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In the context of (vector) optimization and variational inequalities, different dual
problems have been introduced by using, for example, a scalarization technique,
Wolfe and Mond-Weir duality concepts, a vector conjugate or a Lagrangian mapping
(see, e.g., [2], [15], [16], [19]), among others. In essence, the dual problem gives a
bound for the solution of the primal problem and further allows to attack the main
(primal) problem differently. Dual problems for (vector) variational inequalities
have been introduced in a finite-dimensional setting by Yang (see [29]).

We formulate the following assumption which will hold throughout:

(A) X and Y are real Banach spaces. K : X ⇒ Y is a set-valued mapping such
that for every x ∈ X, K(x) is a convex cone in Y with non-empty interior
intK(x).

Let F : X ⇒ L(X,Y ) and φ : X → Y ∪{+∞Y } be given mappings (see Section 2 for
notations). In this paper, we consider the following generalized vector variational
inequality w.r.t. the moving domination structureK: find an element x ∈ Dom(F)∩
dom(φ) such that for some operator U ∈ F(x) it holds

⟨U, y − x⟩Y ̸≤intK(x) φ(x)− φ(y), for every y ∈ X.(VVI)

In particular if C ⊆ X is a non-empty convex set, φ = χC is the indicator mapping
of C, that is, χC(x) := 0 for x ∈ C and χC(x) := +∞Y else and F is single-
valued, denoted by F , then (VVI) recovers the following problem: find an element
x ∈ dom(F ) ∩ C such that

⟨Fx, y − x⟩Y ̸≤intK(x) 0, for every y ∈ X.

If we further define Y := R and K(x) := R≥0 for every x ∈ X, then the previous
problem becomes the following well-known (scalar) variational inequality: find an
element x ∈ dom(F ) ∩ C such that

⟨Fx, y − x⟩ ≥ 0, for every y ∈ X,

where ⟨·, ·⟩ is the duality pairing betweenX∗ andX. Besides these two special cases,
we consider the first inverse vector variational inequality of (VVI) w.r.t. the moving
domination structure K, which consists in finding an operator U1 ∈ DomF−1(−·)
and an element x1 ∈ F−1(−U1) ∩ dom(φ) such that it holds

⟨V − U1,−x1⟩Y ̸≼1
intK(x1)

φ∗(U1)− φ∗(V ),

for every V ∈ L(X,Y ) with φ∗(V ) ̸= ∅.
(IVVI1)

Here, φ∗ denotes the weak vector conjugate of φ w.r.t. K, see Section 3.2. Note
that F−1(−·) denotes the shifted set-valued mapping x 7→ F−1(−x). If we replace
the binary set relation ̸≼1

intK(·) by ̸≼2
intK(·), then the second inverse problem is: find

an operator U2 ∈ DomF−1(−·) and an element x2 ∈ F−1(−U2)∩dom(φ) such that

⟨V − U2,−x2⟩Y ̸≼2
intK(x2)

φ∗(U2)− φ∗(V ), for every V ∈ L(X,Y ).(IVVI2)

Note that the structure of the above problems is different from that in [5]. The
idea of this paper is to nest the (primal) vector variational inequality into the two
nverse problems in the sense, that, under appropriate conditions for the data of the
problems, every solution of (IVVI2) generates one of (VVI) and every solution of
(VVI) generates one of (IVVI1): The paper is organized as follows: In the next two
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sections, we collect some notations, definitions and basic results for later use. We
further prove a novel existence theorem for (VVI). The fourth section concentrates
on inverse results for the generalized vector variational inequality (VVI). The pur-
pose of Section 5 is to apply the duality results to vector control approximation
problems with respect to a variable domination structure. The last section com-
pares dual and inverse results for vector optimization problems with respect to a
fixed domination structure.

2. Notations

In the following, let X be a real Banach space, and let X∗ be its topological
dual. If Y is another real Banach space, we denote by L(X,Y ) the space of all
linear continuous operators from X to Y and ∥ · ∥L(X,Y ) stands for the norm in
L(X,Y ). In the case that X and Y are real Euclidean spaces, say X = Rn and
Y = Rm, where n,m ∈ N, then we use the identification L(Rn,Rm) ∼= Matm×n(R).
For U, V ∈ L(X,Y ), x ∈ X, we define

⟨U, x⟩Y := U(x) ∈ Y and ⟨V − U, x⟩Y := ⟨V, x⟩Y − ⟨U, x⟩Y ∈ Y.

If X = Rn , Y = Rm, x ∈ Rn and A ∈ Matm×n(R) we write Ax instead of ⟨A, x⟩Rm .
The domain and image of a mapping F : X → L(X,Y ) will be denoted by

dom(F ) := {x ∈ X | Fx is well-defined}
and im(F ) := {A ∈ L(X,Y ) | ∃ x ∈ X such that A = Fx},

respectively. If F is injective, then the adjoint mapping of F is defined by

F# : L(X,Y ) → X, F#U := F−1(−U), for every U ∈ dom(F#).

Let Z be another real Banach space. Then, the domain, range and graph of a
set-valued mapping G : X ⇒ Z are defined by

Dom(G) := {x ∈ X | G(x) ̸= ∅}, Im(G) :=
∪

x∈Dom(G)

G(x)

and Gph(G) := {(x, z) ∈ X × Z | z ∈ G(x)}.
The inverse of G, which always exists, is the set-valued mapping
G−1 : Z ⇒ X defined by G−1(z) = {x ∈ X | z ∈ G(x)}. If for every x ∈ Dom(G),
the set G(x) has the property P , then we say that G is P -valued.
We further denote the Minkowski sum and difference of two non-empty sets A,B ⊆
Y by

A+B := {a+ b | a ∈ A, b ∈ B} and A−B := {a− b | a ∈ A, b ∈ B}.

If A = {a} or B = {b} is a singleton, then we write a + B and A + b instead of
{a}+B and A+{b}, respectively. The Minkowski sum and difference of empty sets
will be defined by the rules

A± ∅ := ∅, ∅ ±B := ∅ and ∅ ± ∅ := ∅
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for (possibly empty) sets A,B ⊆ Y . In a similar way, we define the multiplication
of a scalar α ∈ R with a set by the rules

αA := {αa | a ∈ A}, for every non-empty set A ⊆ Y, and α∅ := ∅.

Let K̃ be a non-empty subset of Y . We call K̃ a cone if λK̃ ⊆ K̃ for every λ ≥ 0.
The cone K̃ is called convex if K̃ + K̃ ⊆ K̃, proper if K̃ ̸= {0} and K̃ ̸= Y and

pointed if K̃ ∩ (−K̃) = {0}. Further, if A ⊆ Y is a non-empty set, then the cone
generated by A is defined as

cone(A) := {y ∈ Y | y = λa for some λ ≥ 0 and a ∈ A}.
In the Euclidean space Rm, the so-called Pareto cone and its interior are given by

Rm≥0 := {y ∈ Rm | yj ≥ 0 for j = 1, . . . ,m}
and Rm>0 := intRm≥0 = {y ∈ Rm | yj > 0 for j = 1, . . . ,m}.

Now, let K̃ be a convex cone in Y with non-empty interior. Then, we can define
the following well-known binary relations for vectors x, y ∈ Y :

x ≤K̃ y :⇐⇒ y − x ∈ K̃,

x ̸≤K̃ y :⇐⇒ y − x /∈ K̃,

x ≤int K̃ y :⇐⇒ y − x ∈ int K̃,

x ̸≤int K̃ y :⇐⇒ y − x /∈ int K̃.

Figure 1. Illustration of the different weak vector relations in Y =
R2 for K̃ = R2

≥0

The relations ≥K̃ , ̸≥K̃ , ≥int K̃ and ̸≥int K̃ are defined analogously. For non-empty
sets A,B ⊆ Y , we introduce the following weak binary relations:

A ≼1
int K̃

B :⇐⇒ ∃a ∈ A, ∀b ∈ B : a ≤int K̃ b,

A ̸≼1
int K̃

B :⇐⇒ ∀a ∈ A, ∃b ∈ B : a ̸≤int K̃ b,

A ≼2
int K̃

B :⇐⇒ ∀a ∈ A, ∃b ∈ B : a ≤int K̃ b,

A ̸≼2
int K̃

B :⇐⇒ ∃a ∈ A, ∀b ∈ B : a ̸≤int K̃ b.
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If A = {a} or B = {b} is a singleton, then we write a ≼1
int K̃

B and A ≼1
int K̃

b

instead of {a} ≼1
int K̃

B and A ≼1
int K̃

{b}, respectively. The same convention holds

for the other set relations. We further use the convention

A ̸≼2
int K̃

∅, for every non-empty subset A ⊆ Y.

Of course, we have A ≼2
int K̃

B if and only if A ⊆ B − int K̃ provided A and B are

non-empty. Notice that the relation ≼2
int K̃

is known in the literature as upper set

less order relation, see [19].

Let again K̃ be a convex cone in Y with non-empty interior. As usual, we attach to
Y a smallest and greatest element with respect to K̃, denoted by −∞Y and +∞Y ,
which do not belong to Y . Then for y ∈ Y ∪{±∞Y }, it holds −∞Y ≤K̃ y ≤K̃ +∞Y

and similar −∞Y ≤int K̃ y ≤int K̃ +∞Y for y ∈ Y . On Y ∪ {±∞Y } we consider the
following operations: y + (+∞Y ) = (+∞Y ) + y := +∞Y for all y ∈ Y ∪ {+∞Y },
y + (−∞Y ) = (−∞Y ) + y := −∞Y for every y ∈ Y ∪ {−∞Y }, λ · (+∞Y ) := +∞Y

for all λ > 0, λ · (+∞Y ) := −∞Y for all λ < 0, λ · (−∞Y ) := −∞Y for all λ > 0,
λ · (−∞Y ) := +∞Y for all λ < 0. Taking into account −∞Y ≤int K̃ y ≤int K̃ +∞Y

for every y ∈ Y , we have equivalently the following two conventions:

(C1) +∞Y ̸≤int K̃ y, for every y ∈ Y,

(C2) y ̸≤int K̃ −∞Y , for every y ∈ Y.

If φ : X → Y ∪ {+∞Y } is a given mapping, then the effective domain of φ is given
by

dom(φ) := {x ∈ X | φ(x) ̸= +∞Y }.

3. Preliminaries

3.1. Solution concepts with respect to a variable domination structure. In
scalar-valued optimization the notion of (global) optimal solutions is very natural.
Let X be some real linear space and f : X → R ∪ {+∞} a given mapping. Then,
x0 ∈ dom(f) is called a global minimum, that is, a solution of the problem

min
x∈X

f(x)

if f(x0) ≤ f(x) for every x ∈ X. Here, the natural ordering ≤ in R∪{+∞} is a total
ordering. However, if we replace the real numbers R by an other linear space Y ,
the ordering of elements in Y can be defined in different and non-obvious ways. If
K̃ ⊆ Y is convex cone, then the binary relation y1 ≤K̃ y2 if and only if y2−y1 ∈ K̃,

y1, y2 ∈ Y , defines an order relation [19, Theorem 2.1.11] which is frequently used
in vector optimization (see, e.g., [19], [23]). Binary relations which are not defined
by a single cone but by a family of cones in Y will play an important role in the
following.

Let us first give a precise definition of the notation of a variable domination
structure, compare [11, Definition 1.8].
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Figure 2. Illustration of the different weak set relations in Y = R2

for int K̃ = R2
>0

Definition 3.1. Let X and Y be real Banach spaces and K : X ⇒ Y a set-valued
mapping with K(x) a convex cone in Y for every x ∈ X. If elements in Y are
compared using K, then K defines a variable domination structure on Y .

The next example demonstrates a variable domination structure in R2.

Example 3.2.

(a) Let ℓ : R2 → R2 be a given mapping and denote by ∥ · ∥2 the Euclidean
norm and by ⟨·, ·⟩ the scalar product in R2. Define the set-valued mapping
K : R2 ⇒ R2 by

K(x) :=
{
y ∈ R2 | ∥y∥2 ≤ ⟨ℓ(x), y⟩

}
, for every x ∈ R2.

For every x ∈ R2,K(x) defines a cone in R2 and is called Bishop-Phelps cone,
see [11] and Example 3.22. Hence, K defines a variable domination structure
in R2. If we put ℓ(x) = (ℓ1(x), ℓ2(x)) := ((2 + arctanx1)/3, 2 + sinx2) for
x ∈ R2, then the cone K(x) can be visualized in the following way: denote
by s and s′ the intersection of the unit circle with the tangent line through
the points (0, 1/ℓ2(x)) and (1/ℓ1(x), 0). That is, K(x) is given by the two
half rays from the origin to s and s′ respectively, compare [11, Example
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Figure 3. Visualization of the Bishop-Phelps cone K(x), see [11]

1.28]. Notice that we have

K(tan 1, 3π/2) = R2
≥0 and R2

≥0 ⊆ K(x), for every x ∈ R2.

(b) Some examples for variable domination structures and their applications can
be found in [11] or Section 5.1 of this paper.

In the next definition, we describe solution concepts for vector optimization prob-
lems with respect to a fixed and variable domination structure, respectively (com-
pare [2], [11], [19]).

Definition 3.3. Besides (A), let ψ : X → Y ∪ {+∞Y } be a given vector-valued
mapping and define the set

ψ(dom(ψ)) := {ψ(x) ∈ Y | x ∈ dom(ψ)}.

(a) The element ψ(x0) ∈ Y , where x0 ∈ dom(ψ), is said to be a weakly minimal
element of ψ w.r.t. the variable domination structure K, if we have

ψ(x) ̸≤intK(x0) ψ(x0), for every x ∈ dom(ψ),

that is, if no y ∈ ψ(dom(ψ)) exists such that

ψ(x0) ∈ y + intK(x0)

or equivalently

(ψ(dom(ψ))− ψ(x0)) ∩ (− intK(x0)) = ∅.

Similar, the element ψ(x0) ∈ Y , where x0 ∈ dom(ψ), is said to be a weakly
maximal element of ψ w.r.t. the variable domination structure K, if we
have ψ(x0) ̸≤intK(x0) ψ(x) for all x ∈ dom(ψ).

(b) The set of weakly minimal and maximal elements of ψ w.r.t. the variable
domination structureK will be denoted by the formulas WMin(ψ(dom(ψ)),K(·))
and WMax(ψ(dom(ψ)),K(·)), respectively.
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(c) Assume now that the mapping K : X ⇒ Y is constant, that is, K(x) = K̃

for every x ∈ X, where K̃ is a convex cone in Y with non-empty interior.
The element ψ(x0) ∈ Y , where x0 ∈ dom(ψ), is said to be a weakly minimal

element of ψ w.r.t. the fixed domination structure K̃, if we have ψ(x) ̸≤int K̃

ψ(x0) for all x ∈ dom(ψ). Similar ψ(x0) ∈ Y , where x0 ∈ dom(ψ), is said to

be a weakly maximal element of ψ w.r.t. K̃, if we have ψ(x0) ̸≤int K̃ ψ(x) for
all x ∈ dom(ψ). The set of weakly minimal and weakly maximal elements

of ψ w.r.t. the fixed cone K̃ will be denoted by WMin(ψ(dom(ψ)), K̃) and

WMax(ψ(dom(ψ)), K̃), respectively.

Figure 4. Illustration of the solution concept w.r.t. a variable dom-
ination structure K

Remark 3.4. Frequently, one looks for weakly minimal or maximal elements in
a non-empty subset C ⊆ X where the objective mapping is ψ : C → Y . This
can be reformulated in the form of Definition 3.1 by considering the new mapping

ψ̃ : X → Y ∪ {+∞Y }, defined for x ∈ X by

ψ̃(x) =

{
ψ(x), for x ∈ C,

+∞Y else.

Let us prove the following very useful lemma. Notice that we do not assume the
cone K̃ to be proper or pointed.

Lemma 3.5. Besides (A), let a, b ∈ Y and K̃ be a convex cone in Y with non-empty

interior. Then it holds that b− a ∈ K̃ and a /∈ − int K̃ implies b /∈ − int K̃.

Proof. The proof of the statement follows from the useful identity

K̃ + int K̃ = int K̃.(3.1)

Notice that 0 ∈ K̃ and therefore it holds int K̃ = int K̃ + 0 ⊆ int K̃ + K̃. For
the converse inclusion, let x ∈ int K̃, y ∈ K̃ and z ∈ Y . Since K̃ is convex and
int K̃ ̸= ∅, it holds int K̃ = cor K̃, see [23, Lemma 1.32], where cor K̃ := {k ∈ K̃ |
∀ y ∈ Y ∃ ε′ > 0, ∀ ε ∈ [0, ε′], k + εy ∈ K̃} denotes the algebraic interior of K̃.
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From x ∈ int K̃ we therefore conclude that there is ε′ > 0 such that x+ εz ∈ K̃ for
every ε ∈ [0, ε′]. The convexity of K̃ implies x + y + εz ∈ K̃ for every ε ∈ [0, ε′],

that is, x+ y is an interior point of cor K̃. This shows (3.1).

Assume now that it holds −b ∈ int K̃, where b− a ∈ K̃ and a /∈ − int K̃. Then, we
deduce from (3.1) that −a = b− a− b ∈ int K̃, which is a contradiction. The proof
is complete. □

Remark 3.6. Obviously, we can rewrite the previous lemma in the following way:
0 ̸≥int K̃ a ≤K̃ b implies 0 ̸≥int K̃ b. Some other important properties of the vector
relations can be found in [1, Lemmas 2.2 and 2.3] and [15, Lemmas 7.1.1 and 7.1.2].

3.2. Variational analysis. We shall now collect some definitions and results for
later use.

Definition 3.7. Besides (A), let φ : X → Y ∪ {+∞Y } be a given mapping. An
operator U ∈ L(X,Y ) is called a weak subgradient of φ at x ∈ dom(φ) w.r.t. the
variable domination structure K if

φ(y)− φ(x)− ⟨U, y − x⟩Y ̸≤intK(x) 0, for every y ∈ X.

The set of weak subgradients of φ at x will be denoted by ∂φ(x). If ∂φ(x) is
non-empty, then φ is said to be weakly subdifferentiable at x. If φ is weakly subdif-
ferentiable at every point of its domain, then φ is said to be weakly subdifferentiable.

Remark 3.8. If the variable domination structure K is fixed and dom(φ) = X,
then the previous definition coincides with [26, Definition 6.1.2]. Unlike the scalar
case, i.e., if we let Y := R and K(x) := R≥0 for every x ∈ X, the subdifferential is
not necessarily a closed and convex set, see [26, Remark 6.1.3].

Definition 3.9. Besides (A), let φ : X → Y ∪ {+∞Y } be given. The set-valued
mapping φ∗ : L(X,Y ) ⇒ Y , defined for every U ∈ L(X,Y ) by

φ∗(U) := WMax
(
{⟨U, x⟩Y − φ(x) | x ∈ dom(φ)} ,K(·)

)
,

is called the weak conjugate of φ w.r.t. the moving domination structure K. By
the definition of WMax, we have ⟨U, x0⟩Y − φ(x0) ∈ φ∗(U) for some x0 ∈ dom(φ)
if and only if

⟨U, x0⟩Y − φ(x0) ̸≤intK(x0) ⟨U, x⟩Y − φ(x), for every x ∈ X.

Example 3.10. Besides (A), let X = Rn, Y = Rm and let A ∈ Matm×n(R) be
a given matrix. Then, the linear mapping φ : Rn → Rm, defined by φ(x) = Ax
for every x ∈ Rn, is subdifferentiable. Indeed, for every x, y ∈ X, it holds 0 =
φ(y)− φ(x)− ⟨A, y − x⟩Y /∈ − intK(x). This calculation further shows 0 ∈ φ∗(A).
In comparison to the Fenchel conjugate of functions from X to R∪{+∞}, the weak
vector conjugate of a linear mapping is significantly larger. To be more precise,
consider the fixed domination structure K : Rn ⇒ Rm given by K(x) = Rm≥0 for

every x ∈ Rn and define B := A + E, where E ∈ Matm×n(R) is a matrix with
first entry 1 and 0 else. It then holds (B − A)(y − x) = E(y − x) ∈ intRm≥0 for all

x, y ∈ Rn, that is, φ∗(B) = {z ∈ Rm | zj = 0 for j = 2, . . . ,m} is a line in Rm.
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Lemma 3.11. Besides (A), let x ∈ dom(φ) and φ : X → Y ∪ {+∞Y }. We then
have

U ∈ ∂φ(x) if and only if ⟨U, x⟩Y − φ(x) ∈ φ∗(U).

Proof. By the definition of the weak conjugate of φ, we have ⟨U, x⟩Y −φ(x) ∈ φ∗(U)
provided x ∈ dom(φ) if and only if ⟨U, x⟩Y −φ(x) ̸≤intK(x) ⟨U, y⟩Y −φ(y) for every
y ∈ dom(φ). The last inequality is obviously equivalent to U ∈ ∂φ(x). The proof
is complete. □
Definition 3.12. Besides (A), let φ : X → Y ∪ {+∞Y } be a given mapping and

K̃ a convex cone in Y . φ is said to be K̃-convex if for all x, y ∈ X and t ∈ (0, 1)

φ(tx+ (1− t)y) ≤K̃ tφ(x) + (1− t)φ(y).

Analogously, we define the K0-convexity of φ, where K0 :=
∩
y∈X K(y) , if we

replace K̃ by K0 in the previous relations.

Remark 3.13. Let φ : Rn → Rm be a mapping and K̃ := Rm≥0. If the real-valued
component functions φj : Rn → R, j = 1, . . . ,m are convex, that is, for every
x, y ∈ Rn and t ∈ (0, 1)

φj(tx+ (1− t)y) ≤ tφj(x) + (1− t)φj(y),

then it holds that φ is Rm≥0-convex.

Let us recall a basic concept of vector optimization (see [16, Section 3.2] and the
references therein).

Definition 3.14. Besides (A), let K̃ be a convex cone in Y with non-empty interior
and let A,B ⊆ Y ∪ {±∞} be non-empty sets. We say that A and B satisfy the

weak (A,B)-domination property w.r.t. K̃ if for every b ∈ B \ {+∞} there exists

y0 ∈ WMax(A, K̃) such that y0 ≥K̃ b.

Figure 5. Illustration of the weak (A,B)-domination property of
two sets A and B in R2

Remark 3.15.

(a) It is easy to see that the following assertions are equivalent:
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(1) A and B satisfy the weak (A,B)-domination property with respect to

K̃.
(2) It holds that B ⊆ WMax(A, K̃)− K̃.

(b) We further have that B ⊆ WMax(A, K̃)−K̃ and B ̸⊆ WMax(A, K̃)− int K̃

imply B ⊆ WMax(A, K̃). Indeed, assume we have B ̸⊆ WMax(A, K̃), that

is, we can find c ∈ int K̃ such that b is an element of WMax(A, K̃)− c. But

this contradicts the fact that we have B ̸⊆ WMax(A, K̃)− int K̃.

3.3. An existence result for the generalized vector variational inequality.
The purpose of this section is to present an existence theorem for the generalized
vector variational inequality (VVI). We first collect some useful definitions and
lemmas. In the following, if (A) holds, then we define

K0 :=
∩
y∈X

K(y).

Definition 3.16. Let Z be a real normed vector space and denote by Pcb(Z) the
collection of all non-empty, closed and bounded subsets of Z. Then, the Hausdorff
metric (distance) HZ on Pcb(Z) is for every A,B ∈ Pcb(Z) defined by

HZ(A,B) := max

(
sup
a∈A

inf
b∈B

∥a− b∥Z , sup
b∈B

inf
a∈A

∥a− b∥Z
)
.

Notice that HZ({a}, {b}) = ∥a− b∥Z if A = {a} and B = {b} are singletons.

The following result can be found in [25].

Lemma 3.17. Let Z be a real normed vector space and let A,B ⊆ Z be non-empty
compact sets. Then, for each a ∈ A, there exists an element b ∈ B such that

∥a− b∥Z ≤ HZ(A,B).

Definition 3.18. Besides (A), let F : X ⇒ L(X,Y ) be a set-valued mapping. F
is said to be K0-monotone if for every x, y ∈ Dom(F), U ∈ F(x) and U ′ ∈ F(y) it
holds that

⟨U − U ′, x− y⟩Y ≥K0 0.

If in addition F is non-empty and compact-valued, i.e. we have in particular F(x) ∈
Pcb(L(X,Y )) for every x ∈ X, then F is said to be
H-hemicontinuous if for fixed elements x, y ∈ X, the mapping R → R, t 7→
HL(X,Y )(F(x+ t(y − x)),F(x)) is continuous at 0+.

Remark 3.19. If the mapping F in the previous definition is single-valued and we
denote this mapping by F , that is F : X → L(X,Y ), then the definition of K0-
monotonicity and H-hemicontinuity become: F is K0-monotone if ⟨Fx − Fy, x −
y⟩Y ∈ K0 for every x, y ∈ dom(F ). Further, F is said to be hemicontinuous, if the
mapping R → L(X,Y ), t 7→ F (x+ t(y − x)) is continuous at 0+ for fixed elements
x, y ∈ X.

Using the ideas in [4], we have the following result.

Lemma 3.20. Besides (A), let F : X ⇒ L(X,Y ) and φ : X → Y ∪ {+∞Y } be
given mappings. Assume that the following conditions hold:
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(a) intK0 ̸= ∅.
(b) F is K0-monotone, H-hemicontinuous and has non-empty compact values.
(c) φ is K0-convex and the effective domain dom(φ) is convex.

Then, x ∈ dom(φ) and U ∈ F(x) satisfy

⟨U, y − x⟩Y ̸≤intK(x) φ(x)− φ(y), for every y ∈ X,(3.2)

if and only if x ∈ dom(φ) satisfies

⟨U ′, y − x⟩Y ̸≤intK(x) φ(x)− φ(y), for every y ∈ X, U ′ ∈ F(y).(3.3)

Proof. Let x ∈ dom(φ) and U ∈ F(x) satisfy (3.2). Since it holds
K0 ⊆ K(x), the K0-monotonicity of F implies for every y ∈ dom(φ) and U ′ ∈ F(y)

⟨U, y − x⟩Y + φ(y)− φ(x) ≥K(x) ⟨U ′, y − x⟩Y + φ(y)− φ(x).

By inequality (3.2) we have in particular

⟨U, y − x⟩Y ̸≤intK(x) φ(x)− φ(y), for every y ∈ dom(φ).

Using Lemma 3.5, we conclude from the previous inequalities that

⟨U ′, y − x⟩Y + φ(y)− φ(x) ̸≤intK(x) 0,

for every y ∈ dom(φ), U ′ ∈ F(y).

Since the previous inequality also holds for every y /∈ dom(φ) in particular, see
convention (C1) in Section 2, this shows (3.3).
Conversely, let x ∈ dom(φ) satisfy (3.3). Let y ∈ dom(φ) be arbitrarily chosen, put
yt := (1 − t)x + ty for t ∈ (0, 1) and let U ′

t ∈ F(yt). Notice that yt ∈ dom(φ), see
assumption (c). Inserting these elements into (3.3) yields

⟨U ′
t , yt − x⟩Y + φ(yt)− φ(x) ̸≤intK(x) 0, for every t ∈ (0, 1).

By the K0-convexity of φ we have, using again the fact that K0 ⊆ K(x), that it
holds

⟨U ′
t , yt − x⟩Y + φ(yt)− φ(x) ≤K(x) t

[
⟨U ′

t , y − x⟩Y + φ(y)− φ(x)
]
.

From Lemma 3.5 we deduce that x ∈ dom(φ) satisfies

⟨U ′
t , y − x⟩Y + φ(y)− φ(x) ̸≤intK(x) 0,

for every U ′
t ∈ F(yt), t ∈ (0, 1).

(3.4)

Since F is compact-valued, for each U ′
t ∈ F(yt) there exists Ut ∈ F(x) such that

∥U ′
t − Ut∥L(X,Y ) ≤ HL(X,Y )(F(yt),F(x)),

see Lemma 3.17. Since F(x) is compact and the sequence {Ut} lies in F(x), we can
assume without loss of generality that Ut → U in L(X,Y ) for t→ 0+ and U ∈ F(x).
Further, the inequality

∥U ′
t − U∥L(X,Y ) ≤ ∥U ′

t − Ut∥L(X,Y ) + ∥Ut − U∥L(X,Y )

≤ HL(X,Y )(F(yt),F(x)) + ∥Ut − U∥L(X,Y )

shows U ′
t → U in L(X,Y ) for t → 0+, where we used the fact that F is H-

hemicontinuous, see (b). Since this convergence is strong and the set Y \(− intK(x))
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is closed, we are able to pass in (3.4) to the limit t → 0+, that is, x ∈ dom(φ) and
U ∈ F(x) satisfy

⟨U, y − x⟩Y ̸≤intK(x) φ(x)− φ(y), for every y ∈ dom(φ).(3.5)

Since (3.5) holds for every y /∈ dom(φ) in particular, see Convention (C2), the proof
is complete. □
Definition 3.21. Besides (A), let W : X ⇒ Y be a set-valued mapping. W
is said to be closed if Gph(W) ⊆ X × Y is closed, that is, for every sequence
{(xn, yn)} ⊆ Gph(W) such that (xn, yn) → (x, y), we have (x, y) ∈ Gph(W).

Example 3.22. For the sake of simplicity let X = Y in the previous definition and
define a set-valued mapping K : X ⇒ X by

K(x) := {y ∈ X | ∥y∥X ≤ ⟨ψ(x), y⟩} , for every x ∈ X.

Here, ψ : X → X∗ is a given operator such that ∥ψ(x)∥X∗ > 1 for every x ∈ X. By
this, it holds that K(x) is a so-called Bishop-Phelps cone [11, Definition 1.14] for
every x ∈ X and from [11, Lemma 1.16] it follows that K(x) is a proper, closed,
convex and pointed cone in X, where the interior is non-empty and intK(x) =
{y ∈ X | ∥y∥X < ⟨ψ(x), y⟩} in particular, see [11, Lemma 1.16]. If in addition
ψ : X → X∗ is continuous, then the set-valued mapping W : X ⇒ X, defined for
every x ∈ X by

W(x) := X \ (− intK(x)) = {y ∈ X | ⟨ψ(x), y⟩ ≥ −∥y∥X},
is closed. Indeed, let {xn} and {yn} be sequences inX such that xn → x, yn → y and
yn ∈ W(xn). From yn ∈ W(xn), we have ⟨ψ(xn), yn⟩ ≥ −∥yn∥X and the continuity
of ψ and ∥ · ∥X imply ⟨ψ(x), y⟩ ≥ −∥y∥X , that is,
y ∈ W(x). This shows that W is closed.

Definition 3.23. Besides (A), let C ⊆ X be non-empty and a set-valued mapping
G : C ⇒ X be given. G is said to be a KKM mapping if for any finite subset
{y1, . . . , yk} ⊆ C, k ∈ N, we have

conv{y1, . . . , yk} ⊆
k∪
j=1

G(yj).

Theorem 3.24 (Fan-KKM). Besides (A), let C ⊆ X be non-empty and G : C ⇒ X
a KKM mapping with non-empty and closed values. If there exists a point y0 ∈ C
such that G(y0) is a compact subset of X, then it holds∩

y∈C
G(y) ̸= ∅.

The next results uses the ideas in [4], [10] and [22].

Theorem 3.25. Besides (A), let F : X ⇒ L(X,Y ) and φ : X → Y ∪ {+∞Y } be
given mappings. Assume that the following conditions hold:

(a) intK0 ̸= ∅.
(b) The mapping W : X ⇒ Y , defined by W(x) := Y \ (− intK(x)) for every

x ∈ X, is closed.
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(c) φ is K0-convex and continuous with convex domain.
(d) F is K0-monotone, H-hemicontinuous and has non-empty and compact val-

ues.
(e) F is coercive in the sense that there exists an element y0 ∈ dom(φ) and a

non-empty compact subset B0 ⊆ X such that{
x ∈ X | ⟨U ′, y0 − x⟩Y + φ(y0)− φ(x) ̸≤intK(x) 0, for every U ′ ∈ F(y0)

}
is a subset of B0.

Then, the generalized vector variational inequality (VVI) has a solution, that is,
there exists x ∈ dom(φ) and U ∈ F(x) such that

⟨U, y − x⟩Y ̸≤intK(x) φ(x)− φ(y), for every y ∈ X.(VVI)

Proof. Let us define a set-valued mapping G : dom(φ) ⇒ X for each y ∈ X by

G(y) :=
{
x ∈ dom(φ) | ⟨U, y − x⟩Y + φ(y)− φ(x) ̸≤intK(x) 0,

for some U ∈ F(x)
}
.

The main tool of this proof is Theorem 3.24 which will ensure that∩
y∈dom(φ)

G(y) ̸= ∅.(3.6)

It is evident that every element in the intersection is obviously a solution of (VVI).
For this purpose, we further define another set-valued mapping
G′ : dom(φ) ⇒ X by

G′(y) :=
{
x ∈ dom(φ) | ⟨U ′, y − x⟩Y + φ(y)− φ(x) ̸≤intK(x) 0,

for every U ′ ∈ F(y)
}
,

for every y ∈ X. Notice that we have in view of the K0-monotonicity of F that it
holds

G(y) ⊆ G′(y), for every y ∈ X,(3.7)

compare Lemma 3.20. Let us show that G is a KKM mapping. Indeed, assume by

contradiction, there are k ∈ N and y1, . . . , yk ∈ dom(φ) such that ȳ :=
∑k

j=1 αjyj /∈∪k
j=1G(yj), where

∑k
j=1 αj = 1 and αj ≥ 0 for

j = 1, . . . , k. Notice that ȳ ∈ dom(φ), see (c). Since ȳ /∈ G(yj) for
j = 1, . . . , k, for every U ′ ∈ F(ȳ) it holds

⟨U ′, yj − ȳ⟩Y + φ(yj)− φ(ȳ) ≤intK(ȳ) 0, for j = 1, . . . , k.(3.8)

By the K0-convexity of φ and (3.8) it holds for all U ′ ∈ F(ȳ)

0 = ⟨U ′, ȳ − ȳ⟩Y + φ(ȳ)− φ(ȳ)

≥K(ȳ)

k∑
j=1

αj
[
⟨U ′, ȳ − yj⟩Y + φ(ȳ)− φ(yj)

]
≥intK(ȳ) 0,

which is impossible since 0 /∈ intK(ȳ). Hence, G is a KKM mapping and so is G′,
see relation (3.7). Let us show that for every y ∈ dom(φ), the set G′(y) is closed.
Indeed, fix y ∈ dom(φ) and let {xn} ⊆ G′(y) be a sequence such that xn → x.
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We are going to show that the limit point x belongs to G′(y). It holds for every
U ′ ∈ F(y)

⟨U ′, y − xn⟩Y + φ(y)− φ(xn) /∈ − intK(xn).(3.9)

Using the assumptions (b) and (c), we can pass in (3.9) to the limit such that we
conclude x ∈ G′(y). By (e), there exists y0 ∈ dom(φ) such that G′(y0) ⊆ B0, where
B0 is a compact subset of X. Hence, G′(y0) is compact. From relation (3.7) and
Theorem 3.24, we finally conclude

∩
y∈X G(y) ⊆

∩
y∈X G

′(y) ̸= ∅ such that (3.6)
holds. The proof is complete. □

The next corollary states the special case if F is single-valued.

Corollary 3.26. Besides (A), let F : X → L(X,Y ) and φ : X → Y ∪ {+∞Y } be
given mappings. Assume that the following conditions hold:

(a) intK0 ̸= ∅.
(b) The mapping W : X ⇒ Y , defined by W(x) := Y \ (− intK(x)) for every

x ∈ X, is closed.
(c) φ is K0-convex and continuous with convex domain.
(d) F is K0-monotone and hemicontinuous.
(e) F is coercive in the sense that there exists an element y0 ∈ dom(F )∩dom(φ)

and a non-empty compact subset B0 ⊆ X such that{
x ∈ X | ⟨Fy0, y0 − x⟩Y + φ(y0)− φ(x) ̸≤intK(x) 0

}
⊆ B0.

Then, there exists x ∈ dom(F ) ∩ dom(φ) such that

⟨Fx, y − x⟩Y ̸≤intK(x) φ(x)− φ(y), for every y ∈ X.

Definition 3.27. Besides (A), let ψ : X → Y be a given mapping. The directional
derivative of ψ at x ∈ X in the direction h ∈ X is given by

δψ(x;h) := lim
t→0

ψ(x+ th)− ψ(x)

t
(3.10)

provided this limit exists. If δψ(x;h) exists for every h ∈ X, and if the mapping
DGψ(x) : X → Y defined by

⟨DGψ x, h⟩Y := DG(x)h := δψ(x;h)

is linear and continuous, then we say that ψ is Gâteaux-differentiable at x, and we
call DGψ x the Gâteaux-derivative of ψ at x. If ψ is Gâteaux-differen-tiable at every
point x ∈ X, then we say that ψ is Gâteaux -differentiable. Similar, we define the
right- and left-handed Gâteaux-derivative of ψ at x which will be denoted by D+

Gψ x

and D−
Gψ x, respectively.

Example 3.28. Consider the mapping ψ : Rn → R defined by ψ(x) = ∥x − a∥22
for every x ∈ Rn, where a ∈ Rn is a given element and ∥ · ∥2 denotes the Euclidean
norm in Rn. To calculate the Gâteaux-derivative of ψ, we first notice that for every
t ∈ R and x, h ∈ Rn it holds

ψ(x+ th)− ψ(x) = ⟨x+ th− a, x+ th− a⟩ − ⟨x− a, x− a⟩
= 2t⟨x− a, h⟩+ t2⟨h, h⟩

from which we conclude δψ(x;h) = 2⟨x− a, h⟩ and DGψ x = 2⟨x− a, ·⟩.
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The following results connect vector variational and vector optimization prob-
lems.

Theorem 3.29. Besides (A), let C ⊆ X be a non-empty convex subset and ψ :
X → Y be a given mapping.

(a) If in addition ψ is right-handed Gâteaux-differentiable with derivative D+
Gψ

and ψ(x) ∈ WMin(ψ[C],K(·)) for some x ∈ C, then x satisfies the vector
variational inequality

⟨D+
Gψ x, y − x⟩Y ̸≤intK(x) 0, for every y ∈ C.(3.11)

(b) Conversely, if x ∈ C solves (3.11) and ψ is K(x)-convex in addition, then
ψ(x) ∈ WMin(ψ[C],K(·)).

Proof. (a). If ψ(x) ∈ WMin(ψ[C],K(·)) for some x ∈ C, then we have in particular

1

t

[
ψ(x+ t(y − x))− ψ(x)

]
/∈ − intK(x),

for every y ∈ C, t ∈ (0, 1),
(3.12)

where we used the convexity of C. Since Y \ (− intK(x)) is closed and ψ is
right-handed Gâteaux-differentiable, passing in (3.12) to the limit t → 0+ yields
⟨D+

Gψ x, y − x⟩Y /∈ − intK(x) for every y ∈ C.
(b). Conversely, if x ∈ C solves (3.11) and ψ is K(x)-convex, then we have in
particular 1

t [ψ(x+ t(y − x))− ψ(x)] ≤intK(x) ψ(y) − ψ(x) for every y ∈ C. The
inequality further implies, using again the fact that ψ is right-handed Gâteaux-
differentiable, that we have ⟨D+

Gψ x, y − x⟩ + ψ(x) ≤K(x) ψ(y) for every y ∈ C.

Since it holds ⟨D+
Gψ x, y − x⟩ ̸≤intK(x) 0 for every y ∈ C, the previous inequalities

imply ψ(x) − ψ(y) ̸≥intK(x) 0 for every y ∈ C, see Lemma 3.5. This confirms that
ψ(x) ∈ WMin(ψ[C],K(·)) and the proof is complete. □

Remark 3.30. If the variable domination structure K is constant, i.e. K(x) = K̃
for every x ∈ X, then Theorem 3.29 recovers [15, Theorem 9.1.1].

4. Inverse generalized vector variational inequalities with respect
to a variable domination structure

The aim of this section is to describe the so-called conjugate approach for gener-
alized vector variational inequalities w.r.t. a moving domination structure.

4.1. Inverse problems for (VVI) based on vector conjugate. Besides our
assumption (A), let F : X ⇒ L(X,Y ) and φ : X → Y ∪{+∞Y } be given mappings.
Let us recall that the generalized vector variational inequality w.r.t. the moving
domination structure K consists in finding an element x ∈ Dom(F) ∩ dom(φ) such
that for some operator U ∈ F(x) it holds

⟨U, y − x⟩Y ̸≤intK(x) φ(x)− φ(y), for every y ∈ X.(VVI)

If x ∈ Dom(F) ∩ dom(φ) and U ∈ F(x) satisfy (VVI), then we briefly say that the
pair (x,U) ∈ Gph(F) solves (VVI). The first inverse vector variational inequality of
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(VVI) w.r.t. the moving domination structure K reads as follows: find an operator
U1 ∈ Dom(F−1(−·)) and an element x1 ∈ F−1(−U1) ∩ dom(φ) such that

⟨V − U1,−x1⟩Y ̸≼1
intK(x1)

φ∗(U1)− φ∗(V ),

for every V ∈ L(X,Y ) with φ∗(V ) ̸= ∅.
(IVVI1)

Notice that F−1(−·) denotes the shifted set-valued mapping x 7→ F−1(−x). If we re-
place the binary set relation ̸≼1

intK(·) by ̸≼2
intK(·) then the second inverse vector vari-

ational inequality becomes: find an operator
U2 ∈ Dom(F−1(−·)) and an element x2 ∈ F−1(−U2) ∩ dom(φ) such that

⟨V − U2,−x2⟩Y ̸≼2
intK(x2)

φ∗(U2)− φ∗(V ), for every V ∈ L(X,Y ).(IVVI2)

Again, if Ui ∈ Dom(F−1(−·)) and xi ∈ F−1(−Ui) ∩ dom(φ) satisfy (IVVIi), then
we briefly say that the pair (Ui, xi) ∈ Gph(F−1(−·)) solves (IVVIi), i = 1, 2.

The next theorem states a direct and converse assertion for (VVI).

Theorem 4.1 (Direct and converse assertion for (VVI)). Besides (A), let F :
X ⇒ L(X,Y ) and φ : X → Y ∪ {+∞Y } be given mappings. Assume that φ is
subdifferentiable w.r.t. the moving domination structure K. Then, the following
statements hold:

(a) If the pair (x,U) ∈ Gph(F) is a solution of (VVI) and we have

K(x) ⊆ K(y), for every y ∈ X,

then the pair (U1, x1) := (−U, x) ∈ Gph(F−1(−·)) solves (IVVI1).
(b) Conversely, if the pair (U2, x2) ∈ Gph(F−1(−·)) is a solution of (IVVI2), it

holds ∂φ(x2) ̸= ∅ and the sets

A :=
{
⟨U2, y⟩Y − φ(y) | y ∈ X

}
and B :=

{
⟨U2, x2⟩Y − φ(x2)

}
satisfy the weak (A,B)-domination property w.r.t. the cone K(x2), then the
pair (x,U) := (x2,−U2) ∈ Gph(F) is a solution of (VVI).

Proof. (a). Let the pair (x,U) ∈ Gph(F) be a solution of (VVI), that is, we have
after some rearrangement

−⟨U, x⟩Y − φ(x) ̸≤intK(x) −⟨U, y⟩Y − φ(y), for every y ∈ X.(4.1)

This implies, using the definition of the weak conjugate of φ, that we have

−⟨U, x⟩Y − φ(x) ∈ WMax
({

− ⟨U, y⟩Y − φ(y) | y ∈ X
}
,K(·)

)
= φ∗(−U).(4.2)

Suppose to the contrary that the pair (U1, x1) := (−U, x) ∈ Gph(F−1(−·)) does not
solve (IVVI1). Hence, there exists an operator V0 ∈ L(X,Y ) such that

−⟨V0, x⟩Y − ⟨U, x⟩Y = ⟨V0 − U1,−x1⟩Y
≼1

intK(x) φ
∗(U1)− φ∗(V0) = φ∗(−U)− φ∗(V0),

which is in view of the definition of the set relation ≼1
intK(x) equivalent to

−⟨V0, x⟩Y − ⟨U, x⟩Y ≼1
intK(x) v − φ∗(V0), for every v ∈ φ∗(−U).(4.3)
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Since (4.3) holds in particular for the element −⟨U, x⟩Y −φ(x) ∈ φ∗(−U), compare
relation (4.2), we have after some rearrangement

φ(x)− ⟨V0, x⟩Y ≼1
intK(x) −φ

∗(V0),

or equivalently

φ(x)− ⟨V0, x⟩Y ≼1
intK(x) −w, for every w ∈ φ∗(V0).(4.4)

Now, let w0 ∈ φ∗(V0) be arbitrarily chosen, that is, w0 = ⟨V0, x0⟩Y −φ(x0) for some
x0 ∈ dom(φ). By the definition of the weak conjugate of φ, we conclude

⟨V0, y⟩Y − φ(y)− ⟨V0, x0⟩Y + φ(x0) /∈ intK(x0), for every y ∈ X.(4.5)

Since (4.4) holds in particular for the element w0 ∈ φ∗(V0), we conclude

φ(x)− ⟨V0, x⟩Y ≤intK(x) φ(x0)− ⟨V0, x0⟩Y ,

which implies in particular, using the assumption K(x) ⊆ K(x0), that

⟨V0, x⟩Y − φ(x)− ⟨V0, x0⟩Y + φ(x0) ∈ intK(x0).

But the previous inequality leads to a contradiction if we insert the element x in
inequality (4.5). This shows that the pair (−U, x) is a solution of the inverse problem
(IVVI1).
(b). Let the pair (U2, x2) ∈ Gph(F−1(−·)) be a given solution of the inverse problem
(IVVI2) and put U2 := −U and x2 := x. We are going to show that (x,U) ∈ Gph(F)
is a solution of (VVI). Inserting −U and x in the inverse problem (IVVI2) yields

−⟨U, x⟩Y − ⟨V, x⟩Y ̸≼2
intK(x) φ

∗(−U)− φ∗(V ), for every V ∈ L(X,Y ),

that is we have in view of the definition of the set relation ̸≼2
intK(x)

−⟨U, x⟩Y − ⟨V, x⟩Y ̸≼2
intK(x) φ

∗(−U)− w,(4.6)

for every w ∈ φ∗(V ), V ∈ L(X,Y ).(4.7)

Let U0 ∈ ∂φ(x) be arbitrarily chosen. Lemma 3.11 implies that we have equivalently
⟨U0, x⟩Y − φ(x) ∈ φ∗(U0). Inserting V = U0 and w = ⟨U0, x⟩Y − φ(x) in inequality
(4.6) yields after some rearrangement

−⟨U, x⟩Y − φ(x) ̸≼2
intK(x) φ

∗(−U).(4.8)

Using the definition of the set relation ̸≼2
intK(x), the previous inequality is equivalent

to

−⟨U, x⟩Y − φ(x) /∈ φ∗(−U)− intK(x).

The weak (A,B)-domination property for the sets {−⟨U, y⟩Y − φ(y) | y ∈ X} and
{−⟨U, x⟩Y − φ(x)} w.r.t. the fixed cone K(x) implies

−⟨U, x⟩Y − φ(x) ∈ φ∗(−U),(4.9)

see Remark 3.15. Now, suppose to the contrary that the pair (x,U) = (x2,−U2) ∈
Gph(F) is not a solution of (VVI). Then there exists an element y0 ∈ X such that

⟨U, y0 − x⟩Y ≤intK(x) φ(x)− φ(y0),
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which is equivalent to (compare the first part of this proof)

−⟨U, x⟩Y − φ(x) ̸∈ φ∗(−U).

This obviously contradicts (4.9). The proof is complete. □

Remark 4.2.

(a) Theorem 4.1 is motivated by the incorrect proof in [29]. We further relax

the very restrictive condition −K̃ ∪ K̃ = Y in [29], where K̃ is a fixed cone,
by the weak (A,B)-domination property of the sets A and B. Notice that

the condition in [29] implies that K̃ is a half-space.
(b) The correctness of Theorem 4.1 holds, adapting the previous definitions and

lemmas, if we replace ̸≤intK(·), ̸≼1
intK(·) and ̸≼2

intK(·) by ̸≤K(·)\{0}, ̸≼1
K(·)\{0}

and ̸≼2
K(·)\{0}, respectively.

(c) The assumption K(x) ⊆ K(y) for every y ∈ X in part (a) of the previous
theorem, where x ∈ X, can be rewritten as K(x) = K0, where K0 :=∩
y∈X K(y).

4.2. Inverse problems for (VVI′) based on a conjugate and perturbation
approach. Besides (A), suppose now, that F : X ⇒ L(X,Y ) is single-valued and
denote this mapping by F . Assume further that F : X → L(X,Y ) is injective.
Then the previous variational inequality reduces to the following problem: find an
element x ∈ dom(F ) ∩ dom(φ) such that

⟨Fx, y − x⟩Y ̸≤intK(x) φ(x)− φ(y), for every y ∈ X.(VVI′)

The first inverse vector variational inequality of (VVI′) w.r.t. the moving domina-
tion structure K reads as follows: find an operator U1 ∈ dom(F#) such that

⟨V − U1,−F#U1⟩Y ̸≼1
intK(F#U1)

φ∗(U1)− φ∗(V ),

for every V ∈ L(X,Y ) with φ∗(V ) ̸= ∅.
(IVVI′1)

Here, F# denotes the adjoint mapping of F , see Section 2. If we replace the binary
set relation ̸≼1

intK(·) by ̸≼2
intK(·), then the second inverse vector variational inequality

becomes: find an operator U2 ∈ dom(F#) such that

⟨V − U2,−F#U2⟩Y ̸≼2
intK(F#U2)

φ∗(U2)− φ∗(V ),

for every V ∈ L(X,Y ).
(IVVI′2)

We further have the following result.

Theorem 4.3 (Direct and converse assertion for (VVI′)). Besides (A), let F : X →
L(X,Y ) be injective and φ : X → Y ∪ {+∞Y } subdifferentiable w.r.t. the moving
domination structure K. Then, the following statements hold:

(a) If x ∈ dom(F ) ∩ dom(φ) is a solution of (VVI′) and we have

K(x) ⊆ K(y), for every y ∈ X,

then −Fx ∈ dom(F#) solves (IVVI′1).
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(b) Conversely, if U2 ∈ dom(F#) is a solution of (IVVI′2), it holds x ∈ dom(F )∩
dom(φ), ∂φ(x) ̸= ∅ and the sets

A :=
{
⟨−Fx, y⟩Y − φ(y) | y ∈ X

}
and B :=

{
− ⟨Fx, x⟩Y − φ(x)

}
satisfy the weak (A,B)-domination property w.r.t. the cone K(x), where
x := F#U2, then x solves (VVI′).

Proof. The proof follows from Theorem 4.1. For (a) notice that F#U1 = F−1Fx = x
if we let U1 = −Fx. Conversely, notice for (b) that x = F#U2 = F−1(−U2) implies
U2 = −Fx. □

Remark 4.4.

(a) The correctness of Theorem 4.3 holds, adapting the previous definitions and
lemmas, if we replace ̸≤intK(·), ̸≼1

intK(·) and ̸≼2
intK(·) by ̸≤K(·)\{0}, ̸≼1

K(·)\{0}
and ̸≼2

K(·)\{0}, respectively.

(b) If we let Y := R and K(x) := R≥0 for every x ∈ X, then (VVI′) becomes
the following (scalar) variational inequality: find x ∈ dom(F )∩dom(φ) such
that

⟨Fx, y − x⟩ ≥ φ(x)− φ(y), for every y ∈ X,

where ⟨·, ·⟩ denotes the duality pairing between X∗ and X. Further, both
the inverse problems (IVVI′1) and (IVVI′2) coincide to the (scalar) inverse
problem: find a functional u∗ ∈ dom(F#) such that

⟨v∗ − u∗, F#u∗⟩ ≥ φ∗(u∗)− φ∗(v∗), for every v∗ ∈ X∗.

Here, φ∗ denotes the well-known Fenchel conjugate of φ : X → R ∪ {+∞},
see [2]. By this special choice of the data, the previous theorem recovers
the results for scalar variational inequalities in [15, Theorem 9.3.1], [24,
Theorem 1].

Let the assumption (A) be fulfilled, let F : X → L(X,Y ) be an injective mapping
and φ : X → Y ∪ {+∞Y }. We define a perturbation mapping Ψ : X ×X ×X →
Y ∪ {+∞Y } such that

Ψ(x, y, 0) = ⟨Fx, y⟩Y + φ(y), for every x, y ∈ X.

In this way one can embed the problem (VVI′) into a family of so-called perturbed
vector optimization problems (VVI′z) which are to find x ∈ dom(F ) ∩ dom(φ) such
that

Ψ(x, x, z) ̸≥intK(x) Ψ(x, y, z), for every y ∈ X,(VVI′z)

for fixed z ∈ X. Obviously, if we let z = 0, then (VVI0) is equivalent to the primal
problem (VVI′) since (VVI0) then reads: find x ∈ dom(F ) ∩ dom(φ) such that

⟨Fx, x⟩Y + φ(x) ̸≥intK(x) ⟨Fx, y⟩Y + φ(y), for every y ∈ X.

To formulate the inverse problem for (VVI′z), we need the following definition.
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Definition 4.5. Let (A) hold. The weak conjugate of the perturbation mapping Ψ
w.r.t. the moving domination structure K is the set-valued mapping Ψ∗ : L(X,Y )×
L(X,Y )× L(X,Y ) ⇒ Y , where we have ⟨U, x⟩Y + ⟨V, y⟩Y + ⟨W, z⟩Y −Ψ(x, y, z) ∈
Ψ∗(U, V,W ) for some x0, y0, z0 ∈ dom(φ) and U, V,W ∈ L(X,Y ) if and only if for
every x, y, z ∈ X it holds that

⟨U, x0⟩Y + ⟨V, y0⟩Y + ⟨W, z0⟩Y −Ψ(x0, y0, z0)

̸≤intK(x0) ⟨U, x⟩Y + ⟨V, y⟩Y + ⟨W, z⟩Y −Ψ(x, y, z).

Notice that the cone K(x0) depends on the element x0 only.

Using this notation, we can state the following inverse vector optimization prob-
lem for (VVI′z): find an operator W0 ∈ dom(F#) such that

−Ψ∗(0, 0,W0) ∩WMax

 ∪
W∈L(X,Y )

−Ψ∗(0, 0,W ), K(F#W0)

 ̸= ∅.(4.10)

Obviously, W0 ∈ L(X,Y ) is a solution of (4.10) if there are x0, y0, z0 ∈ dom(φ) and
W ∈ L(X,Y ) such that for every x, y, z ∈ X it holds that

⟨W0, z
0⟩Y −Ψ(x0, y0, z0) ̸≤intK(F#W0) ⟨W, z⟩Y −Ψ(x, y, z).(4.11)

Theorem 4.6 (Weak relationship between (VVI′z) and (4.10)). Besides (A), let
F : X → L(X,Y ) be injective and φ : X → Y ∪ {+∞Y }. Then, there exists x̄ ∈ X
such that

Ψ∗(0, 0,W ) ̸≼1
intK(x̄) −Ψ(x, x, 0), for every x ∈ dom(φ), W ∈ L(X,Y ).

Proof. Let x ∈ X andW ∈ L(X,Y ) be arbitrarily chosen. Let ⟨W, z̄⟩Y −Ψ(x̄, ȳ, z̄) ∈
Ψ∗(0, 0,W ) for some x̄, ȳ, z̄ ∈ X. By the definition of the weak conjugate of Ψ, we
have for every x′, y′, z′ ∈ X

⟨W, z̄⟩Y −Ψ(x̄, ȳ, z̄) ̸≤intK(x̄) ⟨W, z′⟩Y −Ψ(x′, y′, z′).

Inserting x′ = x, y′ = x and z′ = 0 finishes the proof. □

Theorem 4.7 (Strong relationship between (VVI′) and (4.10)). Besides (A), let
F : X → L(X,Y ) be injective and φ : X → Y ∪ {+∞Y }. Assume we have

−Ψ(x, x, 0) ∈ Ψ∗(0, 0,−Fx)(4.12)

for some x ∈ dom(φ). Then, x is a solution of (VVI′) and −Fx ∈ L(X,Y ) is a
solution of (4.10).

Proof. By (4.12), using the definition of Ψ∗(0, 0,−Fx), we have

−Ψ(x, x, 0) ̸≤intK(x) −⟨Fx, z′⟩Y −Ψ(x′, y′, z′), for every x′, y′, z′ ∈ X.

Inserting x′ = x and z′ = 0 yields −Ψ(x, x, 0) ̸≤intK(x) −Ψ(x, y′, 0) for every y′ ∈ X
and consequently x solves (VVI′). Now, let us put W0 = −Fx. By this, we have
F#W0 = F−1Fx = x and inserting this element in (4.12) yields

−Ψ(F#W0, F
#W0, 0) ̸≤intK(F#W0) ⟨W0, z

′⟩Y −Ψ(x′, y′, z′)
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for every x′, y′, z′ ∈ X. Carefully taking into account (4.11), where we put x =
F#W0, y = x, z = 0 and W = W0, we have that W0 = −Fx solves (4.10). The
proof is complete. □
Remark 4.8. The previous results did not use any properties for the moving dom-
ination structure K.

5. Applications

The purpose of this section is to apply the inverse results of Section 4 to two
vector approximation problems.

5.1. Application to a vector control approximation problem with respect
to a variable domination structure. In this section, we focus on an application
of the previous results for (VVI′). For this purpose, we consider a vector control
approximation problem w.r.t. a moving domination structure K. One of the ba-
sic tools will be Theorem 3.29 which allows us to consider a variational problem
instead, such that we can apply the previous results and derive new existence state-
ments for finite-dimensional vector control approximation problems w.r.t. a moving
domination structure.
To be precise, let X and Y be Euclidean spaces, that is, X := Rn and Y := Rm,
where n,m ∈ N. We study the problem of determining elements of the set of weakly
minimal elements w.r.t. the moving domination structure K, that is, we want to
compute elements of the set

WMin(ψ[Rn],K(·)),(5.1)

where the objective vector mapping ψ : Rn → Rm is given by

ψ(x) :=


1
2∥x− a1∥22

...
1
2∥x− am∥22

 , for every x ∈ Rn.

Here, a1, . . . , am are m given different points in Rn and ∥ · ∥2 denotes the Euclidean
norm in Rn. The scalar product in Rn will be denoted by ⟨·, ·⟩. The moving domina-
tion structure is given by the set-valued mapping
K : Rn ⇒ Rm which is for every x ∈ Rn defined by

K(x) :=


Rm≥0 for x1 > 0,{
y ∈ Rm |

m∑
j=1

yj ≥ 0 and yj ≥ 0 for j = 2, . . . ,m
}

else.
(5.2)

In order to generate a reduced solution set of (5.1) corresponding to the preferences
of the decision maker, one can chose larger (in the sense of inclusion) ordering cones
for elements in certain regions of Rm. It obviously holds that for every x ∈ Rn,
K(x) is a proper, closed, convex and pointed cone in Rm with non-empty interior.
Let us further define the set

Λn>0 := {x ∈ Rn | x1 > 0}.
Since ψ is Rm≥0-convex, see Remark 3.13, and the Gâteaux-derivative of the real-

valued component function x 7→ ψi(x) := ∥x − ai∥22 = ⟨x − ai, x − ai⟩ at x ∈ Rn
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Figure 6. Illustration of the moving domination structure K for
m = 2

is given by D+
Gψi x = ⟨x − ai, ·⟩ for every i = 1, . . . ,m, Theorem 3.29 implies that

every solution x ∈ Rn of (5.1), which belongs to Λn>0, fulfills the following vector
variational inequality and vice versa:

⟨D+
Gψ x, y − x⟩Rm =

 ⟨x− a1, y − x⟩
...

⟨x− am, y − x⟩

 ̸≤intK(x) 0, for every y ∈ Rn.(5.3)

For further use, let define the set

conv>0 := conv{a1, . . . , am} ∩ Λn>0,

where conv denotes the convex hull.

Lemma 5.1. Every element in conv>0 solves (5.1) and (5.3), respectively.

Proof. Let x ∈ conv>0 be arbitrarily chosen, that is, x =
∑m

i=1 λia
i, where λi ≥ 0

for i = 1, . . . ,m and
∑m

i=1 λi = 1. Suppose to the contrary that x does not solve
(5.3), that is, there is y0 ∈ Rn such that

⟨D+
Gψ x, y0 − x⟩Rm ∈ − intK(x)(5.4)

Since K(x) = Rm≥0, inequality (5.4) further implies ⟨x − ai, y0 − x⟩ < 0 for i =
1, . . . ,m. Multiplying every inequality with λi ≥ 0 and adding them yields to

0 =
m∑
i=1

λi⟨x, y0 − x⟩ − ⟨ai, y0 − x⟩ =
m∑
i=1

λi⟨x− ai, y0 − x⟩ < 0,

using the fact that
∑m

i=1 λi = 1. The previous inequality is obviously a contradic-
tion. The proof is complete. □

Next, we are going to construct the inverse problem for (5.1) and (5.3), re-
spectively. Using the identification L(Rn,Rm) ∼= Matm×n(R), we define mappings
F : Rn → Matm×n(R) and φ : Rn → Rm by

Fx := (x, . . . , x)⊤ and φ(x) := Ax, for every x ∈ Rn,



364 R. ELSTER, N. HEBESTREIT, A. A. KHAN, AND C. TAMMER

Figure 7. conv{a1, . . . , a6} (dotted) and conv>0 (gray) for n = 2
and m = 6

where A := −(a1, . . . , am)⊤ ∈ Matm×n(R). Notice that dom(F ) = dom(φ) = Rn.
Using this notation, the variational problem (5.3) becomes: find an element x ∈ Rn
such that

⟨Fx, y − x⟩ ̸≤intK(x) φ(x)− φ(y), for every y ∈ Rn.

In the following, we use the notation B = LbM instead of B = (b, . . . , b)⊤ for a matrix
B ∈ Matm×n(R) generated by b ∈ Rn. Since F is linear and injective, the adjoint
mapping F# : Matm×n(R) → Rn becomes F#B = F−1(−B) = −F−1B = −b for
every matrix B = LbM ∈ Matm×n(R).
Using all the previous notations, the first inverse vector variational inequality for
(5.1), respectively (5.3) is: find a matrix −LuM ∈ Matm×n(R) such that

(V + LuM)(−u) ̸≼1
intK(u) φ

∗(−LuM)− φ∗(V ),

for every V ∈ Matm×n(R) with φ∗(V ) ̸= ∅.
(5.5)

The second inverse vector variational inequality is to find a matrix
−LwM ∈ Matm×n(R) such that

(V + LwM)(−w) ̸≼2
intK(w) φ

∗(−LwM)− φ∗(V ),

for every V ∈ Matm×n(R).
(5.6)

Recall that the matrices −LuM and −LwM correspond to U1 and U2, respectively,
compare Theorem 4.3.

Lemma 5.2. Let a ∈ conv>0 and define

A := {−⟨Fa, y⟩Rm − φ(y) | y ∈ Rn} and B := {−⟨Fa, a⟩Rm − φ(a)}.
Then, the sets A and B satisfy the weak (A,B)-domination property w.r.t. to Rm≥0.

Proof. One can show that it holds −⟨Fa, a⟩Rm − φ(a) ∈ WMax(A,Rm≥0) similar to

the proof of Lemma 5.1. Consequently, the weak (A,B)-domination property of A
and B follows and the proof is complete. □
Theorem 5.3. Using our previous observations and notations, we have:
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(a) Every matrix −LxM ∈ Matm×n(R), where x ∈ conv>0, is a solution of the
first inverse problem (5.5).

(b) Conversely, if a ∈ conv>0 \{a1, . . . , am} and φ∗(−LaM) = ∅, then the element
a is a solution of (5.1) and (5.3), respectively.

Proof. The statements (a) and (b) follow from Theorem 4.3 and the previous obser-
vations. Recall that the mapping F : Rn → Matm×n(R) is injective and φ : Rn →
Rm is subdifferentiable w.r.t. the moving domination structure given by (5.2). For
the subdifferentiability of φ notice that for every x ∈ Rn, it holds A ∈ ∂φ(x), where
A = −(a1, . . . , am)⊤, see Example 3.10.
(a) Let x ∈ conv>0 be arbitrarily chosen. In particular, we have x1 > 0 such that
from the definition of K we conclude K(x) ⊆ K(y) for every y ∈ Rn. Since x solves
(5.1) and (5.3), respectively, compare Lemma 5.1, Theorem 4.3 (a) states that the
matrix −Fx = −LxM solves the first inverse problem (5.5). This shows the first part
of this theorem.
(b) Let a ∈ conv>0 \{a1, . . . , am} such that φ∗(−LaM) = ∅. We are going to show
that the matrix −LaM ∈ dom(F#) is a solution of the second inverse vector varia-
tional inequality (5.6). Using the convention for the Minkowski difference of empty
sets, we conclude φ∗(−LaM) − φ∗(V ) = ∅ − φ∗(V ) = ∅ for every V ∈ Matm×n(R).
Since it holds (V +LaM)(−a) ̸≼2

intK(a) ∅ for every V ∈ Matm×n(R), see Section 2, the

matrix −LaM ∈ dom(F#) solves (5.6). Finally, it holds F#(−LaM) = F−1LaM = a and
the sets A and B satisfy the weak (A,B)-domination property w.r.t. K(a) = Rm≥0,

see Lemma 5.2. Applying Theorem 4.3 and 3.29, we see that a solves (5.1) and
(5.3). The proof is complete. □
Remark 5.4. The weak conjugate of the negative vertex matrix
−LaiM ∈ Matm×n(R) is non-empty for i = 1, . . . ,m. Indeed fix i ∈ {1, . . . ,m}
and let x ∈ Λn>0 be arbitrarily chosen. Then, the inequality −LaiMx−φ(x) ̸≤intK(x)

−LaiMy − φ(y) for every y ∈ Rn holds since it is equivalent to ⟨ai − a1, y − x⟩
...

⟨ai − am, y − x⟩

 /∈ Rm>0, for every y ∈ Rn.

Notice that the ith component of the left hand side is zero.

5.2. Application to a beam intensity optimization problem in radiother-
apy treatment. As a second application of our results, we present a vector op-
timization problem which arises in radio therapy treatment, see [8] and [21]. The
intensity modulated radiotherapy treatment (IMRT) is currently used to treat can-
cer in prostate, head and neck, breast and many others, see [11], [12] and [21]. The
main idea of IMRT is to apply to the patient a suitable radiation dose, that is, the
intensity of rays going through sensitive critical structures is reduced while the dose
in the infected structures is increased.

In [21], this problem is considered as a vector optimization problem with respect
to a variable domination structure, which describes the dose of the beam intensity.
To this aim, a threshold vector θ ∈ Rn is given, where θ1 := 0 and every component
θi, i = 2, . . . , n is defined as the dose of radiation, below which the organism i
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Figure 8. Schematic axial body cut: lunge cancer (gray) and crit-
ical organs spinal cord and heart (dashed)

does not suffer from any effect. In the following, we assume that the dose delivered
to the tumor organ is given by ATx, where AT ∈ Matn×n(R) is the regular dose
deposition matrix and x ∈ Rn is the beam intensity. The dose delivered to the n−1
critical organs C1, . . . , Cn−1 is given by AC1x, . . . , ACn−1x, where ACi ∈ Matn×n(R)
are given regular matrices for i = 1, . . . , n − 1. Notice that in [17] the author
claims that the Moore–Penrose generalized inverse of the involved matrices exist.
The composite matrix A := (AT , AC1 , . . . , ACn−1)

⊤ ∈ Matn2×n is called the dose
deposition matrix and we have the following relationship

d = Ax,

where d ∈ Rn2
is a dose vector. Since different tissues tolerate different amounts of

radiation, the radiation oncologist needs to determine a target dose atar ∈ Rn for
the tumor, lower and upper bounds to tumor voxels α, α ∈ Rn and upper bounds on
the dose to normal voxels which are divided into βi ∈ Rn for i = 1, . . . , n− 1. The
variable domination structure of this problem is constructed by using the following
[21] practical perspective: the dose delivered to a critical organ i should be reduced
when it exceeds the threshold θi. If not, one can increase this dose in favor of
an improvement in the value of another critical organ. To precisely describe the
variable domination structure K : Rn ⇒ Rn, let the threshold vector θ ∈ Rn be
given and put I>(x) := {i ∈ {1, . . . , n} | xi > θi} for every x ∈ Rn. The variable
domination structure is for every x ∈ Rn defined by

K(x) := {y ∈ Rn | yi ≥ 0 for i ∈ I>(x)}.(5.7)

The next lemma states important properties of the domination structure given
by (5.7), see [21].

Lemma 5.5. Consider the variable domination structure K : Rn ⇒ Rn determined
by (5.7). Then we have:

(a) For every x ∈ Rn, K(x) is a closed and convex cone in Rn with non-empty
interior which satisfies Rn≥0 ⊆ K(x).

(b) The cone K(x) is pointed if and only if xi > θi for every i = 1 . . . , n.

In order to describe the vector optimization problem, we need the convex set of
bound conditions for beam intensity given by

C := {x ∈ Rn | 0 ≤Rn
≥0\{0} x, α ≤Rn

≥0\{0} ATx ≤Rn
≥0\{0} α
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and ACix ≤Rn
≥0\{0} βi for i = 1, . . . , n− 1}.

By using the variable domination structure given by (5.7), the problem of finding
beam intensity in radiotherapy treatment can now get formulated as the vector
optimization problem

WMin(ψ[C],K(·)),(5.8)

where the objective vector mapping ψ : Rn → Rn is given by

ψ(x) :=


1
2∥ATx− atar∥22

1
2∥AC1x∥22

...
1
2∥ACn−1x∥22

 , for every x ∈ Rn.

Recall that ∥ · ∥2 denotes the Euclidean norm in Rn. Here, the first component of
ψ, that is 1

2∥AT · −atar∥22, can be interpreted as the deviation from the prescribed

dose to the dose delivered to tumor, while 1
2∥ACi · ∥22 is the average dose delivered

to the critical organ i ∈ {2, . . . , n}. In the following, we are going to rewrite (5.8)
as a vector variational inequality with respect to the domination structure given by
(5.7), such that we can apply the inverse assertions of Section 4. Calculating the
(right-hand sided) Gâteaux-derivative of ψ and using Theorem 3.29, we have: if
ψ(x) solves (5.8) where x ∈ C and K(x) = Rn≥0, then x is a solution of the following
vector variational inequality, and vice versa: find an element x ∈ C such that

⟨D+
Gψ x, y − x⟩Rn =


⟨ATx− atar, AT (y − x)⟩

⟨AC1x,AC1(y − x)⟩
...

⟨ACn−1x,ACn−1(y − x)⟩

 ̸≤intK(x) 0,

for every y ∈ C.

(5.9)

Now, we use the indicator mapping χC : Rn → Rn ∪{+∞Rn} defined by C, that is,
χC(x) := 0 for x ∈ C and χC(x) := +∞Rn else. Hence, we can rewrite (5.9) in the
following way: find an element x ∈ Rn such that

⟨D+
Gψ x, y − x⟩Rn ̸≤intK(x) χC(x)− χC(y), for every y ∈ Rn.(5.10)

Notice that D+
G : Rn → Matn×n(R) is injective and χC is subdifferentiable with

respect to the variable domination structure given by (5.7). In order to derive

inverse assertions for (5.10), we letD#
Gψ := (D+

Gψ)
# and introduce the two following

inverse problems: find a matrix U1 ∈ dom(D#
Gψ) such that

⟨V − U1,−D#
Gψ U1⟩Y ̸≼1

intK(D#
Gψ U1)

χ∗
C(U1)− χ∗

C(V ),

for every V ∈ Matn×n(R) with φ∗(V ) ̸= ∅.
(5.11)

Replacing the binary set relation ̸≼1
intK(·) by ̸≼2

intK(·), the second inverse vector

variational inequality is to find a matrix U2 ∈ dom(D#
Gψ) such that

⟨V − U2,−D#
Gψ U2⟩Y ̸≼2

intK(D#
Gψ U2)

χ∗
C(U2)− χ∗

C(V ),

for every V ∈ Matn×n(R).
(5.12)
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Recall that χ∗
C denotes the weak conjugate of χC , see Definition 3.9. Let us put

Cθ := C ∩ {x ∈ Rn | xi > θi for i = 1, . . . , n}.

Theorem 5.6. Using our previous observations and notations, we have:

(a) If x ∈ Cθ is a solution of (5.10), then the matrix −D+
Gψ x ∈

dom(D#
Gψ) is a solution of the first inverse problem (5.11).

(b) Conversely, if U2 ∈ dom(D#
Gψ) is a solution of (5.12), it holds

x ∈ Cθ and the sets

A :=
{
⟨−D+

Gψ x, y⟩Y−χC(y) | y ∈ X
}

and B :=
{
− ⟨D+

Gψ x, x⟩Y − χC(x)
}

satisfy the weak (A,B)-domination property w.r.t. K(x), where x := D#
Gψ U2,

then −D#
Gψ U2 ∈ dom(D+

G) is a solution of (5.8) and (5.10), respectively.

Proof. The proof follows from the Theorems 3.29 and 4.3. □

6. Comparison of dual and inverse assertions for vector optimization
problems with respect to a fixed domination structure

Having a vector (minimum) optimization problem with fixed domination struc-
ture one can attach to it a conjugate dual (maximum) problem by using the so-called
perturbation or conjugate approach. The main task then is to investigate existence
of weak, strong and, sometimes, converse duality to connect both problems. The
main reason to look for duality assertions is that one can conclude from the exis-
tence of solutions of the primal problem that the dual problem has a solution, and
vice versa, or to get a lower bound for the solutions.
In the following, we will present the dual conjugate approach [2] for a vector opti-
mization problem with respect to a fixed domination structure. To be precise, let
X,Y and Z be real Banach spaces, let K̃ ⊆ Y be a convex cone with non-empty
interior and ψ : X → Y a given mapping. The space Z can be interpreted as
a parameter space. The main objective is to calculate the set of weakly minimal
elements (primal problem)

WMin(ψ[X], K̃).(P)

Let Ψ : X×Z → Y be a so-called perturbation mapping such that Ψ(x, 0) = ψ(x) for
every x ∈ X. A widely used perturbation mapping in the framework of (constrained)
vector optimization problems is Ψ(x, z) := ψ(x + z) for x ∈ X and z ∈ Z, see [2].

Further, define a set-valued mapping Φ : Z ⇒ Y by Φ(z) := WMin(Ψ[X, z], K̃),
where Ψ[X, z] := {Ψ(x, z) ∈ Y | x ∈ X}, for every z ∈ Z. Clearly, it holds

Φ(0) = WMin(ψ[X], K̃). In order to derive duality results for (P), one considers
the following equivalent vector optimization problem instead:

WMin(Ψ[X, 0], K̃).(P)

To introduce the dual problem for (P), we need the definition of the weak conjugate
of Ψ : X × Z → Y , which is the set-valued mapping Ψ∗ : L(X,Y ) × L(Z, Y ) ⇒ Y

defined by Ψ∗(U, V ) := WMin({⟨U, x⟩Y + ⟨V, z⟩Y −Ψ(x, z) | x ∈ X and z ∈ Z}, K̃)
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for U ∈ L(X,Y ) and V ∈ L(Z, Y ). Then, the conjugate dual problem is to find an
operator V 0 ∈ L(Z, Y ) such that

−Ψ∗(0, V 0) ∩WMax

 ∪
V ∈L(Z,Y )

−Ψ∗(0, V ), K̃

 ̸= ∅,

which will be formally written as

WMax(−Ψ∗[0,L(Z, Y )], K̃).(D)

As we have seen in Theorem 3.29, the primal problem (P) is closely related to the
following vector variational inequality with respect to a fixed domination structure
provided the mapping ψ : X → Y is right-handed Gâteaux-differentiable and K̃-
convex: find an element x ∈ X such that

⟨D+
Gψ x, y − x⟩Y /∈ − int K̃, for every y ∈ X.(P′)

Recall that D+
Gψ is a mapping from X to L(X,Y ). In the following, to simplify

the notation, we will put D#
Gψ := (D+

Gψ)
# and φ := 0 denotes the zero-mapping

from X to Y . In order to apply the results of the previous sections, we assume
that D+

Gψ : X → L(X,Y ) is injective. Recall, that given an operator V ∈ L(X,Y ),
the weak conjugate of φ is the set-valued mapping φ∗ : L(X,Y ) ⇒ Y , defined by

φ∗(V ) := WMax({⟨V, x⟩Y − φ(x) | x ∈ X}, K̃) for every V ∈ L(X,Y ). The first

associated inverse problem to (P′) is to find an operator U1 ∈ dom(D#
G) such that

⟨V − U1,−D#
GU1⟩Y ̸≼1

int K̃
φ∗(U1)− φ∗(V ),

for every V ∈ L(X,Y ) with φ∗(V ) ̸= ∅.
(D′

1)

The second inverse problem is to find an operator U2 ∈ dom(D#
G) such that

⟨V − U2,−D#
GU2⟩Y ̸≼2

int K̃
φ∗(U2)− φ∗(V ), for every V ∈ L(X,Y ).(D′

2)

In the following, we are going to present well-known duality results for (P), see [2]
and [3]. Exploiting the equivalence of (P) and (P′), we will apply Theorem 4.1 to
find new dual/inverse results for (P) and (P′). The following Theorem can be found
in [3] and [26] for the finite-dimensional case.

Theorem 6.1 (Weak duality between (P) and (D)). The problems (P) and (D) are
weakly dual, that is,

Ψ(x, 0) /∈ −Ψ∗(0, V )− K̃, for every x ∈ X, V ∈ L(Z, Y ).

In order to derive strong (direct and converse) duality results for (P), the following
so-called domination property [28] (stability property [3]) has been used: It holds

ψ[X] ⊆ WMin(ψ[X], K̃) + K̃. This property is further crucial to derive duality
results for (P) using a Lagrangian mapping, see [16]. The following theorem can be
found in [3] and [26] for the finite-dimensional case.

Theorem 6.2 (Strong direct and converse duality between (P) and (D)). Assume
for every z ∈ Z it holds

Ψ[X, z] ⊆ WMin(Ψ[X, z], K̃) + K̃.

Then we have:



370 R. ELSTER, N. HEBESTREIT, A. A. KHAN, AND C. TAMMER

(a) The set-valued mapping Φ : Z ⇒ Y , defined before, is subdifferentiable at 0
if and only if, for each solution ψ(x) ∈ Y of (P), where x ∈ X, there exists
a solution V 0 ∈ L(Z, Y ) of (D) such that

Ψ(x, 0) ∈ −Ψ∗(0, V 0).(6.1)

(b) Conversely, if x ∈ X and V 0 ∈ L(Z, Y ) satisfy (6.1), then Ψ(x, 0) = ψ(x)
is a solution of (P) and V 0 is a solution of (D).

Similar to the well-known strong direct and converse duality result in Theorem
6.2, one can observe that one needs a modified weak domination property, see Def-
inition 3.14, to derive direct and converse assertions for (P) and (P′), respectively.
Using the previous notations, we have the following new result, see Theorem 3.29
and Theorem 4.3.

Theorem 6.3 (Strong direct and converse assertion for (P), (D′
1) and (D′

2)).

(a) Assume ψ(x) is a solution of (P), for some x ∈ X. Then, the operator

−D+
Gψ x ∈ dom(D#

G) solves (D′
1).

(b) Conversely, if U2 ∈ dom(D#
G) solves (D′

2) and it holds

−⟨D+
Gψ x, x⟩Y ∈ WMax({−⟨D+

Gψ x, y⟩Y | y ∈ X}, K̃)− K̃,

where x := D#
GU2, then ψ(x) solves (P).

7. Conclusion

We have seen that vector variational inequalities with respect to variable dom-
ination structures can be used to solve approximation problems. These problems
are of big interest in different fields of applications. In order to give necessary and
sufficient existence results for the main and inverse problems, one needs to solve
set-valued vector variational inequalities. In a future work, it would be important
to prove existence results for the dual problems and to introduce a (non-linear)
scalarization technique which allows to tackle the problems in a different way. Fi-
nally, from a practical perspective it would be useful to consider inverse problems
for the vector variational inequality only using functionals instead of operators.
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