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ABSTRACT. Single Particle Analysis by Electron Microscopy aims at producing
a three-dimensional model of a biological macromolecule using projection images
acquired with an electron microscope. The task boils down to solving the inverse
problem of estimating the three-dimensional structure from thousands of two-
dimensional projections of it. The reconstruction process is iterative and needs
an initial guess of the structure that can be obtained by several methods from
the acquired data itself. The algorithm presented in this article eliminates the
need of manually choosing one of these low quality volumes. Instead, it considers
the whole population of initial volumes along with the acquired data and allows
the whole population to evolve according to the dynamics given by swarm op-
timization. We show that this strategy successfully finds good initial estimates
without the need of user intervention.

1. INTRODUCTION

The recent 2017 Chemistry Nobel Prize to Single Particle Analysis by Elec-
tron Microscopy has shown the maturity of Electron Microscopy as a structural
technique for elucidating the three-dimensional (3D) structure of biological macro-
molecules [12,37]. The objective is to provide key information to better understand
the biological mechanisms behind the physiological functions of these molecules.
Electron microscopy acquires thousands of two-dimensional (2D) projection images
from the macromolecule under study (Fig. 1, top). The goal is to produce a 3D
model compatible with these measurements (Fig. 1, bottom, left), where each image
is assigned to a projection direction with respect to this 3D model. As an interme-
diate step, similar projection images (supposed to come from a similar projection
direction) are averaged in order to increase the Signal-to-Noise Ratio (Fig. 1, mid-
dle). These averages help to better understand the experimentally acquired images,
help to remove contaminations and incorrectly selected particles, and are normally
used in the construction of an initial model (Fig. 1, bottom, right).
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The initial volume is used to assign the projection directions to the experimen-
tal projections. Subsequently, these projections, along with their corresponding
orientations, are used to update the reference volume. This process is iterated un-
til convergence resulting in a high resolution structure like the one shown in the
bottom left of Fig. 1. The correct choice of the initial volume is crucial because
most refinement algorithms are greedy and they go in the direction of the closest
local minimum [28]. Actually, there is well-described problem in the field called
“Einstein-from-noise” [14] by which it is shown that pure noise projections (no
macromolecular structure in them), aligned with a reference volume, result in the
same reference volume. An alternative consequence of this problem is that by using
an increasing number of pure noise particles, we may artificially increase the resolu-
tion of the reconstruction [15]. Severe consequences have been derived from the use
of an incorrect initial volume [14,17,19,33,35] whose results are a totally incorrect
3D reconstruction of the macromolecule being studied.

FiGUure 1. Top: Representative projections of the macromolecule
under study. Middle: Representative 2D class averages of the pro-
jections. Bottom: 3D reconstruction from the dataset whose repre-
sentive projections are shown on top (left) and its initial volume as
calculated by swarm optimization (right).

Many algorithms have recently been proposed to computationally solve the initial
volume problem [?,5,6,10, 11,21, 23-26, 30, 36, 38]. Most methods rely either on
random angular assignments to the class averages of raw experimental projections;
or on identifying common lines in the Fourier space. In any case, both families
are rather error prone and algorithms normally produce a bunch of initial volume
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candidates. The user is still left with the decision to choose a correct 3D structure
to start the iterative process. This task is not easy due to the low resolution of the
initial volumes, the fact that the true, underlying structure is unknown, and the
fact that initial volume algorithms produce a non-negligible proportion of incorrect
structures. Although there are some tools to help the user in this decision (like
comparing the class averages with reprojections from the initial volume), there is a
significant chance of starting from an incorrect structure.

In this article we introduce a method based on particle swarm optimization that
relieves the user from having to take this decision. The method starts by estimat-
ing a collection of initial volumes using the standard approaches on class averages.
Then, the whole group is considered as a population of candidates that evolve ac-
cording to the swarm optimizer dynamics. We have empirically observed that as
long as there is one volume in the group that can converge to the right structure,
the whole population will also converge. In a way, the method can be seen as con-
structing a consensus between the different initial volume candidates. The method
uses random subsets from the whole set of experimental projections to evolve the
population. In this way, it is half-way between the initial volume algorithm (which
uses the class averages) and the full refinement algorithms (which use all experi-
mental projections).

2. METHODS

Particle swarm optimization. Let us consider the unconstrained optimization
problem

x* = argmin f(x)
X

Particle Swarm Optimization [9] (PSO) is an optimization technique that does
not require the gradient of the objective function, f. Although it is not guaranteed
to converge to the global optimum, it normally provides a much better exploration
of the search space than local optimizers. PSO was originally designed to mimic the

behavior of a flock of birds looking for food. At iteration k, each bird in the flock
Ek) Z(k). It evaluates the amount

is flying and it has its own position, x;"’, and speed, v

of food at its position fi(k) =f (xgk)) and knows its own best position along time,
fPest (that occurred at x?¢5%), and the best position ever found by any of the rest

of birds, x*¢**. Then, it updates its velocity and position according to the iterative
equations

(2.1) vt = v
| x = x|

4 Clul(xgest _ ng)) 4 C2u2(Xbest _ ng))
O V@('Hl)

c1 and co are acceleration constants typically fixed at ¢; = ¢ = 2 [9], and u; and
ug are random variables uniformly distributed in the (0,1) range (for each iteration
and each volume these random numbers are different).

In our case the ng) vectors are the initial volume candidates (let us assume there
are I of them). Initially, they are started with the population provided by the initial

volume algorithms and the initial speed vectors are set to 0. Due to the volumetric
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interpretation of our bird positions, it is recommended that the input candidate
volumes are aligned to a single reference so that they all lie in the same position,
although this is not a strong requirement of the method. Internally, after updating
each volume, it is always aligned to the average of all volumes so that volumes do
not drift from a central position and they all stay in similar orientations.

In this article, we use a modified version of the original PSO in which the up-
dated volume undergoes some transformation ng) that considers the next candidate
volume as well as the experimentally acquired data.

(2.2) kD) R§k+1) {ng) Jrvl(kJrl)}

7
@
(3
in Eq. (2.1). Inspired by Stochastic Gradient Descent [22], the operator ngﬂ) is a
reconstruction operator that is different for each volume and each iteration, which
tends to prevent overfitting. The full dataset contains Ny, images (typically in the
order of several tens of thousands). Full refinement algorithms make use of all of
them to refine the current estimate of the 3D model. However, for an initial volume
we do not need all of them. Actually, it might be better if different candidates
update using a different subset of the data. Even better, if this subset of data
changes over time so that a particular candidate cannot overfit a particular subset.

where x;/ is the current estimate of the initial volume, and VEkH) has been defined

In this way, the operator R,L(»Hl) takes, for every candidate and every iteration, a
subset of the experimental images of size N (in our examples we choose Ng = 500).
It performs an alignment and reconstruction using the algorithm introduced in [30]
strongly based on the concept of statistical significance. Then, it denoises the
reconstructed volume using again the concept of statistical significance and as shown
in the postprocessing section of [32]. Finally, it aligns the denoised volume with
respect to the population average.

To calculate the goal function f(x), we randomly select Ng images from the ex-
perimental dataset (in our examples below we set Np = 100). We perform a 3D
angular assignment to determine their projection direction and generate reprojec-
tions of the volume x along the same projection direction. f(x) is the average of the
cross-correlation of the experimental images with the reprojections. Note that the
images used for the evaluation of the volumes are different from the N images used

for the reconstruction by RrF+D

i . This goal function is evaluated for each volume in
the swarm, and the xfeSt and x%**! volumes are updated after each iteration. The
algorithm is stopped after a fixed number of iterations.

For clarification of the whole process, Algorithm 1 summarizes the steps of our
proposed approach. Note that the evaluation of the volumes involves choosing a
random subset of the experimental images, aligning them and averaging the cross-
correlation of the best alignment. Similarly, the refinement of the proposed volume
involves choosing a random subset of the experimental images, aligning them and
performing a 3D reconstruction. For the reconstruction and alignment we use the
algorithm described in [30].
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Algorithm 1: Swarm optimization of initial volumes

Data: A list of N, initial volumes, xz(o) (1=1,2,...,Ny).
Data: A list of Njp,g images, y; (7 = 1,2, ..., Nimg)-
Data: Number of iterations K

Result: List of evolved volumes, XgK)

Result: Average of the evolved volumes x

// Keep the best volume in each trajectory
Set xbest = xgo)

// Keep the best volume in the population
best

Evaluate f (xgo)) and choose x
// Average all volumes

N’U
1 0
X =5 > xl(- )
i=1
// Let the volumes evolve
for k=0,1,...., K — 1 do
// Update velocity

G _ ) (k)

best
i i T au (xS = %) + coua(x
// Propose new volume
~(k+1 k k+1
1) Z (e
// Refine new proposed volumes with

best __

(k))

X

// random subset of images

)A(z(k—l—l) _ R§k+1) {i§k+1)}

// Denoise and align volume with respect to the average
ngﬂ) -4 {D {}A{Z(k+1)} ’X}

// Update best volumes in each trajectory

// and in the population
Evaluate all XEkH) and choose x
// Average all volumes
N
_ 1 NN (kD
X = 5 2Xi
1=

best7}(?est

end

Relationship to other optimization problems. Our algorithm is related to two
different optimization problems. On one hand we have the problem related to the
update in Eq. (2.1), which we will refer to as the swarm reconstruction. On the
other hand, we have the problem related to the update in Eq. (2.2) that we will
call the stochastic reconstruction.

Swarm reconstruction. In this section we will look for a functional whose gradi-
ent descent iteration resembles the swarm iterative step. Let us consider the 3D
reconstruction problem

1 1
(2.3) x* = argmin |ly — Px|* + 501||xf65t —x|]2 4 Zeox"5
X

Sea Xt — x|
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where y is a vector with the experimental measurements, x is the volume to be re-

constructed, xl(.be“gt) and x(®¢sY) are two fixed volumes (for the moment, let us assume

that they are known at this point), ¢; and ¢ are constants that define the impor-
tance of the regularization terms, and P is a projection matrix that transforms the
volume into a set of projections images (in Electron Microscopy, this projection ma-
trix may also include the effect of the Contrast Transfer Function). The associated
gradient descent (Landweber) iterative algorithm would be [31]:

(2.4) xE =x® L Py — Px®)) 4 ey (1265t — x )Y 4 ppep(xPest — x())

where py, is the relaxation factor and controls the convergence speed.
If we compare Eq. (2.1) with Eq. (2.4), we see that they are very similar,
although they have some notable differences:

e The pull towards xgb%t) and x(test) is performed stochastically in the particle

swarm update (Eq. (2.1)) as if p were a (0,1)-uniform random variable.

e The velocity term is self-updated in the particle swarm update (Eq. (2.1))
while there is not such a self-reference in the gradient descent iteration.
However, this self update was proposed by [?] as a way of accelerating the
convergence of gradient descent by adding momentum. The idea was that in
order to minimize an error function E(x), instead of the standard gradient
descent iteration

KD — 0 g B ()

we could consider the “momentum” of the trajectory (as if it were a heavy
ball falling down the function landscape)

XD = () (k)

where [j is some suitable sequence of relaxation factors.

e The velocity term in the particle swarm update (Eq. (2.1)) does not di-
rectly incorporate any information from the experimental dataset. The ex-
perimental information indirectly comes through the evaluation of the new
candidate x(*+1). However, Eq. (2.4) explicitly incorporates the data y in
a reconstruction iteration (PT(y — Px(*))).

Stochastic reconstruction. Let us consider now the J individual experimental im-
ages, yj. The alignment and reconstruction problem can be formulated as the
problem of finding a volume, the angular orientation, and in-plane shifts of each
image such that

g

(2.5) x", P; = ar)g(;mm 7 Z ly; — Pix|?
J

The stochastic gradient descent [3] introduced the idea that to minimize an error
function of the form

X

(2.6) x" = argmin F(x) = arg;nin % Z E;(x)
J
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one could work with subsets of these individual error functions, E;(x) = |y;—P;x|?,
and approximate the gradient descend update

(2.7) xF+D) = x®) ) VB ()

by an approximation to this gradient

(2.8) xFH) = x (B — ]J | Z VE;(

JEJk

where J, is a random subset of experimental images (at each iteration, k, this subset
is different), and | Ji| is its cardinality. Stochastic gradient descent (SGD) has proved
to be very useful in optimizing functions with a large number of parameters (as in
deep learning). Although, in theory, it is not guaranteed to converge to a global
minimum, in practice, it typically converges to it, or at least to a “good-enough”
minimum, usually much better than their deterministic counterparts.

The gradient descent optimization is usually addressed in Electron Microscopy by
an iterative algorithm that decomposes the original problem into two subproblems.
Given the current estimate of the 3D reconstruction, x*), we look for the angular
orientation and in-plane shifts of each experimental image
(2.9) PR — arg min [ly; — Pyx®)|2

J

Then, we use these alignment parameters to refine the current volume estimate

(2.10) x" = argminz lly; — Pj(k—H)xHQ
R

Our algorithm uses this idea of random subsets (SGD) to try to avoid getting
trapped into a local minimum. This issue is particularly important in the problem
at hand, initial volume estimation, because it is well known the difficulty to get
away from local minima in Electron Microscopy [14,17,19,33,35] and the quality
of the final reconstruction extremely depends on the quality of its initial volume.
However, we use the state-of-the-art algorithms to solve the alignment [30] and
reconstruction [1] subproblems (Egs. (2.9) and (2.10)).

Features of our initial volume algorithm. With this digression, we see that our
initial volume algorithm alternates between a swarm reconstruction iteration and
a stochastic reconstruction iteration. The idea is to exploit the properties of these
two algorithms to tend to escape from local minima. At the same time we tried to
accelerate the convergence of the swarm reconstruction by allowing the algorithm
to access to an update that directly uses the experimental images (instead of an
indirect use through the correlation coefficient which is a much weaker link to the
underlying 3D reconstruction problem).

The random nature of the optimization (random update of the particle veloci-
ties as well as the random subsets in the stochastic reconstruction) helps to avoid
overfitting a particular set of images. Additionally, the fact that we have as many
particles in the swarm as input volumes in the original set of initial volumes help
the algorithm to explore promising areas of the landscape of solutions (let us remind
that this set of initial volumes were proposed by the current state-of-art algorithms
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for the initial volume). We have observed that the algorithm converges to a good
starting volume as long as there is at least one sufficiently good initial volume in
the original input set. In practice, we have not seen the algorithm to fail producing
a good initial volume, despite the fact that many (sometimes most) of the input
volumes are not correct. In this way, we relieve the user from having to choose a
good volume from the initial dataset.

The fact that this algorithm is working with random subsets of several hundreds
of experimental images (instead of a few dozens of class averages) also helps to avoid
the overfitting typically encountered by the standard initial volume algorithms.

3. RESuLTS

In order to validate the usefulness of our method, we have tested it with two
macromolecular structures under very different imaging conditions: 1) our first
example is the J-galactosidase under cryo-EM conditions [2], this molecule is D2
symmetric; 2) the PriL-CTD of the a-polymerase protein in negative staining [20]
acquired with a Random Conical Tilt, this protein is asymmetric. Both cases pose
important challenges to the algorithm. The first example has very low signal-to-
noise ratio (SNR) and contrast, making the alignment of the experimental images
difficult. The second example has higher SNR, but its asymmetry makes the land-
scape of solutions more complicated, especially with the lack of an initial volume.
Random Conical Tilt is an experimental methodology able to estimate an initial
volume exploiting the geometrical relationship between two tilted views of the same
microscopy field [27]. However, the resulting volumes lacks a wide region of the
volume content in Fourier space. We show that our method avoids the need to
perform a Random Conical Tilt reconstruction and that the method is capable of
producing a suitable initial volume without any a prior: geometrical knowledge and
without this missing region in Fourier space.

B-galactosidase. This dataset held the resolution record in 2015 with 2.2A [2].
Fig. 1 shows some experimental images as well as some of the two-dimensional
classes obtained from it using CL2D [?]. We collected 3,460 projection images from
15 electron micrographs (the specific details of the experimental acquisition can
be seen at [4]). We corrected the phase flip introduced by the Contrast Transfer
Function (CTF) at the level of micrograph before extracting the particles. These
images were classified into 32 classes and these classes were input to the RANSAC
initial volume algorithm [36]. We specifically manipulated the RANSAC parameters
to make it fail as to put the swarm consensus algorithm in an unfavourable situation.
Fig. 2 (top) shows the initial volumes produced by these algorithms. Note that none
of them is a correct initial volume (in practice the proportion of incorrect volumes
produced by RANSAC and EMAN [34] initial volume, two of the most popular
algorithms to initiate the 3D reconstruction process may oscillate, depending on the
dataset, between 20 and 90%). This population of 20 volumes (10 from RANSAC
and 10 from EMAN) was fed into the swarm consensus algorithm presented in this
paper. Fig. 2 (bottom) shows the final volumes produced by swarm consensus after
10 iterations. We updated the volumes each time with 500 experimental images,
and evaluated their quality with another 100 experimental images. During the
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reconstruction we enforced D2 symmetry for this molecule. The whole process took
4h in a laptop with 8 cores and 16GB of RAM. It can be seen that all of the original
volumes, regardless of their original quality, converged to the correct structure. We
performed a 3D reconstruction starting from the average of the evolved volumes and
we were able to reach high resolution. Given the large number of reconstructions
to perform (20) we did not reconstructed to high resolution all 20 faulty initial
volumes. However, for a few of them we did and, as expected, the 3D refinement
algorithm was not capable of escaping from this local minimum.

F1GURE 2. Top: Initial set of volumes of the §-galactosidase. Bot-
tom: Final set of volumes produced by consensus swarm.

PriL-CTD of the a-polymerase. This dataset was used as an example to il-
lustrate the Random Conical Tilt procedure [27] and the experimental acquisition
details are described at [20]. In [27] it was shown that with as few as 13 projection
pairs, an initial volume could be reconstructed (although it lacked large areas in
Fourier space). The fact that the protein is asymmetric poses an important chal-
lenge to the angular and 3D reconstruction optimizer because the number of degrees
of freedom is not simplified by symmetry. Fig. 3 shows some of the experimental
projections as well as some of the 2D classes calculated from them. We collected
8,526 projection images from 12 electron micrographs (6 tilted and 6 untilted). We
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corrected the phase flip introduced by the CTF at the level of micrograph before
extracting the particles. They were classified into 32 classes using CL2D [?] and
these classes were given to RANSAC obtaining the set of initial volumes shown in
Fig. 4 (top). Note that none of these structures is correct although some of them
show the two main domains of the central part of the protein. We processed this
set of 20 initial volumes (10 from RANSAC and 10 from EMAN) with 10 iterations
of the algorithm described in this paper. Obtaining the results shown in Fig. 4
(bottom), where all of the structures are valid initial volumes. As in the previous
example, we updated the volumes with 500 experimental images, and evaluated
their quality with another 100 experimental images. The whole process took 8h in
a laptop with 8 cores and 16GB of RAM.

In Fig. 5 we show the evolution of the average cross correlation of reprojections of
the volumes in the swarm with the random subsets of 100 experimental images (this
is the objective function of the algorithm). We can see that the swarm stabilizes
after relatively few iterations (about 8-9 iterations). For the (-galactosidase, the
stabilization is even earlier (2-3 iterations, data not shown) thanks to the simplified
landscape of solutions implied by the D2 symmetry of the molecule. This can
be compared with the thousands of iterations reported in the Stochastic Gradient
implementation in CryoSparc [21].
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FiGUure 3. Top: Representative experimental images of PriL.-CTD
of the a-polymerase obtained by negative staining. Middle: FEx-
amples of 2D classes of PriL-CTD of the a-polymerase. Bottom:
Random Conical Tilt volume (note the elongation along the missing
cone direction).

CONCLUSIONS

In this article we have presented a new algorithm to combine the information
from a set of initial volume candidates. With this approach, we relieve the user from
having to choose from this set and we, thus, decrease the probability of producing an
incorrect structure by an incorrect choice. Our algorithm is especially designed to
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FIGURE 4. Top: Initial set of volumes of PriL-CTD of the a-
polymerase. Bottom: Final set of volumes produced by consensus
swarm.

avoid getting trapped into local minima, although there is no proof of convergence to
the global minimum. The algorithm borrows ideas from particle swarm optimization
(which, in its turn, is related to the momentum gradient descent) and stochastic
gradient descent. We alternate between both types of iterations trying to avoid
getting trapped into local minima as well as trying to accelerate the convergence to
a reasonable initial volume to start the angular refinement of all the experimental
images.

Two features are particularly interesting from the algorithm: 1) it explores a
wide area of the landscape of solutions by taking an input set of initial volumes
(these volumes have been proposed by sensible algorithms, although prone to com-
mit errors); 2) it randomizes the gradient descent updates in two different ways
(by random momentum coefficients as done by particle swarm optimization and
by random subsets of the experimental images as done by the stochastic gradient
descent). Both actions result in a rather robust algorithm which we have shown to
converge to correct structures under rather challenging conditions.



310 C. 0. S. SORZANO, J. L. VILAS, A. JIMENEZ-MORENO, J. MOTA, ET AL.

0.5

I

'S

©
T

=}
'S
©

C)
o
IS
k]

\/\—

I

»

>
T

Cross Correlation (CC)

Iteration No.

FI1GURE 5. Evolution over iterations of the average cross correlation
between reprojections of the swarm of volumes with a random subset
of 100 experimental images. The blue lines represent the minimum
and maximum average cross correlation in the swarm. The black
line represents the best historical value (this is the average cross
correlation for x?¢st).

The algorithm has been implemented in the Xmipp package [7,29] and it is freely
available through the Scipion image processing framework [8] under the name swarm
consensus.
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