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a satisfactory sparse solution. This l1 heuristic has been applied in many different
fields such as geology and geophysics, spectroscopy, and ultrasound imaging.
Recently, there has been an increase in applying nonconvex metrics as alternative
approaches to l1. In particular, the nonconvex metric lp for p ∈ (0, 1) in [7] can be
regarded as a continuation strategy to approximate l0 as p → 0. The optimization
strategies include iterative reweighting [7] and half thresholding [27], the scale-
invariant l1, formulated as the ratio of l1 and l2, was discussed in [13]. Other
nonconvex l1 variants include transformed l1, sorted l1 and capped l1. However,
due to errors of measurements, the constraint Ax = b is actually inexact; It turns
out that the so called Lasso problem of Tibshirani [25] (which is well-known to be
equivalent to the basic pursuit (BP) of Chen et al. [9]) is reformulated as

min
x∈IRn

∥x∥1 subject to ∥Ax− b∥p ≤ ε,

where ε > 0 is the tolerance level of errors and p is often 1, 2 or ∞. It is noticed in
[1] that if we let Q := Bε(b), the closed ball in IRn with center b and radius ε, then
the later is rewritten as

min
x∈IRn

∥x∥1 subject to Ax ∈ Q.

With Q a nonempty closed convex set of IRm and PQ the projection from IRm onto
Q and since that the constraint is equivalent to the condition Ax − PQ(Ax) = 0,
this leads to the following equivalent Lagrangian formulation

min
x∈IRn

1

2
∥(I − PQ)Ax∥22 + γ∥x∥1,

with γ > 0 a Lagrangian multiplier. A connection is also made in [1] with the
so-called split feasibility problem [5] which is stated as finding x verifying

(1.3) x ∈ C, Ax ∈ Q,

where C andQ are closed convex subsets of IRn and IRm, respectively. An equivalent
minimization formulation of (1.3) is

(1.4) min
x∈C

1

2
∥(I − PQ)Ax∥22.

Its l1 regularization reads as

(1.5) min
x∈C

1

2
∥(I − PQ)Ax∥22 + γ∥x∥1,

where γ > 0 is a regularization parameter.
Note that it reduces to the Lagrangian formulation above when C = IRn.

This convex relaxation attracts considerable attention, see for example [1] and
references there in. In [18] we studied a non-convex but Lipschitz continuous metric
l1−2 for SFP. As illustrated in [15], the level curves of l1−2 are closer to l0 than those
of l1 and it is demonstrated in a series of papers [15, 27] that the difference of the l1
and l2 norms, denoted as l1−2, outperforms l1 and lp in terms of promoting sparsity
when the sensing matrix A is highly coherent, this motivated us to consider in [18]
the following nonconvex l1−2 regularization for split feasibility problem,

(1.6) min
x∈C

(1
2
∥(I − PQ)Ax∥22 + γ(∥x∥1 − ∥x∥2)

)
,
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and propose three algorithms with numerical experiments.

In what follows we are interested in the minimization problem:

(1.7) min
x∈IRn

(
f(x) + gλ(Ax) + γ(∥x∥1 − ∥x∥2)

)
,

which is more general and we will focus our attention to the algorithmic aspect
by devising three methods. The first algorithm uses the DCA which is a descent
method without line search introduced by Tao and An [24] for minimizing a function
f which is the difference of two lower semicontinuous proper convex functions g and
h on the space IRn. The second one is based on the gradient proximal method
to solve the problem [24] by full splitting, that is, at every iteration, the only
operations involved are evaluations of the proximal mappings of g and r separately.
An algorithm which relies on the Mine-Fukushima method for minimizing a sum of
two functions is also stated.

Problem (1.7) is the nonconvex l1−2 regularization for the following split mini-
mization problem

(1.8) min
x∈IRn

{f(x) + gλ(Ax)},

where f : IRn → IR ∪ {+∞}, g : IRm → IR ∪ {+∞} are two proper, convex, lower
semicontinuous functions and A : IRn → IRm a bounded linear operator,

gλ(y) = inf
u∈IRm

{
g(u) +

1

2λ
∥u− y∥2

}
stands for the Moreau-Yosida approximate of the function g of parameter λ.

Note also that (1.8) is a partial regularization of the so-called graph form type
problem, see [21]. A wide of convex optimization problems can be expressed in this
form, including cone programs and a wide variety of regularized loss minimization
problems from statistics, like logistic regression, the support vector machine, the
lasso and the intensity modulated radiation treatment planning. Observe also that
by taking λ = 1, f = iC and g = iQ the indicator functions of two nonempty,
closed and convex sets C,Q of IRn and IRm respectively, (1.8) reduces to (1.4) when
C ∩A−1(Q) ̸= ∅.

Finally, the differentiability of the Yosida-approximate gλ ensures the additivity
of the subdifferentials and we can write

∂(f(x) + gλ(Ax)) = ∂f(x) +At∇gλ(Ax).
This implies that the optimality condition of (1.8) can then be written as

(1.9) 0 ∈ ∂f(x) +At∇gλ(Ax),
and that of (1.7), for any nonzero point x, is given by

(1.10) 0 ∈ ∂f(x) +At∇gλ(Ax) + γ(∂∥x∥1 −
x

∥x∥2
).

2. Computational approaches

We use ∥x∥p to denote the p-norm of a vector x, where 1 ≤ p ≤ ∞, and ∥ · ∥ is
reserved exclusively for the Euclidean 2-norm ∥ · ∥2.
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2.1. DCA. First, recall that the partial differential of a convex function h is defined
as

(2.1) ∂h(x) := {u ∈ IRn;h(y) ≥ h(x) + ⟨u, y − x⟩ ∀y ∈ IRn}.
It is easily seen that

(2.2) ∂
1

2
∥Ax− b∥2 = ∇1

2
∥Ax− b∥2 = At(Ax− b),

and

(2.3) (∂∥x∥1)i =
{

sgn(xi) if xi ̸= 0;
any element of [−1, 1] if xi = 0.

The characteristic function of a set C ⊆ IRn is defined as

(2.4) iC(x) =

{
0 if x ∈ C;
+∞ otherwise.

Such function is convenient to enforce hard constraints on the solution. Moreover,
the normal cone to C at x ∈ C, denoted by NC(x) is defined

(2.5) NC (x) := {d ∈ IRn | ⟨d, y − x⟩ ≤ 0, ∀y ∈ C}.
A known relation between the above definitions is that ∂iC = NC .

Remember that given an initial point x0, the DCA seeks critical points of f :=
g − h by constructing two sequences (xk) and (yk) by the following rules

(2.6)

{
yk ∈ ∂h(xk);
xk+1 = argminx∈IRn

(
g(x)− (h(xk) + ⟨yk, x− xk⟩)

)
.

Note that by the definition of subdifferential, we can write

(2.7) h(xk+1) ≥ h(xk) + ⟨yk, xk+1 − xk⟩.
Since xk+1 minimizes g(x)− (h(xk) + ⟨yk, x− xk⟩), we also have

(2.8) g(xk+1)− (h(xk) + ⟨yk, xk+1 − xk⟩) ≤ g(xk)− h(xk).

Combining the last inequalities, we obtain

(2.9) f(xk) = g(xk)− h(xk) ≥ g(xk+1)− (h(xk) + ⟨yk, xk+1 − xk⟩) ≥ f(xk+1).

Therefore, the DCA provides a monotonically decreasing sequence {f(xk)} which
converges provided that the objective function f is bounded below.

The objective function in (1.7) has the following DC decomposition

(2.10) min
x∈IRn

(
(f(x) + gλ(Ax) + γ∥x∥1)− γ∥x∥2

)
.

Observe that ∥x∥2 is differentiable with gradient x/∥x∥2 for any x ̸= 0 and that
0 ∈ ∂∥ · ∥2(0) which leads to the following iterates

(2.11) xk+1 =

{
argminx∈IRn f(x) + gλ(Ax) + γ∥x∥1 if xk = 0
argminx∈IRn f(x) + gλ(Ax) + γ∥x∥1 − ⟨x, γ xk

∥xk∥2 ⟩ if xk ̸= 0.
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Now, we define for all γ > 0, Γ by

(2.12) Γ(x) = f(x) + gλ(Ax) + γ(∥x∥1 − ∥x∥2).
We are in a position to prove the following convergence properties of Algorithm
2.11.

Theorem 2.1. Let (xk) be the sequence generated by Algorithm 2.11 and assume
that for all γ > 0 we have that lim∥x∥2→+∞ Γ(x) = +∞. Γ is therefore coercive
in the sense that its levels sets are bounded, namely {x ∈ IRn; Γ(x) ≤ Γ(x0)} is
bounded for any x0 ∈ IRn. Then,

(i) (xk) is bounded.
(ii) Every nonzero limit point x∗ of the sequence (xk) is a stationary point of

(1.7), namely

(2.13) 0 ∈ At∇gλ(Ax∗) + ∂f(x∗) + γ

(
∂∥x∗∥1 −

x∗

∥x∗∥2

)
.

Proof. A simple computation which uses the fact that ∥a∥2 − ∥b∥2 = ∥a − b∥2 +
2⟨b, a− b⟩, gives

Γ(xk)− Γ(xk+1) = f(xk)− f(xk+1) + gλ(Axk)− gλ(Axk+1)

+ γ(∥xk∥1 − ∥xk+1∥1 − ∥xk∥2 + ∥xk+1∥2).(2.14)

The first-order optimality condition at xk+1 as the solution of the problem (2.11)
and the fact that ∂(∥ · ∥1 + f)(x) = ∂∥x∥1 + ∂f(x) lead to

(2.15) At∇gλ(Axk+1) + γ(wk+1 − yk) + pk+1 = 0,

where yk ∈ ∂∥xk∥2, wk+1 ∈ ∂∥xk+1∥1, pk+1 ∈ ∂f(xk+1) which combined with the
fact that ⟨wk+1, xk+1⟩ = ∥xk+1∥1 gives

⟨∇gλ(Axk+1), Axk −Axk+1⟩+ γ(⟨wk+1, xk⟩ − ∥xk+1∥1 + ⟨yk, xk+1 − xk⟩)
− ⟨pk+1, xk+1 − xk⟩ = 0.(2.16)

Combining (2.14) and (2.16), we can write Γ(xk)− Γ(xk+1) as
(2.17)

Γ(xk)− Γ(xk+1) = f(xk)− f(xk+1)− ⟨pk+1, xk+1 − xk⟩
+ gλ(Axk)− gλ(Axk+1)− ⟨∇gλ(Axk+1), Axk −Axk+1⟩
+ γ

(
∥xk+1∥2 − ∥xk∥2 − ⟨yk, xk+1 − xk⟩

)
+ γ(∥xk∥1 − ⟨wk+1, xk⟩).

Since pk+1 ∈ ∂f(xk+1), using the subdifferentiability of f , we get

(2.18) f(xk) ≥ f(xk+1) + ⟨pk+1, xk − xk+1⟩.
The 1

λ -Lipschitz continuity of the gradient of gλ assures that

gλ(Axk) ≥ gλ(Axk+1) + ⟨∇gλ(Axk+1), Axk −Axk+1⟩

+
λ

2
∥∇gλ(Axk+1)−∇gλ(Axk)∥2.(2.19)

Since yk ∈ ∂∥xk∥2, we obtain

(2.20) ∥xk+1∥2 − ∥xk∥2 − ⟨yk, xk+1 − xk⟩ ≥ 0
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and also since and ∥wk+1∥∞ ≤ 1,

(2.21) ∥xk∥1 − ⟨wk+1, xk⟩ ≥ 0.

Substituting (2.18)-(2.21) into (2.17) yields

Γ(xk)− Γ(xk+1) ≥
λ

2
∥∇gλ(Axk)−∇gλ(Axk+1)∥2

+ γ(∥xk+1∥2 − ∥xk∥2 − ⟨yk, xk+1 − xk⟩) ≥ 0.(2.22)

This ensures that the sequence (Γ(xk)) is monotonically decreasing, which in turn
ensures that the sequence (xk) ⊂ {x ∈ IRn,Γ(x) ≤ Γ(x0)} which is bounded since
Γ is coercive.

If x1 = x0 = 0, we then stop the algorithm producing the solution x∗ = 0.
Otherwise, it follows from (2.22) that

(2.23) Γ(x0)− Γ(x1) ≥ γ∥x1∥2 > 0,

so xk ̸= 0 for all k ≥ 1. Since (Γ(xk)) is convergent, substituting yk = xk
∥xk∥2 into

(2.22), leads to

(2.24) lim
k→+∞

∥∇gλ(Axk)−∇gλ(Axk+1)∥ = 0

and

(2.25) lim
k→+∞

(∥xk∥2 · ∥xk+1∥2 − ⟨xk, xk+1⟩) = 0.

Now, let (xkν ) be a subsequence of (xk) converging to x∗ ̸= 0. With no loss of
generality, we may also assume that (xkν−1) converges to x̂. It then turns out from
(2.25) that

∥x∗∥2 · ∥x̂∥2 = ⟨x∗, x̂⟩.
This implies that x∗ = µx̂ for some µ > 0.

On the other hand, the optimality condition at the kν-th step of Algorithm (2.11)
reads

(2.26) −
(
At∇gλ(Axkν )− γ

xkν−1

∥xkν−1∥2
)
∈ γ∂∥xkν∥1 + ∂f(xkν ).

Taking the limit as ν → ∞ in (2.26) and observing the fact that the operator
γ∂∥ · ∥1 + ∂f is maximal monotone, we obtain

−
(
At∇gλ(Ax∗)− γ

x̂

∥x̂∥2
)
∈ γ∂∥x∗∥1 + ∂f(x∗).

Upon substituting x∗ = µx̂ into the last relation, we immediately get

−
(
At∇gλ(Ax∗)− γ

x∗

∥x∗∥2
)
∈ γ∂∥x∗∥1 + ∂f(x∗).

That is, (2.13) holds and x∗ is a stationary point. �
Remark 2.2. It should be noticed that the coerciveness assumption of the objective
function was also assumed in [15] and it is worth mentioning that this hypothesis
is valid in numerous settings and most often holds true in real world applications.
This is the case, in instance, for:
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(i) Subset selection in regression. More precisely, let A ∈ IRm×n, b ∈ IRm,
by setting f ≡ 0 and g(x) = i{b} so that gλ(Ax) = 1

2λ∥Ax − b∥22, the
problem (1.8) is least square estimation of a linear model equipped with
variable selection. Such data-fidelity terms are currently used in denoising,
in deblurring, and in numerous inverse problems.

(ii) Split feasibility problems which modeled, among others, Intensity mod-
ulated radiation treatment planning and that can be recovered by setting
f = iC , g = iQ so that gλ(Ax) = 1

2λ∥(I − PQ)Ax∥22 with C,Q being two
closed convex sets.

(iii) Support vector machine (SVM) with feature selection, see for example
[20] and also in Sparse portfolio selection, see for instance, [30]. Indeed,
let V ∈ IRn×n be a covariance matrix, r ∈ IRn a mean return vector, l, u ∈
IRn, and τ ∈ IR. When f(x) = xtV x and S = {x ∈ IRn : rtx ≥ τ,1tx =
1, l ≤ x ≤ u} the problem (1.8) is a sparse portfolio selection and the
coerciveness assumption holds true.

(iv) Huber M-estimator problem. Now, having in mind that the support of
x is defined by supp(x) = {1 ≤ x ≤ n;xi ̸= 0} and that ∥x∥0 = |supp(x)|
is the cardinality of supp(x) and remembering that for all x ̸= 0, we have
∥x∥1−∥x∥2 ≥ 0 and that ∥x∥1−∥x∥2 = 0 ⇔ ∥x∥0 = 1, we can get other cases
of coerciveness of Γ by particularizing f and g (since for λ small enough, g
and its Yosida approximate, gλ, have the same asymptotical behavior, since
gλ convergences to g in the epi-convergence sense, see fo instance [23]).
We can easily verify that the coerciveness assumption is again valid, for
example, when f is a non negative function and g is positively homogeneous
of degree 1. An interesting case is the absolute value function | · |. Its Yosida
approximate is given by

|x|λ =

{
1
2λx

2 if |x| ≤ λ;
|x| − 1

2λ otherwise.

This is clearly equal, up to a scaling factor λ, to the so-called Huber’s M-cost
function

ρ(x) =

{
1
2x

2 if |x| ≤ λ;
λ|x| − 1

2λ
2 otherwise.

in the context of robust linear estimation theory, see [14]. The Huber’s
M-cost function has been used in M-estimator problems which is known
as a robust alternative to the Least Squares estimator that is unfortunately
sensitive against occurrence of outliers in the ill-conditioned linear regression
systems. The Huber’s M-cost function has also been used in many inverse
problems as an excellent robust convex penalty function that grows linearly
for x far from zero, hence it achieves least sensitivity to large outliers of
large residual, see [28] and references therein.

Remark 2.3. Each DCA iteration requires solving an l1-regularized split feasibility
subproblem of the form

min
x∈IRn

(f(x) + gλ(x) + ⟨x, v⟩+ γ∥x∥1),
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where v ∈ IRn is a constant vector. This problem can be solved by the two split prox-
imal algorithms (coupling forward-backward and the Douglas-Rachford algorithms)
proposed in [8], [17] and also by the alternating direction method of multipliers
(ADMM) following the analysis developed in [29] for the special case where f ≡ 0
and Q = i{b}.

2.2. Forward-backward splitting algorithm. To begin with, recall that the
proximal mapping of a proper, convex and lower semicontinuous function φ of pa-
rameter λ > 0 is defined by

(2.27) proxγφ(x) := arg min
v∈IRn

{φ(v) + 1

2γ
∥v − x∥2}, x ∈ IRn,

and that it has closed-form expression in some important cases. For example, if
φ = ∥ · ∥1, then for x ∈ IRn

(2.28) proxγ∥·∥1(x) = (proxγ|·|(x1), · · · ,proxγ|·|(xn)),

where proxγ|·|(xk) = sgn(xk)max{|xk| − γ, 0}.
If φ = iC , we have

(2.29) proxγφ(x) = projC(x) := argmin
z∈C

∥x− z∥.

For the sake of simplicity and clarity, we set in what follows f ≡ 0. Observe that
the minimization problem (1.7) can be written as

(2.30) min
x∈IRn

gλ(Ax) + γ(∥x∥1 − ∥x∥2).

It is worth mentioning that when f ̸≡ 0, this requires to compute the proximal op-
erator of a sum, namely proxf+γk(∥·∥1−∥·∥2), which may be performed with Douglas-

Rachford iterations in the spirit of the analysis developed in [8] and [17].
A closed-form solution of prox∥x∥1−∥x∥2 was proposed in [15], in particular, we

have the following lemma.

Lemma 2.4. Given y ∈ IRn, γ > 0 and setting r(x) = ∥ · ∥1 − ∥ · ∥2, we have

(i) When γ < ∥y∥∞, then

(2.31) proxγr(y) =
γ + ∥proxγ∥·∥1(y)∥2
∥proxγ∥·∥1(y)∥2

proxγ∥·∥1(y).

(ii) When γ = ∥y∥∞, then x∗ ∈ proxγr(y) if and only if it satisfies x∗i = 0 if
|yi| < γ, ∥x∗∥2 = γ and x∗i yi ≥ 0 for all i.

(iii) When γ > ∥y∥∞, then x∗ ∈ proxγr(y) if and only if it is a 1-sparse vector
satisfying x∗i = 0 if |yi| < ∥y∥∞, ∥x∗∥2 = ∥y∥∞ and x∗i yi ≥ 0 for all i.

By setting l(x) = gλ(Ax), one has ∇gλ(Ax) = 1
λA

t(I−proxλg)(Ax), the forward-
backward splitting algorithm can be expressed as follows

(2.32) xk+1 ∈ proxγr

(
xk −

γ

λ
At(I − proxλg)Axk)

)
.
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Since the two assumptions of [15, Theorem 3] are satisfied, namely the coercive-
ness of the objective function and differentiability of the function l with Lipschitz-
continuity of its gradient, a direct application of this Theorem leads to the following
convergence result:

Proposition 2.5. If γ < λ
∥A∥2 , then the objective values are decreasing and there

exists a subsequence of (xk) generated by (2.29) that converges to a stationary point
of (2.27). Furthermore, any limit point of (xk) is a stationary point of (2.27).

2.3. Mine-Fukushima Algorithm. At this stage, we would like to mention that
in the case where f is strictly convex and that we can generate from an initial point
x0 a sequence xk such that xk ̸= 0 for all k ∈ IN , then the Algorithm introduced by
Mine-Fukushima in [16] is applicable. Indeed, problem (1.6) can be written as

(2.33) min
x∈IRn

(h(x) := ϕ(x) + ψ(x)),

with ϕ(x) = gλ(Ax) − γ∥x∥2 and ψ(x) = γ∥x∥1 + f(x). Observe that in this case,
we have for x ̸= 0, that

∇ϕ(x) = At(∇gλ)Ax− γ
x

∥x∥2
and ∂ψ(x) = ∂∥x∥1 + ∂f(x).

Algorithm 2.1 of [16] takes the following form:

Algorithm:

Step 1. Let x0 be any initial point. Set k = 0, and go to step 2.

Step 2. If −∇ϕ(xk) ∈ ∂ψ(xk), then stop; otherwise, go to Step 3.

Step 3. Find a minimum x̃k of

(2.34) min
x∈IRn

(
⟨x,At(∇gλ)Axk − γ

xk
∥xk∥2

⟩+ γ∥x∥1 + f(x)
)
,

and go to Step 4.

Step 4. Find

(2.35) xk+1 = αkx̃k + (1− αk)xk,

such that αk ≥ 0 and

ϕ(xk+1) ≤ ϕ(αx̃k + (1− α)xk) for all α ≥ 0.

Set k = k + 1, and go to Step 2.

Observe that solving (2.31) in Step 3 is equivalent to finding x̃k such that−∇f(xk) ∈
∂g(x̃k).

Since h is coercive in many interesting cases, a direct application of [16, Theorem
3.1] yields the result below.

Proposition 2.6. The sequence (xk) generated by the Algorithm above contains a
subsequence which converges to a critical point x∗ of (1.7), namely

−At∇gλ(Ax∗)− γ
x∗

∥x∗∥2
∈ ∂γ∥x∗∥1 + ∂f(x∗).
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Remark 2.7. The assumption of strict convexity on f can be removed by applying
the following process: for some µ > 0 consider the following decomposition of the

objective function h: h = ϕ̃(x) + ψ̃ with ϕ̃(x) = ϕ(x) − µ
∥x∥22
2 and ψ by ψ̃(x) =

ψ(x) + µ
∥x∥22
2 . Relation (2.31) becomes

(2.36) min
x∈C

(
⟨x,At∇gλ(Axk) + µxk − γ

xk
∥xk∥2

⟩+ γ∥x∥1 + f(x) + µ
∥x∥22
2

)
.

3. Split Feasibility Problems

We focus on the split feasibility problem ([5, 2, 3]) obtained by taking f = iC ,
g = iQ the indicator functions of two nonempty closed convex sets C,Q of IRn, IRm,
respectively, Indeed the problem (1.8) reduces to

min
x∈IRn

{iC(x) + (iQ)λ(Ax)} ⇔ min
x∈C

{ 1

2λ
∥(I − PQ)(Ax)∥2},

which, when C ∩ A−1(Q) ̸= ∅, is equivalent to the split feasibility problem (see [6]
for an implicit version), namely

x ∈ C such that Ax ∈ Q.

This problem was used for solving an inverse problem in radiation therapy treatment
planning [5] and has been well studied both theoretically and practically, see for
example [1, 4, 22] and the references therein.

Having in mind that in this special case the proximal mapping of g is nothing by
the orthogonal projection on the closed convex set Q, Algorithm (2.11) with λ = 1
and f ≡ 0 reduces to

(3.1) xk+1 =

{
argminx∈C

1
2∥(I − PQ)Ax∥22 + γ∥x∥1 if xk = 0

argminx∈C
1
2∥(I − PQ)Ax∥22 + γ∥x∥1 − ⟨x, γ xk

∥xk∥2 ⟩ if xk ̸= 0

which is exactly the algorithm studied in [18]. In this setting Γ being coercive, we
obtain

Proposition 3.1. Let (xk) be the sequence generated by Algorithm (3.1), we have

(i) For all γ > 0 we have that lim∥x∥2→+∞ Γ(x) = +∞. Γ is therefore coercive
in the sense that its levels sets are bounded, namely {x ∈ IRn; Γ(x) ≤ Γ(x0)}
is bounded for any x0 ∈ IRn.

(ii) (xk) is bounded.
(iii) Any nonzero limit point x∗ of the sequence (xk) is a stationary point of

(1.7), namely

(3.2) 0 ∈ At(I − PQ)Ax
∗ + γ

(
∂∥x∗∥1 −

x∗

∥x∗∥2
)
.

The proof follows directly from applying Theorem 2.1. We hence recover the
main convergence result, [18, Proposition 2.1], of DCA presented in [18] without
the asymptotic regularity assumption. It is worth mentioning that we also recover
[29, Proposition 3.1] by taking Q = {b}.
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Concerning the proximal splitting algorithm, we have that l(x) = 1
2λ∥(I−PQ)Ax∥22

and hence the forward-backward splitting algorithm reduces to

(3.3) xk+1 ∈ proxλr

(
xk −

γ

λ
At(I − PQ)A(xk)

)
,

and we recover its convergence properties obtained in [18, Proposition 2.4] directly
from Proposition 2.3 above. This is also the case for the Mine-Fukushima Al-
gorithm convergence property, namely [18, Proposition 2.5] which follows directly
from Proposition 2.4. Step 3, in this case, reads as: Find a minimum x̃k of

(3.4) min
x∈C

(⟨
x,At(I − PQ)Axk − γ

xk
∥xk∥2

⟩
+ γ∥x∥1

)
,

and go to Step 4.

4. Conclusion

The main purpose of this paper is to investigate split minimization problems un-
der a nonconvex Lipschitz continuous metric instead of conventional methods such
as l1 or l1/l2 minimization developed for example in [1], to present an iterative
minimization method based on DCA introduced by Tao et al. for DC optimization
and also to analyze its convergence to a stationary point. Furthermore, relying on a
proximal operator for l1−2 for minimizing the sum of a convex function and a differ-
entiable one, an other algorithm is presented and its convergence property is stated.
Moreover, an additional algorithm based on Mine-Fukushima method with its con-
vergence result is also provided. It is worth mentioning that our results extend and
unify in a more general setting the corresponding main results presented in [29] and
[18]. Effectiveness of the algorithms was illustrated by numerical experiments for
split feasibility problems in [18]. Moreover, it was shown that l1−2 is always better
than l1, and is better than lp for highly coherent matrices in [29], Proximal opera-
tor can accelerate the minimization, but it tends to obtain a suboptimal solution,
see [15] in which it is mentioned that in general, nonconvex methods have better
empirical performance compared to convex ones, but lack of provable grounds.
Finally, we would like to emphasize that much attention has been paid very recently
to DC approaches, for instance, for optimization problem having a nonconvex con-
straint called the cardinality constrain:

∥x∥0 ≤ k, where x ∈ IRn and k ∈ {1, · · ·, n}.
Due to the nonconvexity and discontinuity of the l0-norm, it is well-known that
the resulting optimization problem is intractable (due to NP-hardness of the l0-
minimization over a linear system). An alternative approach was proposed in [12]
by rewriting the cardinality constraint as ∥x∥1 −∥x∥k, with ∥x∥k being the largest-
k norm. One advantage of the use of the largest-k norm representation is that
its subgradient can be efficiently computed, which can make DCAs efficient. More
interestingly, this fact motivates to develop a soft thresholding technique, which is
popular in the context of proximal methods [10], and thus allows to use a closed-
form solution of the DCA subproblem. We refer to the interesting paper [12], which
deserves to be better known in the community of applied nonlinear analysis and
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which is at the origin of new penalty methods for Q-Lasso, based on the difference
of two norms, that will be proposed by the first author in a forthcoming paper.
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Aix Marseille Université, CNRS-L.I.S UMR 7296, Domaine Universitaire de Saint-Jérôme, Avenue
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