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value problems, also the calculus of Boutet de Monvel [1], including Green opera-
tors, and boundary symbols in the framework of the transmission property. These
are operator-valued, acting between spaces on the half-axis, endowed with certain
simple rescaling groups, see also [12], [9]. A similar method works in the edge the-
ory, first established in [16] for “abstract” pairs of Hilbert spaces with such groups
and prepared by concrete Kegel spaces in [13], on infinite non-trivial cones, then
continued in [11], [17], moreover, in [14], [15], [5], [18], [7], [8], [19], [20], [2], [3].
There are contributions by many other authors, but interesting problems remained
open. Because of the extent of the program we limit ourselves to some specific as-
pects of recent research and focus on substructures of larger operator algebras. The
results of the present paper can be subsumed under the keywords: observations on
parameter-dependent edge operator-families, acquiring a new degenerate behavior
under a natural “corner substitution” of parameters. In particular we characterize
Leibniz products of holomorphic edge operator-valued Mellin symbols within the
calculus.

2. Degenerate operators

Models of physics, geometry, or engineering often refer to PDEs on a manifold B
with smooth edge Y, say, a wedge X△ × Rq with edge Rq and model cone

(2.1) X△ = (R+ ×X)/({0} ×X)

for some smooth compact manifold X. In the quotient space (2.1) the vertex is
represented by {0} × X, collapsed to a point. Moreover, a fixed splitting (r, x) ∈
R+ × X =: X∧ of variables in the respective open stretched cone represents a
regular singularity. This means, another choice (r̃, x̃) ∈ R+ ×X is representing an
equivalent cone structure, if the diffeomorphism (r, x) → (r̃, x̃), X∧ → X∧, is the
restriction of a diffeomorphism R+ ×X → R+ ×X, i.e., between smooth cylinders
with boundary. In this sense we say, that (r̃, x̃) is regular with respect to (r, x).
Other choices of (r̃, x̃) may describe cuspidal geometries which are ruled out here,
and we keep the splitting (r, x) fixed. In a similar sense we also reflect the regular
behavior of analytical objects over X△ × Rq in variables (r, x, y) ∈ X∧ × Rq by
asking, differential operators of order µ ∈ N = {0, 1, 2, . . .} to be as follows. A
differential operator of the form

(2.2) Aedge := r−µ
∑

j+|α|≤µ

ajα(r, y)(−r
∂

∂r
)j(rDy)

α

with coefficients ajα(r, y) ∈ C∞(R+×Rq,Diffµ−(j+|α|)(X)) is called edge-degenerate.
Here Diffν(X) for ν ∈ N denotes the Fréchet space of differential operators on X of
order ν with smooth coefficients. The wedge is equipped with coordinates (r, x, y),
and similarly to X∧ we talk about a regular geometry over X∧ ×Rq when we keep
in mind the class of equivalent choices of coordinates (r̃, x̃, ỹ) which correspond to
a bundle isomorphism (R+ ×X)× Rq → (R+ ×X)× Rq with base Rq and regular
transition maps between fibers R+ × X. Globally a manifold B with edge Y of
dimension q is described by the properties that B \ Y is smooth and B is locally
close to Y modeled on X△ × Y with the structure of an X△-bundle over Y and the



OPERATORS ON MANIFOLDS WITH SINGULARITIES 325

indicated transition behavior of fibers X△, induced by regular transitions of R+×X.
For dimY = 0 we get a manifold with conical singularities. Close to the tip of the
cone corresponding differential operators of order µ are assumed to be of the form

(2.3) Acone := r−µ
µ∑

j=0

aj(r)(r
∂

∂r
)j

with coefficients aj(r) ∈ C∞(R+,Diffµ−j(X)). Examples for µ = 2 of (2.2) and (2.3)
are Laplace-Beltrami operators belonging to metrics

dr2 + r−2gX + dy2 and dr2 + r−2gX ,

respectively, for some Riemannian metric gX on X.

Such operators also appear by considering differential operators in R1+n+q for
n = dimX by introducing polar coordinates (r, x) in R1+n

x̃ \ {x̃ = 0}, where in this
case the unit sphere Sn plays the role of X.

3. Fourier- and Mellin- based pseudo-differential operators

The Fourier transform

(3.1) Fu(ξ) =

∫
e−ixξu(x)dx with its inverse F−1g(x) =

∫
eixξg(ξ)d̄ξ,

d̄ξ = (2π)−ndξ, is the well-known background of pseudo-differential operators, using
double symbols aD(x, x

′, ξ), and oscillatory integrals

Au(x) =

∫∫
ei(x−x′)aD(x, x

′, ξ)u(x′)dx′d̄ξ.

If aD(x, x
′, ξ) is replaced by aL(x, ξ) or aR(x

′, ξ) the corresponding symbols are
referred to as left or right symbols, respectively. While this is completely standard
for scalar symbols of Hörmander’s type Sµ(Ω×Rn) or classical symbols Sµ

cl(Ω×Rn)
of order µ, and Ω ⊆ Rn

x or Ω ⊆ Rn
x×Rn

x′ open, a novelty of singular analysis consists
of using operator-valued symbol spaces

(3.2) Sµ
(cl)(Ω× Rn;H, H̃)

for (separable) Hilbert spaces H, H̃. Recall that there is also a variant for Fréchet
spaces, cf. [18]. By subscript “(cl)” we mean that the corresponding considerations
are valid both for classical and general symbols. The terminology may be found,
for instance, in [18]. The space H (and similarly also H̃) in (3.2) is assumed to be
endowed with the action of a group κ = {κδ}δ∈R+ of isomorphisms

κδ : H → H,

such that κδκδ′ = κδδ′ for all δ, δ′ ∈ R+, and κ1 = idH . Moreover, for any h ∈ H
the function h → κδh, δ ∈ R+, is asked to belong to C(R+,H). The corresponding

group κ̃ for H̃ may be different from κ, but κ, κ̃ are kept fixed in our consideration.
The space (3.2) (first in general meaning and, say, in the left-symbol case) is defined
to be the set of all

a(x, ξ) ∈ C∞(Ω× Rn,L(H, H̃))
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satisfying the symbol estimates

(3.3) ∥κ̃−1
⟨ξ⟩{D

α
xD

β
ξ a(x, ξ)}κ⟨ξ⟩∥L(H,H̃) ≤ c⟨ξ⟩µ−|β|

for all (x, ξ) ∈ K × Rn, and every K ⋐ Ω, for all α, β ∈ Nn and constants c =

c(α, β,K) > 0. Here ⟨ξ⟩ := (1 + |ξ|2)1/2, and κ⟨ξ⟩ is defined by inserting δ = ⟨ξ⟩ in
κδ. Later on, in the operator-valued set-up we will write (y, η) rather than (x, ξ),

except for the scalar case, i.e., when H = H̃ = C and κδ = κ̃δ = idC.

By definition classical amplitude functions a(x, ξ) have a sequence of homoge-
neous components a(µ−j)(x, ξ), j ∈ N, belonging to

S(µ−j)(Ω× (Rn \ {0});H, H̃)

for any j ∈ R, where S(ν)(Ω × (Rn \ {0});H, H̃) is the space of all a(ν)(x, ξ) ∈
C∞(Ω× (Rn \ {0}),L(H, H̃)) such that

(3.4) a(ν)(x, δξ) = δν κ̃δa(ν)(x, ξ)κ
−1
δ

for all δ ∈ R+ and all (x, ξ) ∈ Ω × (Rn \ {0}). Then a(x, ξ) ∈ Sµ
cl(Ω × Rn;H, H̃)

admits an asymptotic expansion

(3.5) a(x, ξ) ∼ χ(ξ)
∞∑
j=0

a(µ−j)(x, ξ)

where χ(ξ) denotes an excision function (i.e., χ(ξ) ≡ 0 for 0 < |ξ| < ε0, χ(ξ) ≡ 1

for |ξ| > ε1, for some 0 < ε0 < ε1). For any a(x, ξ) in S
µ
(cl)(Ω× Rn;H, H̃) we write

Opx(a)u(x) =

∫∫
ei(x−x′)ξa(x, ξ)u(x′)dx′d̄ξ,

d̄ξ = (2π)−ndξ, first for u ∈ C∞
0 (Ω,H). Let

(3.6) Ws(Rn,H),

s ∈ R, defined to be the completion of C∞
0 (Rn,H) with respect to the norm

∥u∥Ws(Rn,H) :=
{∫

⟨ξ⟩2s∥κ−1
⟨ξ⟩Fu(ξ)∥

2
H

}1/2
.

For Ω := Rn we then have continuity

Opx(a) : Ws(Rn,H) → Ws−µ(Rn, H̃), s ∈ R,

provided that the symbol a(x, ξ) satisfies some extra conditions with respect to x,
e.g., when it is independent on x for |x| > c for some c > 0. More general criteria
are given in [17, Theorem 6, page 283] and in [20]. Often it will be convenient
to employ functions [ξ] ∈ C∞(Rn

ξ ) rather than ⟨ξ⟩, where [ξ] = |ξ| for |ξ| > c for
some c > 0. Clearly the calculu itself is equivalent to the former one. In singular
analysis it is typical that the geometric configuration contains one (or more) half-
axis direction(s) r ∈ R+ and we have to take into account the behavior of amplitude
functions with respect to r and its covariable ρ. This does not concern only r → 0
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but, as we shall see below, for some intrinsic reasons also for r → ∞. It turns out
that the adequate context is the Mellin transform on R+

(3.7) Mu(w) =

∫ ∞

0
rwu(r)

dr

r
with its inverse M−1g(r) =

∫
Γ 1

2−γ

r−wg(w)d̄w

with d̄w = (2πi)−1dw and

Γβ := {w ∈ C : Rew = β}.

The weight γ ∈ R in (3.7) will be specified below; for the moment we set γ = 0 and
assume u ∈ C∞

0 (R+). Then Mu(w) ∈ A(C). Here A(U,E) for open U ⊆ C and a
Fréchet space E means the space of all holomorphic functions in U with values in
E, and E is omitted for E = C. It is well-known that

M : C∞
0 (R+) → A(C)

is continuous, as well as the composition of M with the restriction to Γβ

(3.8) C∞
0 (R+) → S(Γβ)

for any real β, where S(Γβ) is the space of Schwartz functions on Γβ. For any γ ∈ R
the restriction

Mγu :=Mu|Γ 1
2−γ

is well-defined and extends by continuity to an isomorphism

(3.9) Mγ : rγL2(R+) → L2(Γ 1
2
−γ)

where the inverse is just the second formula in (3.7). Since S(Γ 1
2
−γ) ⊂ L2(Γ 1

2
−γ)

we can give (3.8) for β = 1
2 − γ a more precise meaning, namely to observe an

isomorphism

Mγ : T γ(R+) → S(Γ 1
2
−γ)

by introducing the weighted Mellin analogue of a weighted Schwartz space on R+,
namely, T γ(R+) := M−1

γ S(Γ 1
2
−γ), with the restriction of the inverse of (3.9) to

S(Γ 1
2
−γ). Note that when we define the transformation

(3.10) Sγ : C∞
0 (R+) → C∞

0 (R)

by the formula

(Sγu)(t) := e−( 1
2
−γ)tu(e−t), t ∈ R,

we can write

Mγ,r→w = ψ∗
1
2
−γ

◦ Ft→ρ ◦ Sγ

for the Fourier transform Ft→ρ on Rt with covariable ρ and ψ∗
β the pull back under

the bijection ψβ : Γβ → R, ψβ : w 7→ Imw. For a (first) scalar Mellin symbol

fD(r, r
′, w) ∈ Sµ

(cl)(R+ × R+ × Γ 1
2
−γ) where w = 1

2 − γ + iρ, we set

OpγM (fD)u(r) =

∫
R

∫
R+

(
r

r′
)
1
2
−γ+iρfD(r, r

′,
1

2
− γ + iρ)u(r′)

dr′

r′
d̄ρ,
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d̄ρ = (2π)−1dρ, for u ∈ C∞
0 (R+) and then extended to larger distribution spaces.

In the case of a left Mellin symbol fL(r, w) we have

(3.11) OpγM (fL) =M−1
γ fLMγ = rγOpM (T−γfL)r

−γ

for OpM = Op0M , and (T βfL)(r, w) := fL(r, w+β). A similar formalism will be used

for operator-valued symbols, not only in the above-mentioned {H, H̃}-formalism
but when Mellin symbols take values in Fourier-based pseudo-differential operators
operating on some C∞ manifold X. This belongs to the topics of the following
section.

4. Operators on infinite straight cones

The shape of edge-degenerate differential operators (2.2) gives us a hint in which
way pseudo-differential operators in the edge calculus should be organized. Let us
first recall the notion of pseudo-differential operators on a (say, compact) smooth
manifold X containing parameters λ ∈ Rd. Those consist of spaces

(4.1) A(λ) ∈ Lµ
(cl)(X;Rd

λ)

of operators of some order µ ∈ R. Here

L−∞(X;Rd
λ) := S(Rd, L−∞(X))

with the identification L−∞(X) ∼= C∞(X ×X) via integral operators

Cu(x) =

∫
X
c(x, x′)u(x′)dx′

for c(x, x′) ∈ C∞(X×X) and dx′ associated with a Riemannian metric on X. Then
(4.1) consists of all

A(λ) = Ac(λ) + C(λ)

for C(λ) ∈ L−∞(X;Rd
λ) and

Ac(λ) =

N∑
j=1

φjAj(λ)φ
′
j

for an open covering of X by coordinate neighbourhoods (Uj)j=1,...,N with a subor-
dinate partition of unity by functions (φj)j=1,...,N , φj ≺ φj , φj , φ

′
j ∈ C∞

0 (Uj) with

φ′ ≡ 1 in a neighbourhood of suppφ. Here

Aj(λ) = (χ−1
j )∗Opx(aj)(λ)

stands for amplitude function aj(x, ξ, λ) ∈ Sµ
(cl)(R

n
x × Rn+d

ξ,λ ) with λ ∈ Rd being

treated as an extra covariable, and charts χj : Uj → Rn; j = 1, . . . , N. The space
(4.1) is equipped with its natural Fréchet topology. Now

(4.2) Mµ
O(X;Rd

λ)

is defined as the set of all h(w, λ) ∈ A(Cw, L
µ
cl(X;Rd

λ)) such that

h(w, λ)|Γβ×Rl ∈ A(Cw, L
µ
cl(X; Γβ × Rl))
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for every β ∈ R, uniformly in compact β-intervals. In particular, functions

h(r, w) ∈ C∞(R+,M
µ
O(X))

will be interpreted as Lµ
cl(X)-valued Mellin symbols in expressions (3.11), where we

set

Mµ
O(X) :=Mµ

O(X;Rd) for d = 0.

Weighted Mellin operators make sense for arbitrary h(r, w) as mappings

OpβM (h) : C∞
0 (X∧) → S(R+, C

∞(X))

for any real β. Recall that

(4.3) OpβM (h) = OpγM (h) for arbitrary h ∈Mµ
O(X), β, γ ∈ R,

as operators on C∞
0 (X∧). For β = γ − n/2 they induce continuous operators

(4.4) Op
γ−n/2
M (h) : Hs,γ(X∧) → Hs−µ,γ(X∧)

for arbitrary s ∈ R. The convention with a translation of γ by n = dimX has the
meaning of a normalization. The weighted Mellin Sobolev spaces Hs,γ(X∧) over
the infinite stretched cone X∧ are defined in [17] or [18]. In particular, Hs,γ(R+) is
the completion of C∞

0 (R+) with respect to the norm

∥u∥Hs,γ(R+) =
{∫

Γ 1
2−γ

⟨w⟩2s|Mu(w)|2d̄w
}1/2

.

for d̄w := (2πi)−1dw. Recall that the definition for any closed smooth manifold X
of dimension n can be reduced to the case R+ × Rn and the norm

(4.5) ∥u∥Hs,γ(R+×Rn) :=
{∫

Γn+1
2 −γ

∫
Rn

⟨ξ, w⟩2s|(Fx→ξMr→wu)(r, w)|2d̄wd̄ξ
}1/2

Here ⟨ξ, w⟩ = (1 + |ξ|2 + |w|2)1/2. It will be necessary also to consider Kegel spaces
Ks,γ(X∧), defined by

Ks,γ(X∧) := {u = ωu0 + (1− ω)u∞ : u0 ∈ Hs,γ(X∧), u∞ ∈ Hs
cone(X

∧)}

for some fixed cut-off function ω. Here Hs
cone(X

∧) is defined to be the set of all

u(r, x) ∈ Hs
loc(R×X)|X∧

such that

((1− ω)φu) ◦ χ−1
cone ∈ Hs(R1+n)

for every chart

χcone : R+ × U → R1+n, χcone(r, x) := (r, rχ(x))

with χ : U → Rn being any chart on X. In particular, for n = 0 we have

Ks,γ(R+) := {u = ωu0 + (1− ω)u∞ : u0 ∈ Hs,γ(R+), u∞ ∈ Hs(R+)}.
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5. Parameter-dependent edge operators

Operators (2.2) belong to Diffµ(X∧ × Rq), and give rise to an operator space
Diffµ

deg(B \Y ) globally on a manifold B with edge Y with a typical edge-degenerate

behavior close to Y. The elements of Diffµ
deg(B \ Y ) restrict to standard elements of

Diffµ(U)

for any open U ⊂ B \ Y such that U does not intersect Y. Setting

h̃(r, y, w, η̃) :=
∑

j+|α|≤µ

ajα(r, y)w
j η̃α ∈ C∞(R+ × Rq,Mµ

O(X;Rq
η̃))

for η̃ = rη, and h(r, y, w, η) := h̃(r, y, w, rη) then we have

(5.1) Acu = Opy{r−µOpγM (h)(y, η)}.
Recall that the structures of the edge calculus are motivated by the task to establish
operator spaces over B containing Diffµ

deg(B \ Y ) for every µ ∈ N, together with

parametrices of elliptic elements. Let us employ notation

(5.2) Lµ(B, g)

for the respective class of operators of order µ ∈ R and weight data g = (γ, γ−µ,Θ)
for Θ := (ϑ, 0], ϑ < 0.We will explain the meaning of g below. Recall that elements
of (5.2) induce continuous operators

(5.3) A : Hs,γ(B) → Hs−µ,γ−µ(B)

for every s ∈ R, cf. notation in [10, page 275]. In this context Fredholm property
and ellipticity refer to the principal symbolic structure of operators, namely,

(5.4) σ(A) := (σ0(A)(x, ξ), σ1(A)(y, η)),

associated to the stratification

(5.5) s(B) := (s0(B)), s1(B)),

for

(5.6) s0(B) := B \ Y, s1(B) := Y.

Here (x, ξ) are variables x and covariables ξ ̸= 0 on s0(B), where σ0(A)(x, ξ) is the
standard homogeneous principal symbol of order µ, according to the inclusion

(5.7) Lµ(B, g) ⊂ Lµ
cl(B \ Y ).

Moreover, σ1(A) is locally over Y in variables y ∈ Rq and covariables η ∈ Rq \ {0}
associated with an operator-valued edge symbol

a(y, η) ∈ Sµ(Rq
y × Rq

η;H, H̃)

for Kegel spaces

(5.8) H := Ks,γ(X∧), H̃ := Ks−µ,γ−µ(X∧),

s, γ ∈ R, where H, H̃ are endowed with group actions κ := {κδ}δ∈R+ , and κ̃ :=
{κ̃δ}δ∈R+ , respectively, namely,

(5.9) (κδu)(r, x) := δ(n+1)/2u(δr, x), δ ∈ R+,



OPERATORS ON MANIFOLDS WITH SINGULARITIES 331

for n := dimX and κ̃ is defined by the same expression (in this case). Then we
write

σ1(A)(y, η) : Ks,γ(X∧) → Ks−µ,γ−µ(X∧)

for η ̸= 0. We employ here notation from [10]. The edge calculus is much more
specific than Lµ

cl(B \ Y ) and the symbols σ0(A) of operators A ∈ Lµ(B, g) are
edge-degenerate near Y. Similarly to boundary value problems (BVPs) with the
transmission property which may be subsumed under a variant of the edge calculus,
cf. Boutet de Monvel [1], or the monographs of Rempel and Schulze [12], Grubb [9],
operators do not only contain interior non-smoothing contributions in truncation
quantization, but also Green operators (in the upper left corners when they are
realized in form of 2×2 - operator block-matrices) but also operators of Mellin plus
Green type, here denoted by M +G and associated symbols by m+ g. Those also
appear when the transmission property is violated, cf. the joint article with Seiler
[19]. Although they are very important for the edge calculus, we do not formulate
them in explicit form here, since they are investigated in detail in other expositions,
cf., e.g., in [18].

Let B be the stretched manifold associated with B and ∂B its boundary which is
a bundle over Y with fiber X. The space (5.2) consists of all operators

(5.10) Aedge := ωglobAcω
′
glob + (1− ωglob)Aint(1− ω′′

glob) + C

for global cut-off functions

(5.11) ω′′
glob ≺ ωglob ≺ ω′

glob.

Such an ωglob is any element of C∞(B) which is equal to 1 in a small collar neigh-
bourhood V1 of ∂B and ≡ 0 off some other V0 ⊃ V1 of this kind.

The operator Aint is a standard pseudo-differential operator on B \Y, cf. formula
(5.7). Moreover,

C ∈ L−∞(B, g)

is smoothing, and Ac is a finite sum of operators of the form

χ−1
∗ (ψOpy(a)ψ

′)

where χ : V → Rq is a coordinate diffeomorphism for open V ⊂ Y and ψ runs over
a partition of unity subordinate to the respective open covering of Y, and ψ′ ≻ ψ
for certain ψ′ ∈ C∞

0 (V ). Here we assume

(5.12) a(y, η) := r−µOp
γ−n/2
M (h)(y, η) + (m+ g)(y, η)

for

(5.13) h(r, y, w, η) = h̃(r, y, w, rη)

for certain

(5.14) h̃(r, y, w, η̃) := C∞
[0,R](R+ × Rq,Mµ

O(X;Rq
η̃)).

Here “[0, R]” indicates the subspace of all elements of

C∞(R+ × Rq,Mµ
O(X;Rq

η̃))
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which are independent of r for r > R. The above-mentioned (m + g)(y, η), have
the meaning of amplitude functions belonging to the asymptotic part of the edge
calculus, where asymptotics refer to weight strips of width Θ = (ϑ, 0] situated on
the left of weight lines Γn+1

2
−γ and Γn+1

2
−(γ−µ), n = dimX, in the complex Mellin

w-plane. Let us now generalize the spaces (5.2) to the case of dependence on extra
parameters λ ∈ Rd and indicate corresponding spaces of symbols. In the following,
for simplicity, we will ignore Θ and denote weight data by (γ, γ − µ). The space

Rµ
trad(R

2q
y,η, g;Rd

λ) for weight data g = (γ, γ − µ)

is defined to be the set of all operator-functions of the form

a(y, η, λ) = σ1(r)
(
a0(y, η, λ) + a1(y, η, λ)

)
σ0(r)

+ (1− σ1(r))P0(y, η, λ)(1− σ2(r)) + (m+ g)(y, η, λ)
(5.15)

with

(5.16) a0(y, η, λ) := ω1(r[η, λ])r
−µOp

γ−n
2

M (h)(y, η, λ)ω0(r[η, λ])

(5.17) a1(y, η, λ) := (1− ω1(r[η, λ]))r
−µOpr(p)(y, η, λ)(1− ω2(r[η, λ]))

with

(5.18) h(r, y, w, η, λ) ∈ C∞
[0,R](R+ × Rq,Mµ

O(X;Rq+d

η̃,λ̃
)|(η̃,λ̃)=(rη,rλ),

and

(5.19) p(r, y, ρ, η, λ) ∈ C∞
[0,R](R+ × Rq, Lµ

cl(X;R1+q+d

ρ̃,η̃,λ̃
))|(ρ̃,η̃,λ̃)=(rρ,rη,rλ),

moreover,

(m+ g)(y, η, λ) ∈ Rµ
M+G(R

2q
y,η, g;Rd),

P0(y, η, λ) ∈ C∞(Rq
y, L

µ
cl(X

∧;Rq+d
η,λ ))0.

(5.20)

Subscript “0” means that the kernels of operators vanish in r-direction off some
compact interval of R+. The operators Ac(λ) = Op(a)(λ) have symbols a(y, η, λ) in

Rµ
trad(R

2q
y,η, g;Rd

λ) ⊂ Sµ(R2q+d
y,η,λ ;H, H̃)

The space

Rµ
new(R2q

y,η, g;Rd
λ) for weight data g = (γ, γ − µ)

consists of all operator functions

a(y, η, λ) := σ1(r)r
−µOp

γ−n
2

M (h)(y, η, λ)σ0(t)

+ (1− σ1(r))P0(y, η, λ)(1− σ2(r)) + (m+ g)(y, η, λ).
(5.21)

The Green symbols g(y, η, λ) in (5.20) and (5.21) are described in [8], and the
smoothing Mellin symbolsm(y, η, λ) do not occur in the proof of Theorem 5.1 below.
Concerning the involved cut-off functions ωi(r), σj(r), i, j = 0, 1, 2, we assume

(5.22) ω2 ≺ ω1 ≺ ω0, σ2 ≺ σ1 ≺ σ0.

Theorem 5.1 ([7]). The classes Rµ
trad and Rµ

new are equivalent.
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Definition 5.2. The space

(5.23) Lµ(B, g;Rd
λ).

consists of all families

(5.24) Aedge(λ) := ωglobAc(λ)ω
′
glob + (1− ωglob)Aint(λ)(1− ω′

glob) + C(λ),

where Ac is locally close to the edge Y defined by symbols in Rµ
new(R2q

y,η, g;Rd
λ) more-

over, C(λ) ∈ L−∞(B, g;Rd) = S(Rd, L−∞(B, g)) and Aint(λ) is determined by
Lµ
cl(B \ Y ;Rd) in terms of parameter-dependent symbols in (x, ξ, λ). Finally, the

smoothing Mellin plus Green symbol now takes the form (m+ g)(y, η, λ).

The principal symbolic hierarchy of the parameter-dependent calculus (5.23) in
this case consists of pairs

σ(A)(λ) = (σ0(A)(x, ξ, λ), σ1(A)(y, η, λ)),

cf. also formula (5.4), here for (ξ, λ) ̸= 0, and (η, λ) ̸= 0, respectively. The exten-
sion of corresponding results to full block-matrices with extra entries of trace and
potential type works as for d = 0 which is a special case, see, e.g., [18]. Recall that
the specific features of the edge-calculus concerning operator families in (5.23) come
from the first summands on the right-hand side of (5.24). Here we systematically
employ the edge quantization from [8] for

(5.25) p̃(r, y, ρ̃, η̃, λ̃) ∈ C∞
[0,R](R+ × Rq, Lµ

cl(X;R1+q+d

ρ̃,η̃,λ̃
))

belonging to

(5.26) p(r, y, ρ, η, λ) = p̃(r, y, rρ, rη, rλ).

The corresponding parameter-dependent Mellin-edge quantization which produces
the same edge calculus (5.23) may be found in [18, Theorem 3.2.7] and in convenient
form also in [7]. The main information consists of comparing the operator functions

(5.27) Opr(p)(y, η, λ) and OpγM (h)(y, η, λ).

The corresponding relationship will be also referred to as Mellin-edge quantization.

Theorem 5.3 ([7, 18]). For every operator function p(r, y, ρ, η, λ) indicated in (5.26)

there exists an h(r, y, w, η, λ) = h̃(r, y, w, rη, rλ) with

(5.28) h̃(r, y, w, η̃, λ̃) ∈ C∞
[0,R](R+ × Rq,Mµ

O(X;Rq

η̃,λ̃
))

such that the remainder

(5.29) c(y, η, λ) := Opr(p)(y, η, λ)−OpγM (h)(y, η, λ)

is C∞ with respect to y ∈ Rq
y with values in L−∞(X∧;Rq+d) for every γ ∈ R.

For a more precise description of smoothing remainders we refer to the above-
mentioned papers, see also [8, Theorem 3.2].
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6. Degenerate families with extra corner-direction

We now study parameter-dependent edge operators from the point of view of
corner symbols. In the following discussion we introduce another axial variable
t ∈ R+ with parameters (τ̂ , ζ̂) ∈ R1+e. In order to indicate a future application,
continued in another project, we call the correspondence

(τ̂ , ζ̂) 7→ (tτ, tζ)

a corner-substitution of parameters. The former λ has been first replaced by (τ̂ , ζ̂)
which turns to (tτ, tζ) locally close to Y corresponds to (rtτ, rtζ). Here τ ∈ R
is the covariable of t, and ζ ∈ Re a further parameter which is motivated as the
covariable of another edge Re in the variable z. Here, for simplicity we ignore z but
we single out a special aspect of calculus in t, namely, the Leibniz compositions of
corresponding degenerate families of operators. Some procedures are similar to the
preceding computations in Section 5. We focus here on operators in t with respect
to the Fourier transform in t, though the Mellin version under a Mellin quantization
also makes sense. This would require extra weights in t, Mellin symbols could be
smooth up to t = 0. Therefore, in order to preserve formal similarities to this aspect,
we assume

(6.1) b(t, τ, ζ) = b̂(t, tτ, tζ)

for some

(6.2) b̂(t, τ̂ , ζ̂) ∈ C∞(
R+, L

ν(B, l;R1+e

τ̂ ,ζ̂
)
)

for l := (β, β − ν).

Theorem 6.1. Let b̂ν−j(τ̂ , ζ̂) be arbitrary elements of Lν−j(B, l;R1+e

τ̂ ,ζ̂
), j ∈ N,

where the weight data l = (λ, λ−ν,Θ) are independent of j as well as the asymptotic

types in possibly involved Green summands. Then there is a b̂(τ̂ , ζ̂) ∈ Lν(B, l;R1+e

τ̂ ,ζ̂
)

such that

b̂(τ̂ , ζ̂)−
N∑
j=0

b̂ν−j(τ̂ , ζ̂) ∈ Lν−(N+1)(B, l;R1+e

τ̂ ,ζ̂
)

for every N , and b̂ is uniquely determined mod L−∞(B, l;R1+e

τ̂ ,ζ̂
).

The result is an analogue of the a corresponding theorem from the edge calculus
without parameters, see, e.g., [18]. Note that an analogue of Theorem 6.1 remains
valid if we admit smooth dependence of operator functions on t ∈ R+.

The idea of the corner-edge calculus with corner axis variable t ∈ R+ and second
order edge variable z ∈ Re is to employ elements

b̂(t, z, τ̂ , ζ̂) ∈ C∞
[0,T ](R+ × Re, Lν(B, l;R1+e

τ̂ ,ζ̂
))

in (6.2) to create corner symbols

(6.3) t−νb(t, z, τ, ζ) := t−ν b̂(t, z, tτ, tζ).

As noted before we drop the variable z and work with the condition that

(6.4) b̂(t, τ̂ , ζ̂) ∈ C∞
[0,T ](R+, L

ν(B, l;R1+e

τ̂ ,ζ̂
))
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vanishes in a neighbourhood of t = 0. This corresponds to a localization of the
Fourier pseudo-differential action off t = 0. In connection with Mellin quantizations
it makes sense to admit the class (6.4) including smoothness in t up to t = 0, where
vanishing at t = 0 is a natural property in traditional quantization with respect to
t. Then the Fourier-action near t=0 is replaced by a corresponding Mellin-action,
see analogous expressions (5.16), (5.17) in the variable r.

The associated operators t−νOpt(b)(ζ) induce continuous maps

(6.5) t−νOpt(b)(ζ) : C
∞
0 (R+,H

s,β(B)) → C∞
0 (R+,H

s−ν,β−ν(B)),

cf., relation (5.3).

Theorem 6.2. Let t−µOpt(a)(ζ) be another such operator family of the indicated
structure (6.5), of order µ ∈ R and associated with the edge-weight data g := (γ, γ−
µ). Then the ζ-wise composition

t−νOpt(b)(ζ) ◦ t−µOpt(a)(ζ)

is of the same nature, of order µ + ν, modulo C∞
0 (R+, L

−∞(B, l ◦ g;R1+e

τ̂ ,ζ̂
)), and

associated with the weight data l ◦ g := (γ, γ − (µ+ ν)).

Proof. We formally apply the Leibniz rule for pseudo-differential operators. It is
valid for the occurring operator-valued amplitude functions and then we may pass
to an asymptotic summation by applying Theorem 6.1 which also works with extra
dependence of the variable t. So the main issue is to characterize the summands in
the Leibniz product

(6.6) t−νb(t, tτ, tζ)# t−µa(t, tτ, tζ) ∼
∞∑
k=0

1

k!
∂kτ

(
t−νb(t, tτ, tζ)

)
Dk

t

(
t−µa(t, tτ, tζ)

)
.

For convenience in this proof we assume e = 1. Moreover, observe that the term
with k = 0 in the asymptotic sum on the right-hand side of (6.6) is equal to the
point wise product

t−(ν+µ)a(t, tτ, tζ)b(t, tτ, tζ)

∈ t−(ν+µ)C∞
[0,T ](R+, L

ν+µ(B, l ◦ g;R1+e

τ̂ ,ζ̂
))|(τ̂ ,ζ̂)=(tτ,tζ).

(6.7)

which can be characterized as in the paper [8]. For brevity we also employ notation

(6.8) Lµ−m(B, g;R1+e
tτ,tζ) := Lµ−m(B, g;R1+e

τ̂ ,ζ̂
))|(τ̂ ,ζ̂)=(tτ,tζ)

for any m ∈ N. Next we check the derivatives of first order in formula (6.6). The
corresponding summand to be evaluated is of the form

(6.9)
1

i
∂τ (t

−νb(t, tτ, tζ))∂t(t
−µa(t, tτ, tζ))

Let us indicate derivatives in τ̂ by subscripts (τ̂) and with respect to ζ̂ by subscripts

(ζ̂). Then after omitting factors with obvious meaning we may consider the product
of

(6.10) ∂τ (t
−νb(t, tτ, tζ)) = t−ν+1b(τ̂)(t, tτ, tζ)
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and

∂t(t
−µa(t, tτ, tζ)) = t−µ−1a(t, tτ, tζ) + t−µ∂ta(t, tτ, tζ)

= t−µ−1a(t, tτ, tζ) + t−µ[a′ + τa(τ̂) + ζa(ζ̂)](t, tτ, tζ),
(6.11)

where a′ indicates the derivative in the first t-argument of a. Now the product of
expressions (6.10) and (6.11) has the form

t−ν+1b(τ̂){t−µ−1a+ t−µ[a′ + τa(τ̂) + ζa(ζ̂)]}

∈ t−(ν+µ)C∞
[0,T ](R+, L

ν+µ−1(B, l ◦ g;R1+e
tτ,tζ)).

(6.12)

Relation (6.12) can be verified separately for the occurring products. In fact, both

(6.13) t−ν+1b(τ̂){t−µ−1a+ t−µa′} = t−(ν+µ)b(τ̂)a+ t−(ν+µ)+1b(τ̂)a
′

and

(6.14) t−ν+1b(τ̂){t−µ[τa(τ̂) + ζa(ζ̂)]},

since b(τ̂)a ∈ Lν+µ−1 ⊂ Lν+µ−1, and t−(ν+µ)Lν+µ−1 ⊂ t−(ν+µ)Lν+µ−1 the extra
t-power appearing on the left does not affect the final result, because the relevant
asymptotic sum is carried out by Theorem 6.1 without such factors, and a′ in
relation (6.13) vanishes for large t such that the additional t can be absorbed in the
dependence of symbols with respect to the first t-variable. Moreover, internal weight
data which concern the local variable r are not destroyed under differentiations of
functions, but “improved” under the process the resulting weight data g ◦ l over B
are valid for all summands. For (6.14) we can apply similar arguments, since we may

multiply the L-spaces by powers of τ̂ or ζ̂ which raises orders, while differentiations
in τ̂ or ζ̂ diminish orders by the corresponding magnitude.

The summands for k > 1 can be treated by induction. Moreover, the arguments
remain valid when we admit symbols with covariable ζ̂ involved as tζ. This completes
the proof. □
Remark 6.3. There is an analogue of the relationship (5.27) comparing

(6.15) Opt(b)(z, ζ) and OpαM (k)(z, ζ)

for a corresponding edge operator-valued Mellin symbol k of order ν for some weights
α and b is an element of

C∞
[0,T](R+, L

ν(B, g;R1+e

τ̂ ,ζ̂
))|(τ̂ ,ζ̂)=(tτ,tζ)

The weight data (β, β − ν) concern the weights involved in the Melllin action of
k(t, v) along t ∈ R+ in the complex Mellin covariable v.

The arguments are similar as in [18, Theorem 3.2.7]. The Mellin quantization in
the present exposition refers to the degenerate cone axis variable t and first pro-
duces from the Fourier-symbol in (t, τ) a Mellin symbol in in (t, v) with v being the
complex Mellin covariable with respect to t ∈ R+, where v is running as imaginary
part on a weight line, say, Γ1/2. There is involved an asymptotic summation anal-
ogously as Theorem 6.1. Then a kernel cut-off argument produces a holomorphic
representative of the desired quality. These constructions, carried out in [18] on the
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level of degenerate symbols of first order extend to the case of order 2 which we
have here, i.e., we replace X by B. This gives us a map

C∞
[0,T](R+,L

ν(B, l;R1+e

τ̂ ,ζ̂
))|(τ̂ ,ζ̂)=(tτ,tζ)

→ C∞
[0,T](R+,M

ν
O(B, l;Re

ζ̂
))|ζ̂=tζ

(6.16)

which yields the claimed correspondence b 7→ k.
For an analogue of Theorem 6.2 for Mellin operators in contrast to the Fourier

pseudo-differential arguments we may now apply the Mellin-Leibniz product, but
the terms also give us information on the behavior of summands for t→ ∞.

7. Rinal remark

Let us make some final remarks on future problems in PDEs on manifolds with
singularities. We are considering here stratified spaces where singularities are of
some regular behavior, i.e., the strata “touch each other ” in some transversal
way, and Riemannian metrics are non-complete, like over manifolds with smooth
boundaries. Since the pseudo-differential analysis in classical context is aimed at
establishing the principles of solvability of equations in terms of operator algebras
in scales of weighted Sobolev spaces with multiple weights and substructures of op-
erators which reflect asymptotics close to singularities of the respective underlying
spaces, the main issues will focus on analyzing individual subalgebras coming from
the involved hierarchies of operator-valued symbols. It seems that even most simple
questions concerning analogues of index theorems in elliptic cases and the evalua-
tion of analogues of K- groups, generated by difference constructions for principal
symbol tuples, in order to express the index in geometric or topological terms, are
to a large extent open. Also spectral properties and the evaluation of concrete posi-
tions of poles of meromorphic Mellin symbols seem to be far from being completely
understood in operators motivated by several applications. Other important ques-
tions concern operators which are not elliptic, e.g., parabolic, and which should
induce isomorphisms between scales of anisotropic weighted Sobolev spaces. All
this induces an enormous abundance of new investigations which in singular cases
requires elucidation of operator algebra structures which are to some extent anal-
ogous to those from the standard pseudo-differential calculus in connection with
the construction of parametrices on the level of symbols. The present investigation
has analyzed necessary composition constructions in corner geometries which are
modeled by corner substitutions in parameter-dependent theories on a lower level
of singularities, and other investigations in this direction may follow, as they have
been foreshadowed by the approach in the articles [2] and [3].
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