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DYNAMICAL SYSTEMS WITH A LYAPUNOV FUNCTION ON
BOUNDED METRIC SPACES

ALEXANDER J. ZASLAVSKI

ABSTRACT. An algorithm for minimizing an objective function on a set can often
be considered as a sequence of self-mappings of the set for which the objective
function is a Lyapunov function. In this paper the set is a bounded metric
space. We study the asymptotic behavior of trajectories of the dynamical system
which is induced by the algorithm and generalize results which are known in the
literature in the case when the set is a bounded, convex and closed subset of a
Banach space.

1. INTRODUCTION AND PRELIMINARIES

In this paper we study the asymptotic behavior of trajectories of a certain dy-
namical system which originates in a minimization problem. An algorithm for
minimizing an objective function f : K — R' on a set K can often be considered
as a sequence of self-mappings A; : K — K, t=1,2,... of the set K for which the
objective function f is a Lyapunov function. More precisely,

f(Avr) < f(z)

for all x € K and all natural number ¢. In this paper the set K is a bounded metric
space. We introduce the notion of a normal set of mappings and show that if the
sequence {A;}?°; has a subsequence which is a normal set, then the sequence of
values of the Lyapunov function f tends to the infimum of f along any trajectory
generated by {A:};°,. From the point of view of the theory of dynamical systems
the sequence {A;}§°, describes a nonstationary dynamical system with a Lyapunov
function f. Also, some optimization procedures in Hilbert and Banach spaces can
be represented in such a manner [8, 9, 11].

In the present paper we generalize the results which were obtained in [6] and
presented in Chapter 4 of [13] in the case where K is a bounded, closed and convex
set in a Banach space. In this case our dynamical system was also studied in [11, 12].
In contrast with our previous results, here we no longer assume that K is a subset of
a Banach space. As a matter of fact, K a general bounded metric space. It should
be mentioned that in [14] it was considered the case when K is an unbounded metric
space but A; = A; for all natural numbers ¢.

Assume that (K, d) is a bounded metric space and that f : K — R! is a bounded
uniformly continuous function. Set

inf(f) =inf{f(x): = € K}, sup(f) =sup{f(z): =z € K}.
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Denote by A the set of all self-mappings A : K — K such that
(1.1) f(Az) < f(x) for all z € K.

A nonempty set E C A is called normal if given € > 0, there exists d(e) > 0 such
that for each x € K satisfying

f(x) = inf(f) +e
and each A € E the inequality
f(Az) < f(z) = d(e)
holds.

Denote by Card(C') the cardinality of a set C'. Our first result is proved in Section
2 while the second result is established in Section 3.

2. THE FIRST RESULT

Theorem 2.1. Let {A;}72, C A, {Ay }72, be its subsequence such that the set
{A:, © k=1,2,...} is normal and € > 0. Then there exist a natural number N
and § > 0 such that for each sequence {z:}\, C K satisfying
d(At$t71,£L‘t) < 5, t= 1, PN ,N
the inequality
f(zn) <inf(f) +e

holds.
Proof. We may assume without loss of generality that ¢; > 2 and ¢ < 1. There
exists dp € (0, ¢/4) such that the following property holds:

(a) for each z € K satisfying inf(f)+¢/4 < f(x) and each integer k£ > 1, we have

Choose a natural number kg > 4 such that

(2.1) ko > 65" (sup(f) — inf(f))

and set

(2.2) N =t

There exists ¢ € (0,dg) such that for each y1,y2 € K satisfying
d(y1,y2) <6

we have

(2.3) |f(y1) = f(y2)| < do/N.

Assume that {z:}Y, C K satisfies

(2.4) d(Apxp—1,2) <0, t=1,...,N.

We claim that
flan) <inf(f) +e.
First we show that there exists t € {0,..., N} such that

Fla) < inf(f) + /4.
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Assume the contrary. Then
(2.5) f(ze) > inf(f) +€/4, t=0,...,N.
Property (a), (1.1) and (2.2)-(2.5) imply that
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sup(f) —inf(f) = f(zo0) — flzn) = 3 _(f(@i-1) = f(2))
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and
ko < 8y (sup(f) — inf(f)).
This contradicts (2.1). The contradiction we have reached proves that there exists
jo €{0,..., N}
such that
(2.6) f(zj,) <inf(f) +e.

We may assume without loss of generality that jo < N. It follows from (1.1), (2.3)
and (2.4) that

f(xg) = flan) = (f(@e—1) = f(x1))

.MZ
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N
> Y (f(Awior) = f(z2)

t=jo+1
> N(—6o/N) = —0do.

By the relation above and (2.6),

flan) < f(xj,) + 0o < inf(f) +¢/4 +¢/4.
Theorem 2.1 is proved. O
Theorem 2.1 extends a result of [6] obtained in the case when the whole sequence
{A+}$2, is normal and K is a bounded, closed and convex set in a Banach space.
If the minimization problem
f(z) — min
re K

is well-posed [16], then our result implies the convergence of infinite products
Ay, ---Aixr asn — oo for all z € K to the unique point of minimum of f. Note that
infinite products of operators find application in many areas of mathematics. See,
for example, [1, 2, 3, 4, 5, 7, 10, 15].

3. THE SECOND RESULT

Theorem 3.1. Let {A:}52, C A, {4y}, be its subsequence such that the set
{A, : k=1,2,...} is normal and € € (0,1). Assume that Ny is a natural number
such that for each integer k > 1,

(3.1) te+1 — tx < Np.
Then there exist a natural number N and § > 0 such that for each sequence
{4}y C K satisfying
d(Atl‘tfl, Qj‘t) < 5, t= 1, 2, ce
the inequality
flan) <inf(f) +e€
holds for all integers t > N.

Proof. There exists dp € (0,€/4) such that the following property holds:
(a) for each = € K satisfying inf(f)+¢/4 < f(x) and each integer k > 1, we have

f(x) — f(Agz) > 46.

Choose a natural number kg > 4 such that

(32) ko > 6; ' (sup(f) — inf(f))

and set

(3.3) N = Noko.

There exists 6 € (0,dg) such that for each y1,y2 € K satisfying
d(y1,9y2) <6

we have

(3-4) [f(y1) = Fy2)] < do/(8N).
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Assume that {z;}2, C K satisfies

(35) d(AtiCt_l, iUt) < (5, t= 1, 2, R
We claim that
(3.6) f(z¢) <inf(f) + € for all integers t > N.

Let p > 0 be an integer. First we show that there exists t € {pN,...,(p+ 1)N}
such that

f(ze) <inf(f) + /4.
Assume the contrary. Then

(3.7) f(zy) >inf(f) +€/4, t =pN,...,(p+ 1)N.
Property (a), (1.1), (3.3)-(3.5) and (3.7) imply that

1

sup(f) —inf(f) > f(zpn) — f(2pr1)n)
(p+1)N

S (flaror) = fl@r)
t=pN+1
(p+1)N (p+1)N
= Z (f(xe—1) — f(Apzi—1)) + Z (f(Agzi—1) — f(x¢))
t=pN-+1 t=pN+1
(p+1)N

> (flwier) = f(Awi)) — N(=do/(8N))
t=pN+1
(p+1)N
> Y (flwi1) = f(Awi1)) — 60/8

t=pN+1
> 40pCard({t e {pN +1,...,(p+ )N} N{tp: k=1,2,...}) =
> 460ko — 0o > kodo

v

and
ko < 0y ' (sup(f) — inf(f)).
This contradicts (3.2). The contradiction we have reached proves that there exists
jE{pN,....(p+ 1N}
such that

(3.8) flz;) < inf(f) + e/4.
We claim that
f@pyyn) <inf(f) +¢/2.
We may assume that j < (p+ 1)N. It follows from (1.1), (3.4) and (3.5) that

(p+1)N

Fag) = fapenyn) = > (flwer) = fla)

t=j+1
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(p+1)N

= Z (f(xi—1) — f(Arxi—1) + f(Awwi—1) — f(zr))
t=j+1
(p+1)N

= Z (f(xi—1) — f(Arzi—1))
t=j+1
(p+1)N

+ Z f(Asxi_1) — flar))

t=75+1
(p+1)N

> Z f(Aszi—1) — fxt))

t=7+1
N(=d0/(8N)) > —d0/8.

By the relation above and (3.8),
f@@an) < f@g) +00/8 < inf(f) +€/4 + €/4.
Therefore
(3.9) f(zpn) < inf(f) + €/2 for all natural numbers p.
Let p > 1 be an integer and
te{pN+1,...,(p+1)N —1}.
In view of (1.1), (3.4) and (3.5),

t

fla) = flapn) = Y (Flw) = flwi)

i=pN+1
t
= 3 (flwi) — f(Aiwion) + Z F(Aiwi1) = i)
i=pN+1 i=pN+1
t
< D (@) = f(Aizim))
i=pN+1

< N(0p/(8N)) < 6o/8.
By the relation above and (3.9),
f(@e) < f(zpn) + 00/8 < inf(f) +€/2+ g <inf(f) +e

Thus (3.6) holds and Theorem 3.1 is proved.
Theorem 3.1 generalizes a result of [6] obtained in the case when the whole
sequence {A4;}?°, is normal and K is a bounded, closed and convex set in a Banach

space.
O
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