL, γ >=< mA·L, A · γ >,

where A · γ is the dilation by the positive constant A.

A proof is given in the Appendix.

Remark 4.6. Let L be a Lagrangian submanifold in T ∗
0 (X) satisfying the condition

Mas[2] above. Then, according to the Maslov class being

(1) 4mL ≡ 0 (mod 4), or

(2) 2mL ≡ 0 (mod 4), or

(3) mL ≡ 0 (mod 4),

the Lagrangian submanifold 2
π · L is integral (case (1)), 1

π · L is integral (case (2)),

or 1
2π · L (case (3)) is integral.
Let k be any positive integer. Then, in the case (3) the Lagrangian submanifolds

k · L satisfy the condition Mas[2]. In the case (2), the Lagrangian submanifolds
(2k+1)·L satisfy the condition Mas[2]. In the case (1), the Lagrangian submanifolds
(4k + 1) · L satisfy the condition Mas[2]. Also if L satisfies conditions Mas[1] and
Mas[3], then k · L always satisfies the conditions Mas[1] and Mas[3].

Let φ :M → N be a Riemannian submersion between compact orientable mani-
folds with the dual inner products QM and QN on T ∗(M) and T ∗(N) respectively.

Let (x, y) ∈ U × V ∼=W ⊂M be a local coordinates neighborhood such that the
submersion φ : M → N is expressed as the projection map πU : (x, y) 7→ x ∈ U ∼=
U ⊂ N as in the beginning of §4. Letg

M ( ∂
∂xi
, ∂
∂xj

) gM ( ∂
∂xi
, ∂
∂yα

)

gM ( ∂
∂yα

, ∂
∂xi

) gM ( ∂
∂yα

, ∂
∂yβ

)

(4.13)

=:

gij(x, y) hiα(x, y)

hαi(x, y) vαβ(x, y)

 =:

GM H

tH V


be the metric tensor of gM with respect to the coordinates (x, y).

Let

Hi =
∂

∂xi
+
∑

biα(x, y)
∂

∂yα
, i = 1, . . . , n = dimN
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be vector fields defined on U ×V and assume that these are orthogonal to the fibers
of the map φ. Then the condition that the map φ is a Riemannian submersion is
expressed as

(1) gM
(
Hi,

∂

∂yβ

)
= 0, i = 1, . . . , n and β = 1, . . . , d = dimM − dimN,

and for 1 ≤ i, j ≤ n

(2) gM (Hi,Hj) = gN
(
∂

∂xi
,
∂

∂xj

)
=: gij(x).

These are rewritten in terms of component matrices:

(4.14) GM +B tH = GN , and H +BV = 0,

where we put GN = GN (x) =
(
gij(x)

)
and B = B(x, y) =

(
biα(x, y)

)
. Hence

using these relations we haveGM H

tH V

−1

=

 (GN )−1 (GN )−1B

tB (GN )−1 V −1 + tB (GN )−1B

 .

Now the dual norm function QM on T ∗(M) is given by

EM := QM
x,y(ξ, η ; ξ, η) =

∑
i, j

(
GN (x)−1

)
i j
ξi ξj + 2

∑
i, α

(
(GN )−1B

)
i α
ξi ηα

+
∑
α, β

(
V −1 + tB(GN )−1B

)
αβ

ηα ηβ,

where
(
GN (x)−1

)
i j

means the (i j) component of the matrix GN (x)
−1

and so on.

So on the subspace φ∗(T ∗
0 (N)), the solution curves of the Hamilton vector field with

the Hamiltonian EM satisfy the equations

(4.15)



d

dt
xi(t) =

∂EM

∂ξi
=
∑
j

(GN (x)−1)i jξj ,

d

dt
yα(t) =

∂EM

∂ηα
= 2

∑
i

(
GN (x)−1B(x, y)

)
i α
ξi,

d

dt
ξi(t) = −

∂EM

∂xi
= −

∑
i′ j

∂(GN (x)−1)i′ j
∂xi

ξi′ ξj ,

d

dt
ηα(t) = −

∂EM

∂yα
≡ 0.
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Also the solution curves of the Hamilton vector field with the Hamiltonian EN =
QN

x (ξ, ξ) satisfy the equations

(4.16)



d

dt
xi(t) =

∂EN

∂ξi
=
∑
j

(GN (x)−1)i jξj ,

d

dt
ξi(t) = −

∂EN

∂xi
= −

∑
i′ j

∂(GN (x)−1)i′ j
∂xi

ξi′ ξj .

Then, since EM = QM
x,y(ξ, 0; ξ, 0) = QN

x (ξ, ξ) = EN by comparing (4.15) and (4.16)
we have the commutative diagram:

(4.17) T ∗
0 (M)

ΦM
t

��

φ∗(T ∗
0 (N))? _

χφoo pφ //

ΦM
t

��

T ∗
0 (N)

ΦN
t

��
T ∗
0 (M) φ∗(T ∗

0 (N))? _
χφoo pφ // T ∗

0 (N),

where we denote by {ΦM
t } and {ΦN

t } the geodesic flows (= bicharacteristic flows of
the Laplacians) on M and N respectively.

Proposition 4.7. Let φ :M → N be a Riemannian submersion as above and let L
be a compact Lagrangian submanifold in T ∗

0 (N) satisfying the conditions Mas[1] and

Mas[2]. Then the Lagrangian submanifold L̃ := pφ
−1(L) ⊂ φ∗(T ∗

0 (N)) also satisfies
the conditions Mas[1] and Mas[2].

Proof. From the above arguments it will be seen that the condition Mas[1] is satisfied
by the Lagrangian submanifold pφ

−1(L) with the same value EL.
Since pφ

∗(θN ) = χφ
∗(θM ) we have the equality of the integral∫

γ̃
θM =

∫
pφ(γ̃)

θN ,

for arbitrary loops γ̃ in pφ
−1(L). This equality together with the fact pφ

∗(mL) = mL̃

implies the condition Mas[2] for pφ
−1(L). □

Proposition 4.8. If a compact Lagrangian submanifold L̃ in φ∗(T ∗
0 (N)) satisfying

the condition that pφ
−1(pφ(L̃)) = L̃ and the conditions Mas[1] and Mas[2], then by

noting that all the loops in L = pφ(L̃) come from loops in L̃ we know that L also
satisfies the conditions Mas[1] and Mas[2].

Let dµ be a smooth measure on a manifold X. We treat it as a “distribution”

C∞
0 (X) ∋ f 7−→

∫
X
f dµ =:< dµ, f > .

Then through a general differentiable map h : X → Y (with compact fibers or the
support dµ is compact), we can define a distribution h∗(dµ) on Y by the formula

< h∗(dµ), g >:=

∫
X
h∗(g)dµ =< dµ, h∗(g) >, g ∈ C∞

0 (N),
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which is called the push-forward of the measure dµ. If h is a submersion, then the
push-forward h∗(dµ) is again a smooth measure.

Now let φ :M → N be a Riemannian submersion as before with compact fibers.

Proposition 4.9. Let L̃ be a Lagrangian submanifold in φ∗(T ∗
0 (N)) satisfying the

same conditions in Proposition (4.8) and we assume there exists a {ΦM
t } action

invariant smooth measure dµ̃L̃ on L̃. Then by the commutativity given in the
diagram (4.17) the push-forwarded smooth measure (pφ)∗(dµ̃L̃) is a geodesic flow

{ΦN
t }-action invariant measure on pφ(L̃).

On the other hand, let L ⊂ T ∗
0 (N) be a Lagrangian submanifold carrying a

smooth measure dµL which is invariant under the geodesic flow {ΦN
t } action. In

this case it is not apparent of the existence of the geodesic flow {ΦM
t } action invariant

measure on pφ
−1(L). Here we explain a possible candidate for such a measure.

Since the map pφ : pφ
−1(L) = φ∗(L) → L is a submersion (φ∗(L) denotes the

fiber product ofM and L by the submersion φ) we have an exact sequence of vector
bundles

{0} −→ V −→ T (pφ
−1(L))

dpφ−→ pφ
∗(T (L)) −→ {0}

on pφ
−1(L) = φ∗(L), where V = Ker dpφ and it can be identified with the induced

bundle (πM )
∗
(Ker dφ) of Ker dφ on M by the restriction of the differential dπM to

φ∗(L). This can be seen by the following way. Let {γ̃} be a smooth curve in φ∗(L)
mapped to a point by pφ, then the curve {πM (γ̃)} is also mapped to a point by the
map φ. Hence the differential dπM maps V to Ker dφ. We can see this is injective,
since if a curve {γ̃} is mapped to a point by the map pφ and also mapped to a point
by the map πM , then it is a constant curve in φ∗(L) by the definition of the fiber

product, which implies that the natural map dπM |φ∗(L) : V −→ (πM )
∗
(Ker dφ) is

injective. By comparing the dimensions of the bundles V and (πM )
∗(
Ker dφ

)
we

know that the two bundles V and (πM )∗
(
Ker dφ

)
on φ∗(L) are isomorphic.

Now by the assumption that φ is a Riemannian submersion, the Riemannian
volume forms dvM on M and dvN on N have a relation through the isomorphism

max∧
T ∗(M) ∼=

max∧
Ker dφ⊗

max∧
(φ∗(T ∗(N)))

that there exists the non-where vanishing unique section dF :M →
max∧

Ker dφ such
that dvM = dF ⊗ φ∗(dvN ). By the relation (4.14), we have

(4.18) det

(
GM H
tH V

)
= detV · detGN .

Using this relation, the volume form dvM is expressed in local coordinates (x, y) as

dvM =

√
det

(
GM H
tH V

)
dy1 ∧ · · · ∧ dyd ∧ dx1 ∧ · · · ∧ dxn

=
√
detV dy1 ∧ · · · ∧ dyd ∧

√
detGN dx1 ∧ · · · ∧ dxn

=
√
detV dy1 ∧ · · · ∧ dyd ∧ φ∗(dvN ).
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Hence dF =
√
detV dy1 ∧ · · · ∧ dyd.

The possible candidate of an invariant measure on φ∗(L) under the geodesic flow
{ΦM

t } action is

(4.19) f · (πM )
∗
(dF )⊗ pφ

∗(dµL),

with a suitable positive valued function f ∈ C∞(pφ
−1(L)).

Example 4.10. One typical example we have such an invariant measure is the case
that M is a Cℓ-manifold, i.e., the geodesic flow is periodic with the common period
ℓ > 0, like the case of S2n+1 → PCn and S4n+3 → PHn (Hopf fibrations).

Remark 4.11. Let L̃ be a compact Lagrangian submanifold in T ∗
0 (M). There will

be various cases that two submanifolds L̃ and φ∗(T ∗
0 (N)) intersect cleanly and the

image pφ(S) of the intersection S = L̃∩φ∗(T ∗
0 (N)) can be a Lagrangian submanifold

in T ∗(N). The case above is a special case. As one of another special case we

may consider the following situation, that is we assume that L̃ and φ∗(T ∗
0 (N))

intersect transversally (in this case dimS = dimN), and that the intersection L̃ ∩
φ∗(T ∗

0 (N)) intersect cleanly with the vertical foliation of the submersion pφ with
the zero dimensional intersections with each leaf (= fibers of the submersion pφ),

then pφ : S → T ∗
0 (N) is a Lagrangian immersion. In such a case if L̃ satisfies the

condition Mas[2], then pφ(S) also satisfies the condition Mas[2].

Remark 4.12. Let g : X → T ∗(X) be a closed one-form (πX ◦ g = Id), then the
image g(X) ⊂ T ∗(X) is a Lagrangian submanifold. There are many deep studies on
“exact” Lagrangian submanifolds, for example see [8] and also [1] for basic proper-
ties. If a class ∈ H1(X,Z) has a representative by a nowhere vanishing closed one-
form g, then g(X) ⊂ T ∗

0 (X) is an integral Lagrangian submanifold whose Maslov
class is zero. Hence 1

2πg(X) satisfies the condition Mas[2] (without correction term
mg(X)/4). Also we can find a Riemanian metric with respect to which the Lagrangian
submanifold g(X) satisfies the conditions Mas[1], however it is not clear among such
metrics whether we can find a suitable metric satisfying the condition Mas[3]. So
it is not trivial to find “non-trivial” examples of compact Lagrangian submanifolds
satisfying all the conditions Mas[1]∼Mas[3]. There are examples of such Lagrangian
submanifolds satisfying all the conditions Mas[1]∼Mas[3] on the manifolds with the
completely integrable geodesic flow, where such a Lagrangian submanifold is given
as intersections of particular constant hypersurfaces of linearly independent first
integrals. In this case Lagrangian submanifolds are tori always.

5. Eigenvalue theorem by Weinstein and the main theorems

In this section we recall a theorem called Eigenvalue Theorem (cf. [22]). There
are various version of this type existence theorem of eigenvalues of the Laplacian.
The theorem here is interesting from the point of the Fourier integral operator
theory (cf. [5, 6, 10, 13]). There is a similar such existence theorem which is more
intuitive from a point of view of physics (cf. [18], and [19] in relation to the history
of such type theorems) (= correspondence of eigenstates and closed geodesics).

We assume that there is a compact Lagrangian submanifold L ⊂ T ∗
0 (X) satisfying

the conditions Mas[1] ∼ Mas[3]. As was noted in Remark 4.6, let dL be the smallest
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integer in {1, 2, 4} such that dL
2π · L is integral. Then the Eigenvalue Theorem says

that

Theorem 5.1. There exists such a sequence {λk}∞k=0 of eigenvalues of the Laplacian

∆X that ∣∣λk − EL(dLk + 1)2
∣∣ ≤ C : bounded.

The proof is given by constructing a Fourier integral operator A : L2(U(1)) →
L2(X).

An outline of the proof is as follows:

Step(1): By the condition Mas[2], the Lagrangian submanifold dL
2π ·L is integral, so

that we can construct a conic Lagrangian submanifold d̂L
2π · L in T ∗

0 (X)×T ∗
0 (U(1)).

This construction was explained in Corollary 2.6 and Proposition 2.7.

Step(2): The operator A : C∞(U(1))→ C∞(X), or rather its kernel distribution
KA we are going to construct, is a Lagrangian distribution with respect to the conic

Lagrangian submanifold d̂L
2π · L, which satisfies the condition that the Lagrangian

distribution

D(KA) :=

(
∆X ⊗ Id+ Id⊗ EL

d2

dt2

)
KA

is of order 0 “mod half density factor”. So we take a Lagrangian distribution whose

principal symbol on d̂L
2π · L is

√
dµL ⊗

√
dτ ⊗ sPft(L̂), where dµL is the invariant

measure assumed in Mas[3] (note that we may regard that L̂ is more or less L×R+.
Also see Propositions 4.1 and 4.2 and the proof of Proposition 4.2 explained in the
Appendix for the relation of global sections sPft(L) and sPft(L̂).

By applying the operator D = ∆X ⊗ Id+ Id⊗EL
d2

dt2
to such a distribution KA,

we know that the principal symbol of the distribution D(KA) (as a Lagrangian dis-

tribution) vanishes, since on the conic Lagrangian submanifold d̂L
2π · L the principal

symbol of the operator D vanishes by the condition Mas[1]. Then as the 1st order
Lagrangian distribution, the principal symbol of the distribution D(KA) again van-
ishes, because the subprincipal symbol of the operator D vanishes and the principal
symbol of our distribution KA is invariant under the geodesic flow action of the
Laplacian by Mas[1] (precisely to say, its lift to T ∗

0 (X)×T ∗
0 (U(1)), cf. [10]). So the

operator D = ∆X ◦A+ELA◦ d2

dt2
: C∞(U(1))→ C∞(X) is bounded as an operator :

L2(U(1))→ L2(X). Since the action of ZdL on d̂L
2π · L comes from the natural action

on the base space U(1) and by the assumption Mas[1] and Mas[3] we may find a can-
didate of such an operator A always ZdL action equivariant, so that the operator A

is descended to an operator acting on the space of sections Γ
(
E⊗|

∧
|1/2
(
U(1)/ZdL)

)
of the line bundle E ⊗ |

∧
|1/2(U(1)/ZdL) on U(1)/ZdL , where E is the line bundle

on U(1)/ZdL associated to the principal bundle U(1) → U(1)/ZdL via the natural

representation of the structure group ZdL (∼= {1} or {±1} or {±1, e±
π
2

√
−1}) to

U(1) and |
∧
|1/2(U(1)/ZdL) is the half density line bundle of U(1)/ZdL (this is the

reason why the eigenvalues of the form (dL · k + 1)2 are appearing in this space as

eigenvalues of the operator − d2

dt2
, see Proposition A.6).
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Step(3) By some non-trivial modification (based on clean intersection theorem)
of A in the lower order terms, we can make the operator A maps isometrically the

subspace consisting of eigenspaces of − d2

dt2
with the eigenvalues (dLk + 1)2 (k =

0, 1, . . .) in L2(U(1)) to L2(X) with the bounded commutator. Note that we can

define an inner product on the space Γ
(
E ⊗ |

∧
|1/2(U(1)/Zdl)

)
in an intrinsic way.

We also note that if we consider the operator A as Γ
(
E ⊗ |

∧
|1/2(U(1)/ZdL)

)
→

Γ
(
|
∧
|1/2(X)

)
, the operator

tA ◦A : Γ
(
E ⊗ |

∧
|1/2(U(1)/ZdL)

)
→ Γ

(
E ⊗ |

∧
|1/2(U(1)/ZdL)

)
is a pseudo-differential operator of order zero whose principal symbol can be iden-
tified in a natural way with the Heaviside function on each fiber of T ∗

0 (U(1)) ∼=
U(1)× R\{0}.

Then by using the spectral decomposition of the Laplacian we can prove the
existence of eigenvalues of the Laplacian ∆X described in the statement in the
Theorem.

Now let φ : M → N be a Riemannian submersion and we assume the existence
of a compact Lagrangian submanifold in T ∗

0 (N) satisfying the conditions Mas[1] ∼
Mas[3]. Then as was discussed in §3 the Lagrangian submanifold pφ

−1(L) = φ∗(L)
also satisfies the conditions Mas[1] and Mas[2]. Then we assume that a measure
(4.19) is invariant under the geodesic flow {ΦM

t } action, or the same thing that a
section f · dF is invariant under the action of {ΦM

t }, then associated to the conic

Lagrangian submanifold ̂pφ−1(L) = pφ̂
−1(L̂) there is a Fourier integral operator Â

which satisfies the properties by the Eigenvalue Theorem which is quasi-commuting

with the Laplacian on M and −EL
d2

dt2
. Hence as a corollary of the Eigenvalue

Theorem

Theorem 5.2. There is a sequence {λk} of eigenvalues of the Laplacian on M such
that |λk − EL(dLk + 1)2| is bounded.

The Fourier integral operator A : C∞(U(1)) → C∞(N) which is isometric and
quasi-commuting with the Laplacian on N whose existence is guarantied by the
assumptions Mas[1] ∼ Mas[3] (the main part of the Eigenvalue Theorem [22]) and

the operator Â will not be quasi-commuting through the map φ∗ (that is Â ◦ φ∗ −
φ∗ ◦ A is not bounded), since the principal symbol of Â included an ambiguity
from the pull-back of the principal symbol of A by the map pφ̂. Off course, if

∆M ◦ φ∗ = φ∗ ◦∆N , then to know the existence of particular series of eigenvalues
of the Laplacian ∆M from that of ∆N , we need not depend on the operator Â.

Next we assume there exists a compact Lagrangian submanifold L̃ in φ∗(T ∗
0 (N))

satisfying the conditions Mas[1] ∼ Mas[3] with an invariant measure dµ̃L̃ of Mas[3]

and additionally we assume that pφ
−1(pφ(L̃)) = L̃. Then in this case the La-

grangian submanifold pφ(L̃) in T
∗
0 (N) satisfies the conditions Mas[1] ∼ Mas[3] with

the invariant measure (pφ)∗(dµ̃L̃) ((4.9)). Hence we can construct a Fourier integral
operator A : C∞(U(1)) → C∞(N) quasi commuting with the Laplacian on N and
by applying the Eigenvalue Theorem we have
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Theorem 5.3. There exists a sequence {λk}∞k=0 of eigenvalues of the Laplacian on
N such that

|λk − EL(dLk + 1)2| is bounded.

Here the Fourier integral operatorsA : C∞(U(1))→ C∞(N) and Â : C∞(U(1))→
C∞(M), those existence are guaranteed by the assumptions Mas[1] ∼ Mas[3], again
need not be quasi-commuting through the map φ∗, since the pull-back of the mea-
sure (pφ)∗(dµ̃L̃) may not be possible to make it to coincide with the original measure
dµ̃L̃.

6. Eigenvalue theorem for a sub-Laplacian

In this last section, we consider the most simple case of a sub-Riemannian struc-
ture and the possible Eigenvalue Theorem for its intrinsic sub-Laplacian.

Let X be a compact orientable manifold with a non-trivial subbundle H in the
tangent bundle T (X), which is equipped with an inner product < · , · >H.

We assume

(6.1) Γ(H) + [Γ(H), Γ(H)] = Γ(T (X)),

that is, all the vector fields ∈ Γ(T (X)) mod Γ(H) are generated from the vector
fields taking values in H by the bracket operation. This property is said to be
bracket generating of 2-step and is equivalent to the property that

(6.2)


the induced bundle map B : H⊗H −→ T (X)/H from the
bracket operation
Γ(H)× Γ(H) ∋ (Z, Z ′) 7−→ [Z, Z ′] ∈ Γ(T (X))
is surjective at any point in X.

Then we can install an inner product on the quotient bundle T (X)/H by assuming
that it is isometric with the orthogonal complement of the kernel of the map B,

(KerB)⊥
isometric∼= T (X)/H.

Hence by the natural isomorphism

dimH∧
H ⊗

dim (T (X)/H)∧ (
T (H)/H

) ∼= dimX∧
T (X)

and the isomorphism of their duals

dimH∧
H∗ ⊗

dim
(
T (X)/H

)∧ (
T (H)/H

)∗ ∼= dimX∧
T ∗(X)

we can define a measure, called Poppe’s measure (cf. [14], [2]) which we denote by
dP and can be locally expressed as

dP = α1 ∧ · · · ∧ αdimH ⊗ β1 ∧ · · · ∧ βdimX−dimH,

where {αi} and {βj} are local orthonormal frames of the bundlesH∗ and
(
T (X)/H

)∗
with respect to their dual inner products.

Then we can define the divergence of the vector field Z ∈ Γ(T (X)) with respect
to the measure dP by

divdP(Z) · dP := LZ (dP) = (d ◦ iZ + iZ ◦ d)(dP) = d(iZ(dP)),
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where LZ is the Lie derivative and iZ is the interior product.
We also define the gradient vector field gradH(f) ∈ Γ(H) for f ∈ C∞(X) along

H by
< Z, gradH(f) >

H:= Z(f), ∀Z ∈ Γ(H).
Now we define a second order differential operator ∆sub in the similar way to define
the Laplacian:

∆sub(f) := divdP(gradH(f)).

Then it is sub-elliptic (cf. [12]) and so has compact resolvents.
In this case, we assume that there exists a compact Lagrangian submanifold L

in T ∗
0 (X) satisfying the conditions

Mas[1]sub : the principal symbol σ(∆sub) ≡ EL (positive constant) on L,

and

Mas[3]sub : there exists an invariant measure on L under the action of the

bi-characteristic flow {ϕXt } of the sub-Laplacian ∆sub.

Then,

Theorem 6.1. Together with the condition Mas[2] the same conclusion of the
Eigenvalue Theorem 5.1 holds.

Example 6.2. As an example of the above sub-Riemannian structure, we consider
a submersion φ : M → N between compact orientable manifolds. We assume that
there is a splitting of the tangent bundle T (M) = H⊕Ker dφ (we put V := Ker dφ)
and the subbundle H satisfies the two conditions that

(1) it is a sub-Riemannian structure in the above sense. Hence the brackets of
vector fields [Z, Z ′], Z, Z ′ ∈ Γ(H), generate Γ(V).

(2) the inner product < ·, · >H satisfies the Riemannian submersion condition,
that is, if φ(p) = φ(p′) = q then

dφp : Hp → Tq(N) and dφp′ : Hq′ → Tq(N)

define the same inner product on Tq(N). Hence we can install a Riemannian metric
on the base manifold N , which we denote by gN . Through the isomorphism between
V ∼= T (M)/H given by the sequence V → T (M)→ T (M)/H, we can also introduce
an inner product on V. Then it will be natural to install a Riemannian metric on
T (M) by assuming that the bundles V and H are orthogonal. We denote the resulting
Riemannian metric on M by gM . Then φ : M → N is a Riemannian submersion
with the property that the horizontal subbundle V⊥ ∼= H has the property (6.2) and
the inner product on V comes from the inner product on H.

In this case the Popp’s measure dP on M and the Riemannian volume form dvM

coincide.
We note a relation of gradH(φ

∗(f)), grad(φ∗(f)) for f ∈ C∞(N). So let f ∈
C∞(N) and denote by grad(f) (respectively grad(φ∗(f))) the gradient vector field
on N (or on M) with respect to the Riemannian volume form dvN (or with respect
to the Popp’s measure = the Riemannian volume form dvM ). Then

gradH(φ
∗(f)) = Hgrad(φ∗(f)) = ˜grad(f),
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where Hgrad(φ∗(f)) is the H component of grad(φ∗(f)) according to the orthogonal

decomposition T (M) = V ⊕ H and ˜grad(f) is the horizontal lift of the gradient
vector field grad(f).

Let (x, y) be local coordinates expressing the submersion map φ as the projection

map (x, y) 7→ x (see §3). The vector field grad(f) is expressed as
∑

i j g
ij(x) ∂f

∂xi
,

where we put (GN (x)−1)i j = gi j(x). Hence

˜grad(f) =
∑

i, j≤dimN

gij(x)
∂f(x)

∂xj

(
∂

∂xi
+
∑
α

bi α(x, y)
∂

∂yα

)
,

where the matrix elements are denoted as in (4.13).
There will be some conditions for the commutativity ∆sub ◦ φ∗ = φ∗ ◦ ∆N and

will be studied in a forth coming paper.

In this case of a Riemannian submersion φ : M → N such that the horizontal
subbundle is a 2 step bracket generating, we can also consider the spectrum of the
sub-Laplacian ∆sub on M instead of the Laplacian on M , since we have the same
commutative diagram to (4.17) with respect to the geodesic flow on N and the
bi-characteristic flow {ϕMt } of the sub-Laplacian

(6.3) T ∗
0 (M)

ϕM
t

��

φ∗(T ∗
0 (N))? _

χφoo pφ //

ϕM
t

��

T ∗
0 (N)

ΦN
t

��
T ∗
0 (M) φ∗(T ∗

0 (N))? _
χφoo pφ // T ∗

0 (N).

Hence

Theorem 6.3. Under the same assumptions Mas[1] ∼Mas[3] for a Lagrangian sub-
manifold L in T ∗

0 (N) and with an invariant measure (4.19) under the action of
the bi-characteristic flow {ϕMt } of the sub-Laplacian, we may conclude the same
conclusion as Theorem 5.2 for the sub-Laplacian ∆sub on M .

Also under the assumptions Mas[1]sub, Mas[2], Mas[3]sub and pφ
−1
(
pφ(L̃)

)
= L̃

for a Lagrangian submanifold L̃ in pφ
−1
(
T ∗
0 (N)

)
we have the same conclusion with

Theorem 5.3 for the Laplacian on N .

Remark 6.4. The sub-ellipsity of the sub-Laplacian guarantees the compact resol-
vents of the sub-Laplacian, which property is used in the third step Step(3) in §5 of
the Eigenvalue Theorem.

Appendix A. Maslov index and Maslov class

In this appendix we recall a definition of the Maslov class for symplectic vec-
tor bundles with two Lagrangian subbundles based on the Maslov index defined
for arbitrary paths (cf. [7]) and prove the invariance of the Maslov class for a
compact Lagrangian submanifold in the punctured cotangent bundle under dilation
(Proposition 4.5). Also we remark two facts used in the outline for the proof of the
Eigenvalue Theorem 5.1 and the coincidence of the Maslov class defined here and
“α-construction” in [13].
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A.1. Maslov index and Maslov class. We consider Cn as a typical symplectic
vector space with the anti-symmetric and non-degenerate bilinear form ω0(z, w)

ω0(z, w) := Im
(∑

ziwi

)
=
∑

xn+iyi − xiyn+i,

where z = (z1, . . . , zn) = (x1, x2, . . . , xn ;xn+1, . . . , x2n), zi = xi + xn+i

√
−1 and

w = (w1, . . . , wn) = (y1, y2, . . . , yn ; yn+1, . . . , y2n), wi = yi + yn+i

√
−1.

A subspace in Cn is said to be a Lagrangian subspace, if it is a real subspace of
the dimension n and on which the anti-symmetric bilinear form ω0 vanishes.

More generally if the anti-symmetric bilinear form vanishes on a real subspace,
it is call an isotropic subspace. Then it dimension is less than n.

For h a subspace (real vector space) in Cn, we denote by h◦ the subspace defined
by

h◦ = {z ∈ Cn | ω0(z, v) = 0 for any v ∈ h}.
So, h is isotropic, if and only if h ⊂ h◦ and h is a Lagrangian subspace, if and only
if h = h◦.

The subspaces
λRe :=

{
(x1, . . . , xn ; 0, . . . , 0)

}
and

λIm :=
{
(0, . . . , 0 ;xn+1, . . . , x2n)

}
are typical Lagrangian subspaces and Cn = λRe ⊕ λIm.

We denote the space of all Lagrangian subspaces in Cn by Λ(n), which as is well
known isomorphic to the quotient space U(n)/O(n) and is called the Lagrangian-
Grassmaniann and together with the projection map

πF : U(n)→ Λ(n), U(n) ∋ U 7−→ U(λRe)

it is a principal bundle with the structure group O(n).
Let λ ∈ Λ(n) and denote by Pλ the orthogonal projection operator Cn → λ ⊂ Cn.

Then the operator τλ := 2Pλ−Id is an involution with λ as the 1-eigenspace and the
orthogonal complement λ⊥ as the −1-eigenspace. Also for U ∈ U(n) let’s denote the
operator τλ ◦U∗ ◦ τλ by θλ(U). In particular, if λ = λRe and we express the matrix
U =

(
uij
)
with the standard orthonormal basis {ei} of Cn, then θλRe

(U) = U , that

is U =
(
uij
)
.

For each λ ∈ Λ(n), let Sλ : Λ(n)→ U(n) be a map, called Souriou map, defined
by

Sλ : Λ(n) ∋ µ 7−→ U ◦ θλ(U) ∈ U(n),

where µ = U(λIm). In fact this does not depend on the operator U for µ = U(λ⊥),
since we have an expression

Sλ(µ) = −τµ ◦ τλ.
Let UM be a subset in U(n) defined by

(A.1) UM = {U ∈ U(n) | U + Id is not invertible }.
Then we call the subset defined by

(A.2) Mλ := Sλ−1(UM) =
{
µ ∈ Λ(n)

∣∣∣ µ∩λ ̸= {0}
}

the “Maslov cycle” passing through a Lagrangian subspace λ ∈ Λ(n).



SUBMERSION AND QUANTIZATION CONDITION 395

Let γ : [0, 1]→ Λ(n) be a continuous curve. We define an intersection number of
γ andMλ in the following way (cf. [7]):

We can find a partition {0 = t0 < t1 < t2 < · · · < tℓ = 1} of the interval [0, 1]

and a set of small positive numbers { 0 < εj ≪ 1 }ℓ−1
j=0 satisfying the condition that

for j = 0, . . . , ℓ− 1

(A.3)

{
the values e

√
−1(π± εj) are not eigenvalues of the operators

Sλ(γ(t)) for tj ≤ t ≤ tj+1.

This condition means that the eigenvalues of the operators {Sλ(γ(t))}tj≤t≤tj+1 in-

cluded in the arc {e
√
−1s | π − εj ≤ s ≤ π + εj} stay there when the parameter

tj ≤ t ≤ tj+1. Then we define an integer Mas({γ}, λ), and call it Maslov index for
path {γ} with respect to the Maslov cycleMλ by

Definition A.1.

Mas({γ}, λ) :=
ℓ−1∑
j=0

the number of the eigenvalues of the operator Sλ(γ(tj+1))

in the sector
{
e
√
−1s

∣∣ π ≤ s ≤ π + εj
}

− the number of the eigenvalues of the operator Sλ(γ(tj))

in the sector
{
e
√
−1s

∣∣ π ≤ s ≤ π + εj
}
.

Then,

M-ind(1): The integer Mas({γ}, λ) does not depend on the partition {tj} of
the interval [0, 1] and the small positive numbers {εj} satisfying the condi-
tion (A.3),

M-ind(2): It is a homotopy invariant for the paths with the fixed end points,

M-ind(3): It satisfies the additivity under catenations of paths.

Let Ψ : E → X be a symplectic vector bundle over a space X (we put the fiber
dimension = n). The space X will have suitable properties satisfied by manifolds.
We denote the anti-symmetric non-degenerate bilinear form on E by ωE , then we can
install an inner product < · , · > on E “compatible” with the symplectic structure
ωE in such a sense that there exists an almost complex structure J : E → E,
J2 = −Id, Ψ ◦ J = Ψ such that

ωE(u, v) =< J(u), v >, < J(u), J(v) >=< u, v >, u, v ∈ Ex.

We assume that there exist two Lagrangian sub-bundles F and G in E, that is
their fibers at each point x are Lagrangian subspaces in Ex.

Let {γ(t)} be a continuous curve, γ : [0, 1]→ X. We divide it into small segments{
{γ(t)}ti≤t≤ti+1

}
in such a way that there exist a finite open covering {Oi}i around

the curve {γ(t)} and γ([ti, ti+1]) ⊂ Oi, such that the vector bundle E has local
trivializations

ψi : Oi × Cn ∼= Ψ−1(Oi)
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satisfying the property that by this trivialization for each x ∈ Oi, (x, λIm) is mapped
to ψi(x, λIm) = Fx = Ψ−1(x)

∩
F . Then we can assign an integer Mas(F,G)({γ(t)})

for an arbitrary continuous path γ : [0, 1]→ X as the sum

(A.4) Mas(F,G)({γ(t)}) =
∑
i

Mas({ψi
−1(Gγ(t))}ti≤t≤ti+1 , λIm).

This quantity can be defined for all paths and has the properties:

M(0): The definition does not depend on the partition of the interval [0, 1], nor
the local trivializations of the symplectic vector bundle E satisfying the
conditions above nor does not depend on the inner product installed which
satisfies the “compatibility properties”,

M(1): Homotopy invariance for paths with fixed end points,

M(2): Additivity under catenations.

Hence, let π : X̃ → X be the universal covering space of X consisting of homotopy
classes of paths starting from a fixed initial point x0 ∈ X. Then we can define a
function

(A.5) Mas(F,G) : X̃ −→ Z, X̃ ∋ {γ} 7−→ Mas(F,G)({γ(t)}).

Especially its restriction to the fiber π−1(x0) defines a homomorphism:

Mas(F,G) : π
−1(x0) ∼= π1(X)→ Z.

Consequently, we have a cohomology class ∈ H1(X,Z), which we denote by m(F,G)

and is called the “Maslov class” of the pair of Lagrangian subbundles F and G.
Note that m(F,G) = −m(G,F ).

Proposition A.2. It will be apparent if the intersection F ∩ G on a curve {γ(t)}
is trivial bundle, then Mas(F,G)({γ}) = 0

Definition A.3. Let χπ/2 be the representation χπ/2 : Z → U(1), n 7→ eπ/2
√
−1n

and we define an associated complex line bundle Lm(F,G)
on X to the principal

bundle π : X̃ → X through the representation π1(X)
Mas(F,G)−→ Z

χπ/2−→ U(1). It is
called Maslov line bundle.

Let E be symplectic a vector bundle on a spaceX with two Lagrangian subbundle
F and G. Let f : Y → X be a continuous map, then we can define the symplectic
vector bundle f∗(E) on Y with two Lagrangian subbundles f∗(F ) and f∗(G). Let

f̃ : Ỹ → X̃ be the map between their universal covering spaces Ỹ and X̃. Then

(A.6) Mas(F,G) ◦ f̃ =Mas(f∗(F ),f∗(G)).

Now let L be a Lagrangian submanifold in the cotangent bundle T ∗(X). Then
the restriction of the tangent bundle T (T ∗(X)) to L is a symplectic vector bundle
together with two Lagrangian subbundles, the tangent bundle of L, T (L), and the
restriction of Ker dπX on L, the vertical subbundle with respect to the projection
map πX : T ∗(X)→ X.

Hence we have a cohomology class m(
Ker dπX ,T (L)

) as a homomorphism

m(
Ker dπX ,T (L)

) : π1(L)→ Z,
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which we will denote simply by mL.

Remark A.4. The definition of Maslov index for arbitrary paths given in [20] has
a modification term at the end points and is not natural one. In [9] it was noticed
for the first time without any modification term and in [4] and [7], it was given based
on the arguments by [17] including the infinite dimensional symplectic Hilbert space
case.

A.2. Three remarks. Here we notice two properties used in the outline of the
proof of Eigenvalue Theorem 5.1 and the α-construction given in [13] based on our
definition of Malsov index and Maslov class.

First, we prove Proposition 4.5.

Proposition A.5. Let L be a compact Lagrangian submanifold in T ∗
0 (X). Then

for any positive real number A > 0 and any closed curve {γ} in L,

(A.7) < mL, γ >=< mA·L, A · γ > .

Proof. Since the Maslov index < mL, γ > for a path {γ} is defined based on the
data {

dim
(
Tγ(t)(L)

∩ (
Ker dπX

)
γ(t)

)}
t∈ [0, 1]

and it holds that

dim
(
Tγ(t)(λ)

∩ (
Ker dπX

)
γ(t)

)
= dim

(
TA·γ(t)(A · λ)

∩ (
Ker dπX

)
A·γ(t)

)
for any t, since the dilation A· : T ∗

0 (X) −→ T ∗
0 (X), (x; ξ) 7−→ A · (x; ξ) = (x; A · ξ),

A > 0, is a diffeomorphism. Hence (A.7) holds. □

Next, we prove Proposition 4.2: By our definition of the Maslov class based on the
Maslov index for arbitrary paths, the proof of Proposition 4.2 is now almost clear by
the data given in Propositions 4.3 and 4.4, since it is enough to prove the coincidence
of the intersection T (L)∩ VX and T (L̂)∩ VX×U(1) after a suitable reduction of the

symplectic vector bundle. In fact through the map pL : L̂ → L we know that the
symplectic vector bundle T (T ∗(X))|L on L can be seen as a symplectic quotient
bundle of the symplectic vector bundle T (T ∗(X × U(1)))|L̂ and Propositions 4.3

and 4.4 guarantee the coincidence of the Maslov index for arbitrary curve in L, and
it is enough to consider such a curve also in L× {1}, since L̂ and L are homotopic.
2

Let L be a compact Lagrangian submanifold appearing in the Eigenvalue Theo-
rem 5.1 and L̂ the corresponding conic Lagrangian submanifold in T ∗

0 (X)×T ∗
0 (U(1)).

We also note the obvious free action of the group Zk (the cyclic group of order k)
on the space U(1) is lifted to T ∗

0 (U(1)) and the lifted action leaves invariant the

Lagrangian submanifold L̂. Moreover the Maslov class mL̂ is invariant under this
action. Hence

Proposition A.6. The conic Lagrangian submanifold L̂ is descended to the conic
Lagrangian submanifold L̂/Zk in T ∗

0 (X) × T ∗
0 (U(1)/Zk), and the pull-back of the

Maslov class mL̂/Zk
to L̂ coincides with mL̂.
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At the end of the Appendix, we remark a construction called “α-construction”
given in [13] in relation to our definition of the Maslov index for arbitrary paths.

First we recall the construction of the universal covering space Φ : X̃ → X from
the very beginning. The space X̃ consists of homotopy classes of paths {γ} starting
from a fixed common point γ(0) = x0 ∈ X. So, for each homotopy class [γ] ∈ X̃,

Φ([γ]) = γ(1), the end point. Then Φ : X̃ → X is a principal bundle with the
structure group π1(X) = π1(X, x0) (homotopy classes of loops with the base point
x0) so that there is an open covering {Uℓ} of X and homeomorphisms {ϕℓ}

ϕℓ : Uℓ × π1(X)
∼→ Φ−1(Uℓ)

which we define as follows:
For any point x ∈ X we take a sufficiently small “simply” connected open

neighborhood Ux (existence of such neighborhoods is assumed) and fix a path
{σx} connecting x0 and x, σx(0) = x0, σx(1) = x. Let y ∈ Ux and we con-
nect x and y by an arbitrary fixed path s(Ux, y) in Ux. Since Ux is simply con-
nected, the homotopy class of the path s(Ux, y) is uniquely determined. Then, let
ϕx : Ux×π1(X, x0) ∋ (y, [γ]) = [γ∗σx∗s(Ux, y)], where we mean by [γ∗σx∗s(Ux, y)]
the homotopy class of catenations of the loop γ and the paths σx and s(Ux, y) with
the end point y.

Let y ∈ Ux ∩ Ux′ . Then,

(A.8) ϕx(y, [γ]) = ϕx′(y, [µ])

implies that there exists a unique element [Cx,x′ ] ∈ π1(X, x0) such that the paths

(A.9) {Cx,x′ ∗ γ ∗ σx ∗ s(Ux, y)} and {µ ∗ σx′ ∗ s(Ux′ , y)} are homotopic

and the correspondence Ux ∩ Ux′ ∋ y 7−→ Cx,x′(y) gives the transition functions

of the principal bundle Φ : X̃ → X. If we can connect y1, y2 ∈ Ux ∩ Ux′ by a
path in Ux ∩ Ux′ , then the loops {σx ∗ s(Ux, y1) ∗ s(Ux′ , y1)

−1 ∗ σx′−1} and {σx ∗
s(Ux, y2)∗s(Ux′ , y2)

−1∗σx′−1} are homotopic. Hence we see that the correspondence
Cx,x′ : Ux ∩Ux′ ∋ y 7→ Cx,x′ = Cx,x′(y) is a locally constant map on Ux ∩Ux′ taking
values in π1(X) = π1(X, x0).

Now let Ψ : E → X be a symplectic vector bundle over a suitable space X as
before with two Lagrangian subbundles F and G.

Then the integer valued locally constant functions
{
MasF,G({Cx,x′})

}
,

MasF,G ◦ Cx,x′ : Ux ∩ Ux′ −→ π1(X)
MasF,G−→ Z

define a 1-Čech cocycle which cohomology class in Ȟ1(X,Z) corresponds to the
Maslov class mF,G (cf. [5]).

Here we explain a realization of a set of the transition functions {Cx,x′} given in
terms of “Hörmander index”.

Let λ1 and λ2 be two Lagrangian subspaces in Cn and we consider two Lagrangian
subspaces µ, ν such that each of µ and ν is transversal to both of λ1 and λ2. Then
the index called “Hörmander index”(cf. [13]) can be defined as

(A.10) σ(λ1, λ2;µ, ν) := Mas({γ}, λ2 )−Mas({γ}, λ1 ),
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where {γ} is a path connecting µ and ν. Then by the fact that the Maslov index
for loop does not depend on the particular Maslov cycleMλ, the integer (A.10) is
well-defined. In fact, for two paths {γ} and {γ′} connecting µ and ν we have

Mas([γ ∗ γ′−1
]) = Mas({γ}, λ1)−Mas({γ′}, λ1) = Mas({γ}, λ2)−Mas({γ′}, λ2).

Let fix a point x, x′ ∈ X, and take simply connected open neighborhoods Ux ∋ x
and Ux′ ∋ x′ such that the principal bundle Φ : X̃ → X is trivial on each of them
as before. Then for y ∈ Ux ∩ Ux′ , the difference

MasF,G({µ ∗ σx′ ∗ s(Ux′ , y)})−MasF,G({γ ∗ σx ∗ s(Ux, y)})

coincides with the Maslov index MasF,G({Cx,x′}):

MasF,G({µ ∗ σx′ ∗ s(Ux′ , y)})−MasF,G({γ ∗ σx ∗ s(Ux, y)})
= MasF,G({Cx,x′}) = mF,G([Cx,x′ ]),

where we assumed (A.9).
Then for y ∈ Ux ∩ Ux′ , we can find two Lagrangian subspaces µ, ν in Ey such

that each of the Lagrangian subspaces Fy and Gy is transversal to µ and ν, and
moreover the Hörmander index σ(Fy, Gy;µ, ν) = mF,G([Cx,x′ ]), since for any pair of
Lagrangian subspaces Fy and Gy the values σ(Fy, Gy;µ, ν) can take any integer by
taking the suitable Lagrangian subspaces µ, ν in Ey transversal to Fy and Gy. Then
under the local trivialization of the associated the Lagrangian-Grassmannian bundle
ΨΛ : Λ(E) → X (the fibers Λ(E)x = ΨΛ

−1(x) are the Lagrangian-Grassmannian
∼= Λ(n)) the transversality condition for µ and ν at y allows us to leave the
value σ(Fz, Gz;µ, ν) invariant around the point y and coincides with the value
mF,G([Cx,x′ ]). Hence a collection of Hörmander index {σ(Fz, Gz;µ, ν)} is a realiza-

tion of a set of the transition functions of the Čeck cohomology class ∈ Ȟ1(X,ZX)
corresponding to the Maslov class mF,G ∈ H1(X).
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