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convergence of the accelerated methods then follows from the convergence
of CG.

The algorithms which are shown to be equivalent to Kaczmarz in some superspace
are the Cimmino algorithm with varying relaxation parameters, a subset version of
Cimmino, CAV and BICAV [12, 11], and String Averaging [9]. The basic tool that
will be used is the Averaging Lemma (AL) [22, 25], which shows that the operation
of averaging several components of a vector is equivalent to Kaczmarz projections.
AL is extended to show that averaging several vectors is also equivalent to Kaczmarz
projections in some superspace of the problem space. The proofs of equivalence to
Kaczmarz involve the construction of certain matrices that are specific for each case.

The rest of the paper is organized as follows. The necessary background on
KACZ and AL is presented in the next section. The following sections show the
equivalence of KACZ to Cimmino with varying relaxation parameters, a subset
version of Cimmino, CAV, BICAV, and String Averaging.

2. Background

2.1 The Kaczmarz algorithm and its properties

The Kaczmarz algorithm (KACZ) is well-known as a solution method for linear
systems in various applications, such as computerized tomography (CT), where it
also known as ART (algebraic reconstruction technique) [27]. It is best described
by its simple geometric explanation: starting from some selected point in the so-
lution space Rn, the current iterate is repeatedly projected orthogonally towards
the hyperplane defined by one of the system’s equations. Usually, the projections
follow cyclically the given order of the linear system. It is also known that for some
applications, a random selection of the equations can provide better results than the
cyclic order [7, 29], and in some cases, randomness improves the rate of convergence
[7, 29, 44, 21].

We consider an m×n linear system

(2.1) Ax = b,

where b = (b1, . . . , bm)T , and the jth row of A is denoted by aj .
Let x0 be a chosen initial iterate, and for k > 1, let i(k) be an integer between

1 and m which determines the order of the projections; i(k) is also known as the
“control” of the order of projections. For k > 0, xk+1 is obtained from xk by
projecting xk towards the hyperplane determined by the i(k)th equation, i.e.,

xk+1 = xk + λk
bi(k) − ⟨ai(k), xk⟩

∥ai(k)∥22
ai(k),

where 0 < λk < 2 is a relaxation parameter with the following significance: if
λk = 1 then the projection is exactly on the hyperplane; if 0 < λk < 1 then the
projection lies between xk and the hyperplane, and if λk > 1 then the projection is
beyond the hyperplane. We can save some computation time by initially dividing
each equation ⟨aj , x⟩ = bj by ∥aj∥2, thus avoiding the division by ∥aj∥22 at every
step; this is sometimes called normalizing the equations. For ease of notation, we
will assume henceforth that the system (2.1) has already been normalized.
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For a square and consistent linear system, Kaczmarz proved convergence for the
case where the projections were done in cyclic order. For an inconsistent system,
Tanabe [45] proved cyclic convergence, meaning that if the control is cyclic, then
the sequence of projections on each hyperplane converges to a point. Tanabe’s
result was proved for relaxation equal to 1. This actually means that if the control
sequence is cyclic, then KACZ converges even on an inconsistent system because
the sequence of points on the last hyperplane converges.

Herman et al. [28] proved convergence in the consistent case with relaxation
parameters, provided that for some ϵ > 0, ϵ6λk62− ϵ for all k. In the inconsistent
case, Censor et al. [8] showed that for a fixed value of the relaxation parameter λ,
if the limits of the projections on the hyperplanes are denoted by pi(λ), 16 i6m,
then for all 16 i6m, pi(λ) −→

λ→0
p, where p is a point that minimizes the sum of least

squares of its distances to the hyperplanes. It follows that by successively reducing
the size of λ, the limit can get arbitrarily closer to the least squares solution of the
system.

We now introduce the following definition for notational convenience:

Definition 2.1. Given a normalized m×n linear system (2.1), a sequence of re-
laxation parameters Λ = (λ1, . . . , λm), we define an operator called “Kaczmarz
sweep”, KSWP(A, b, x,Λ) : Rn → Rn, as follows. For x ∈ Rn, we set y0 = x, and
for i = 1, 2, . . . ,m, define

yi = yi−1 + λi

(
bi − ⟨ai, yi−1⟩

)
ai,

then KSWP(A, b, x,Λ) = ym.

Algorithm 2.2. (Kaczmarz with cyclic relaxation parameters)
begin algorithm

Given a sequence of relaxation parameters Λ = (λ1, . . . , λm),
choose an initial iterate x0 ∈ Rn.
for k = 0, 1, . . . until some stopping criterion is satisfied:

xk+1 := KSWP(A, b, xk,Λ)
end algorithm

2.2 Parallelizing the Kaczmarz algorithm

This subsection presents the background that led to the Averaging Lemma, which
is at the base of this paper. For huge systems of linear equations, it is essential dis-
tribute the computation among several processors that generally work in a two-step
cyclic mode: in step 1, each processor works on its own allotted subtask, and in
step 2, the processors exchange relevant information for the next step. The Kacz-
marz algorithm, by its mathematical definition, is inherently sequential. However,
in many situations, the system matrix is sparse, and so it may be possible divide
the equations into blocks so that in each block, no two equations share the same
variable; i.e., if ai, aj are two matrix rows whose equations are in the same block,
then ⟨ai, aj⟩ = 0; such equations are also called “independent”. Given a block, all
projections on hyperplanes of equations belonging to a block can be done in parallel
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by several processors. After these projections the processors need to exchange infor-
mation in order to process the next block of equations. This mode of parallelizing
KACZ is called multi-coloring. Depending on the problem at hand, the exchange of
information may or may not be a time consuming step. In the case of CT, equations
derived from X-ray trajectories that are sufficiently far apart are independent, and
this can be used for a parallel implementation of KACZ – see [20].

The numerical solution of differential equations over some domain involves the
solution of a linear system whose unknown variables are the values of some unknown
function(s) defined over some domain. A common approach to parallelizing the
solution, called Domain Decomposition (DD), is to divide the domain into several
subdomains, execute a solution step in each subdomain (in parallel), and then
“merge” the subdomain solutions; this is repeated until some stopping criterion
is satisfied. There are several approaches to the merge operation – see [15, 35,
39, 42, 47]. The merge operation is a problem in itself, and the latest approach
is to use “perfectly matched layers” (PMLs), which were introduced in [3, 4] as
a method for absorbing boundary conditions in wave problems, and adapted for
merging subdomain solutions in DD [16, 43]. PMLs introduce certain equations in
a relatively wide strip between subdomains, and thus place an extra burden on the
computation. In some cases, PMLs present a particular problem at so-called cross-
points, at which three or more subdomains meet, and require special treatment
[6, 19, 38].

Gordon & Gordon [22] introduced a different method of parallelizing the Kacz-
marz algorithm, called CARP (component-averaged row projections): the system
is divided into blocks, which are not necessarily disjoint. For every variable that is
common to two or more blocks, one of the blocks is determined as its “owner”, and
each of the other blocks operates on a “clone” of that variable. A CARP stage has
two steps:

(1) Kaczmarz projections are done on every block, independently (and in par-
allel) of the other blocks. A shared variable is used as is in the processing
of its owner block, but the processing of other blocks that share it uses its
clone(s).

(2) After the separate processing of the blocks, every shared variable is averaged
with all its clones, and the new value is distributed for the next stage.

The clones are new variables that help in distributing the computation among dif-
ferent processors. This mode of operation is, in fact, a new approach to DD, called
CADD (component-averaged DD). Assume that the original problem space is Rn

and there is a total of k clones. CARP then operates in the superspace Rn+k on a
modified set of equations, because every clone replaces an original variable in some
equations. It is easily seen that if CARP converges in Rn+k then the original n
variables solve the original problem: every shared variable will be equal to all its
clones, the modified equations are all satisfied in the superspace, and so all the
original equations are satisfied by the original variables. A consequence of this is
that there are no anomalies at subdomain boundaries and at cross-points.

For the formal proof of convergence of CARP, it was shown in [22] that the
operation of averaging some components of a vector can be achieved by a sequence
of Kaczmarz projections. This was proved in the following
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Lemma 2.3. (The Averaging Lemma [22, 25])

Let x ∈ Rn and 26m6n. Vm is the following (m−1)×n matrix,

(2.2) Vm =


1 -1 0 0 0 · · · 0 0 0 0 · · · 0
1 1 -2 0 0 · · · 0 0 0 0 · · · 0
1 1 1 -3 0 · · · 0 0 0 0 · · · 0

...
...

1 1 1 1 1 · · · 1 -(m-2) 0 0 · · · 0
1 1 1 1 1 · · · 1 1 -(m-1) 0 · · · 0

 ,

0 is a RHS vector of m − 1 zeros, and Λ = (1, 1, . . . , 1) is a sequence of m−1
relaxation parameters of value one. Then

KSWP(Vm,0, x,Λ) =

(
y, y, . . . , y

m times

, xm+1, . . . , xn

)
,

where y = 1
m

∑m
i=1 xi.

It was noted in [25] that the averaging equations are pairwise orthogonal, so they
can be applied in any order. Consider now the number of equations that are added
to the superspace. Suppose some variable, say x0, has ℓ clones, so when averaging is
done between x0 and its clones, we need to average ℓ+1 components of a vector in
the superspace. According to AL, this requires ℓ equations. Therefore, the number
of additional equations in the superspace is exactly equal to the number of clones, so
if the original system matrix was square, so is the corresponding superspace matrix.

There is a terminological point that needs to be explained: what is the differ-
ence between CARP (component-averaged row projections) and CAV (component-
averaging) [12]? In CARP, components of a single vector (in the superspace) are
averaged in order to unify partial solutions, while in CAV vectors are averaged by
assigning weights that depend on the sparsity of the column components. Another
point that needs mentioning is the special case when the blocks of CARP consist
of single equations. This version of CARP, called CARP1 in [22], already appeared
in [12, Eq. 1.9] and [11, Eq. 2.8]. A weighted version of this algorithm was stud-
ied further by Censor et al. in [10], where it is called DROP (diagonally relaxed
orthogonal projections).

CARP was found to be useful on some problems of biomedical imaging such
as electron tomography [17] and proton computed tomography (pCT) [34, 31]. A
modified version of CARP was used for seismic tomography [33].

2.2 Accelerating Kaczmarz and CARP

One of the outcomes of this work is to enable CG acceleration of methods that
involve both projections and averaging operations. This subsection presents the
background of this topic and briefly summarizes the proven benefits of this ap-
proach. Kaczmarz is an extremely robust algorithm when compared against modern
Krylov subspace algorithms such as CG (Conjugate Gradients) [30], GMRES [41],
Bi-CGSTAB [48], even when these are combined with various preconditioners. In
[22], CARP was compared against such methods, and although in one example it
was the only method to converge, it was generally too slow.
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In a landmark paper, Björck and Elfving [5] developed a CG acceleration of
Kaczmarz, as follows: by running KACZ sequentially in one direction and then in
the opposite direction, one obtains a symmetric and positive semi-definite iteration
matrix, so acceleration by CG is made possible. It is not necessary to calculate this
iteration matrix, instead, matrix-vector computations are done by KACZ sweeps
(in the forward and backward direction). This acceleration was called CGMN.
Surprisingly few works used CGMN for solving PDE problems, even though CGMN
is very efficient – see [23] and the references therein.

Since CARP is KACZ in some superspace, it was natural to apply the principle of
CGMN in order to accelerate it. This was done in [25]. The original CGMN assumed
a fixed relaxation parameter for the KACZ projections, but in CARP, KACZ on the
subdomains used some optimal relaxation parameter while the averaging equations
use a relaxation parameter of 1. It was shown in [25] that the CGMN technique can
be extended to cyclic relaxation parameters, and this enabled the CG acceleration
of CARP, called CARP-CG. This method was found to be particularly useful on
some of the most problematic cases involving the solution of partial differential
equations (PDEs), namely linear systems with discontinuous coefficients and/or
very large off-diagonal terms [24]. These problems include elliptic PDEs with very
strong convection, the Helmholtz equation at high frequencies [26], and the elastic
wave equation in the frequency domain. It was used by several researchers for
solving the Helmholtz equation in exploration geophysics [49], solving the elastic
wave equation in the frequency domain [37, 36], and for solving eigenvalue problems
arising in quantum computations [18]. CARP-CG was also incorporated as one of
the algorithms implemented in the exascale sparse solver repository [46].

3. Vector averaging

The Averaging Lemma shows how to average components of a given vector. For
our purposes, we shall also need to average a set of vectors: Given x1, . . . , xm ∈ Rn,
we wish to obtain their average vector x = 1

m

∑m
i=1 x

i using orthogonal projections
in the superspace Rm×n. So, we define an “expansion” mapping E : Rn → Rm×n as
follows:

(3.1) E
(
x1, . . . , xm

)
=
(
x11, . . . , x

1
n, . . . , x

m
1 , . . . , xmn

)
,

and a “contraction” mapping C : Rm×n → Rn:

C
(
x11, . . . , x

1
n, . . . , x

m
1 , . . . , xmn

)
=
(
x11, . . . , x

1
n

)
.

In order to obtain the average vector in Rm×n, we construct a matrix
−
V of size

(m−1)n×mn, made up of copies of Vm (see Eq. (2.2)) interspersed with zeros. The
first m − 1 rows of

−
V are comprised of Vm with m − 1 zeros after every element

of Vm. When one of these rows is multiplied by E(x), only the first component
of each (original) vector is affected. So, after the first m − 1 projections, all the
components xi1, 16 i6m, are replaced by their average, according to AL. The next
m − 1 rows are similar to the previous rows, but the nonzero elements are shifted
by one position to the right, and so on. Eq. (3.2) is an example of

−
V for n = 3 and

m = 4.
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(3.2)
−
V =



1 0 0 -1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 -2 0 0 0 0 0
1 0 0 1 0 0 1 0 0 -3 0 0

0 1 0 0 -1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 -2 0 0 0 0
0 1 0 0 1 0 0 1 0 0 -3 0

0 0 1 0 0 -1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 -2 0 0 0
0 0 1 0 0 1 0 0 1 0 0 -3


We can now state the following

Theorem 3.1. Vector Averaging. Given a set of vectors x1, . . . , xm ∈ Rn, their
average can be obtained by a Kaczmarz sweep in Rm×n:

1

m

m∑
i=1

xi = C
(
KSWP

( −
V ,0, E

(
x1, . . . ,xm

)
Λ
))

,

where 0 is a RHS vector of zeros, and Λ is a sequence of relaxation parameters of
value 1.

4. The Cimmino-Kaczmarz equivalence

We assume that the given m×n linear system (2.1) is already normalized. The
Cimmino algorithm presented here is a generalized version in which the relaxation
parameters can vary with the equations and/or with the iteration number. The
original algorithm presented by G. Cimmino in [13] used a constant relaxation
parameter of 2 – see [2]. We introduce the following concept for ease of notation:

Definition 4.1. Given an m×n normalized linear system (2.1) and a sequence of
relaxation parameters Λ = (λ1, . . . , λm), we define an operator called a “Cimmino
step”, CIMM(A, b, x,Λ) : Rn → Rn, as follows. For 1 6 i 6 m, let yi = x +
λi

(
bi − ⟨ai, x⟩

)
ai, then

(4.1) CIMM(A, b, x,Λ) =
1

m

m∑
i=1

yi = x+
1

m

m∑
i=1

λi

(
bi − ⟨ai, x⟩

)
ai.

Algorithm 4.2. (Cimmino with variable relaxation parameters)
Let Ax = b be an m×n normalized linear system, Λ0,Λ1, . . . a sequence such
that Λk = (λk

1, . . . , λ
k
m), and x0 ∈ Rn an initial iterate.

begin algorithm
for k = 0, 1, . . . until some stopping criterion is satisfied:

xk+1 := CIMM(A, b, xk,Λk)
end algorithm

In the rightmost RHS of Eq. (4.1), we can actually consider the fraction 1/m
to be a part of the relaxation parameter, which can also change with the step k.
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Hence, we can rewrite the general step of Algorithm 4.2 as follows

(4.2) xk+1 = xk +
m∑
i=1

µk
i

(
bi − ⟨ai, x⟩

)
ai.

Consider the BIP algorithm of Aharoni and Censor [1]. BIP for linear equations
has the following formulation for a normalized system (see [10, Alg. 1.3]):

(4.3) xk+1 = xk + λk

m∑
i=1

wk
i

(
bi − ⟨ai, x⟩

)
ai.

λk is superfluous in Eq. (4.3) because it can be considered as part of wk
i , so equations

(4.2) and (4.3) are actually identical. Hence, Cimmino with variable relaxation
parameters is identical to BIP. See [1, Thm. 1] for details.

It should be noted that the convergence of Cimmino for the convex feasibil-
ity problem was proved by Combettes in [14], by using a method of alternating
directions in a product space. Another point regarding Cimmino is that its CG ac-
celeration is well known. Moreover, it was shown in [24] that this CG acceleration
is actually the CGNR algorithm [40, §8.3.1] on the normalized system Ax = b.

We shall show that the basic Cimmino step, Eq. (4.1), is equivalent to a sequence
of Kaczmarz projections in the superspace Rm×n. For this purpose we will use an
expansion mapping E that is different from the one in Eq. (3.1); E replicates a single
vector m times.

Definition 4.3. We define E : Rn → Rm×n as

(4.4) E (x1, . . . , xn) =

(
x1, . . . , xn, x1, . . . , xn, . . . , x1, . . . , xn

m times

)
.

Theorem 4.4. (The Cimmino-Kaczmarz Equivalence)
Given an m×n normalized linear system Ax = b and a sequence Λ = (λ1, . . . λm)

of relaxation parameters, we can construct a 2m×mn linear system Âx = b̂ and a
sequence Λ̂ of 2m relaxation parameters so that for any x ∈ Rn,

CIMM(A, b, x,Λ) = C
(
KSWP

(
Â, b̂, E(x), Λ̂

))
,

i.e., a single CIMM step in Rn can be obtained by applying a single KSWP operation
in the superspace Rm×n, and contracting the result to Rn.

Proof. We will denote by aij the element of A in row i and column j, and the ith

row of A by ai. We first construct a matrix
−
A corresponding to A as follows: the

first row of
−
A is the first row of A, followed by (m − 1)n zeros. Starting from the

second row, every row of
−
A is obtained by shifting the corresponding row of A to

the right by n positions w.r.t. the previous row of
−
A, and filling the vacant positions

with zeros. This gives us the following m×mn matrix:

(4.5)
−
A =


a11 . . . a1n 0 . . . . . . . . . . . . . . 0

0 . . . . 0 a21 . . . a2n 0 . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . 0 am1 . . . amn
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The ith row of
−
A will be denoted by āi. Next, we construct Â and b̂ as follows:

Â =

( −
A
−
V

)
, b̂ =

(
b
0

)
,

where
−
V is the (m−1)n×mn matrix for averaging vectors, as in §3, and 0 is a

suitable vector of zeros. The required relaxation parameters are given by

Λ̂ = (λ1, . . . , λm, 1, 1, . . . , 1

(m−1)n times

).

Let y0 = E(x), and consider the first m projections of KSWP(Â, b̂, y0, Λ̂):

step 1 : y1 = y0 + λ1(b1 − ⟨ā1, y0⟩)ā1

step 2 : y2 = y1 + λ2(b2 − ⟨ā2, y1⟩)ā2

...

step m : ym = ym−1 + λm(bm − ⟨ām, ym−1⟩)ām

It is clear from the structure of
−
A that after step 1, y1 differs from y0 only in the

first n elements. Additionally, due to the structure of y0 = E(x) and
−
A, we also

have ⟨ā1, y0⟩ = ⟨a1, x⟩, so step 1 can be replaced by

step 1′ : y1 = y0 + λ1(b1 − ⟨a1, x⟩)ā1.

Consider now the inner product ⟨ā2, y1⟩ā2 in step 2: the elements of y1 that take
part in the inner product with ā2 are y1m+1, . . . , y

1
2m, and, by the previous comment,

these are identical to the corresponding elements in y0 = E(x), which are x1, . . . , xn.
Hence, ⟨ā2, y1⟩ā2 = ⟨ā2, y0⟩ā2. And, by a similar argument to the above, we also
have ⟨ā2, y0⟩ = ⟨a2, x⟩, so step 2 can be replaced by

step 2′ : y2 = y1 + λ2(b2 − ⟨a2, x⟩)ā2.

Continuing similarly with all the steps, we can replace the first m steps by

step i′ : yi = yi−1 + λi(bi − ⟨ai, x⟩)āi, 16 i6m.

Hence, by sequential substitutions, we get

ym = y0 + c1ā
1 + · · ·+ cmām =



x1 + c1a
1
1

...
xn + c1a

1
n

...
x1 + cmam1

...
xn + cmamn


,

where ci = λi(bi − ⟨ai, x⟩) for 16 i6m.
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The next (m−1)m projections are done with the rows of
−
V (as the second part

of Â), and these are the vector averaging projections of §3. So we get

ym+(m−1)n =


1
m

∑m
i=1

(
x+ cia

i
)

...
1
m

∑m
i=1

(
x+ cia

i
)
 .

By applying the contraction mapping we get

C
(
ym+(m−1)n

)
= x+

1

m

m∑
i=1

λi

(
bi − ⟨ai, x⟩

)
ai = CIMM(A, b, x,Λ) . �

Weighted averaging: suppose we wish to replace the basic Cimmino equation –
Eq. (4.1) – by a weighted averaging version, i.e.,

CIMM(A, b, x,Λ) =
m∑
i=1

ωiy
i = x+

m∑
i=1

ωiλi

(
bi − ⟨ai, x⟩

)
ai,

where 06ωi61 and
∑m

i=1 ωi = 1. This can be done by replacing λi in Thm. 4.4 by
mωiλi, for 16 i6m.

3.1 Subset-Cimmino

This version of Cimmino works as follows: the m×n normalized system Ax = b
is divided into k blocks of equations (which are not necessarily disjoint): Aℓx = bℓ,
for 16ℓ6k, and block ℓ is associated with a sequence of relaxation parameters Λℓ.
Formally the algorithm is as follows.

Algorithm 4.5. (Subset-Cimmino)
begin algorithm

Choose an initial iterate x0 ∈ Rn.
repeat

for ℓ = 1, 2, . . . , k
xℓ := CIMM(Aℓ, bℓ, xℓ−1,Λℓ)

x0 := xk

until x0 solves the linear system
end algorithm

Subset-Cimmino is clearly an intermediate algorithm between Cimmino and Kacz-
marz: if k = 1, then it is identical to Cimmino, and if k = m, then it is identical to
Kaczmarz. Proving that Subset-Cimmino is also equivalent to Kaczmarz in a super-
space is a modification of our previous constructions. The required modifications
may be simple or complex, depending on the relative sizes of the subsets.

The simplest case is when all the subsets are the same size, which we denote by
m. In this case, the required superspace is Rm×n. The matrix Â is composed of

matrices
−
A

ℓ
, where

−
A

ℓ
is made up of the rows of Aℓ shifted w.r.t. each other, as in

Eq. (4.5). The order of the matrices is the same as their order in Algorithm 4.5.

Each
−
A

ℓ
is followed by a suitable

−
V , as in Eq. (3.2), for the averaging. The RHS b̂
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consists of the vectors bℓ, followed by zeros for the averaging. The rest is obvious
so we omit further details.

The general case is more complicated. Denote by mℓ the number of rows of Aℓ,
for 16 ℓ6 k, and let

−
A

ℓ
be as above. Since the matrices are not of the same size,

we need to replicate them so that all elements of the vector y0 will be affected.
Let m′ be least common multiple of m1, . . . ,mk. The superspace is Rm′×n, and the
expansion mapping is y0 = (x, x, . . . , x

m′ times

).

The matrix Â starts with a block, denoted B1, consisting of
−
A

1
followed by a

corresponding averaging matrix
−
V

′
. This block will perform a CIMM operation on

the first m1 copies of x. B1 is followed by a copy of B1, but shifted to the right
w.r.t. B1, so that it performs a CIMM operation on the next m1 copies of x, and
so on, for m′/m1 times. The corresponding RHS’s are obvious now from the proof
of Theorem 4.4.

Since m′ is divisible by m1, after processing all the B1 blocks, y0 will be trans-
formed to a vector holding m′ copies of CIMM(A1, b1, x,Λ1). Next, Â will hold
m′/m2 copies of blocks B2 constructed in a similar way, and so on. Clearly, af-

ter all projections of Â are done, the resulting vector will consist of m′ copies of
KSWP(Â, b̄, y0,Λ).

Recently, a randomized version of Subset-Cimmino was included in a study on
recovering band-limited signals from random sampling – see [21]. The behavior of
this algorithm as a function of the number of samples was typical of the behavior
of all the Kaczmarz variants on this problem. The Cimmino-Kaczmarz equivalence
now explains this behavior.

3.2 CAV and BICAV

The CAV algorithm was introduced in [12], where it was found to be a useful
parallelizable algorithm for image reconstruction in CT. Its basic iterative step is
given by

xk = xk−1 + λk

m∑
i=1

bi − ⟨ai, xk−1⟩∑n
ℓ=1 sℓ(a

i
ℓ)

2
ai,

where λk is a relaxation parameter that may vary by the iteration number, and sℓ
is the number of nonzero elements in column ℓ.

The proof of convergence given in [12] assumes that λk = 1 for all k. If we denote
αi = m/

(∑m
ℓ=1 sℓ(a

i
ℓ)

2
)
, we get the following representation for CAV (assuming

λk = 1):

xk = xk−1 +
1

m

m∑
i=1

αi

(
bi − ⟨ai, xk−1⟩

)
ai.

This representation shows that CAV is actually a Cimmino-type algorithm with
fixed relaxation parameters per equation, and the relaxation parameters αi depend
on the sparsity of the matrix. The experiments done in [12] were done on the
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normalized system of equations for the purpose of comparisons with KACZ and
Cimmino, so we can also assume that the equations are normalized.

The BICAV algorithm [11] divides the system (2.1) into blocks, and iteratively
performs one CAV operation on every block of equations. The sparsity-oriented
weights of every CAV operation on a particular block take into consideration only
the equations that belong to that block. Hence, BICAV is a special case of subset-
Cimmino, so it is also equivalent to Kaczmarz in some superspace.

5. String averaging

String Averaging (SA) was introduced by Censor, Elfving and Herman in [9]. It
can be viewed as a certain combination of Kaczmarz and Cimmino in the following
sense: whereas in Cimmino there is a set of projections that are averaged, in SA, the
averaging is done after several sequences of projections. The most elementary SA
will be described in a form that will make it easy to explain its relation to Kaczmarz
in the superspace Rm×n.

Consider the (normalized) system (2.1), and some integer k, which will be the
number of “strings”. For 16ℓ6k, let Aℓ be a matrix made up of some of the rows
of A, not necessarily in the same order as in A, and with possible repetitions of
some of the rows in the same matrix or in other matrices. For 16ℓ6k, let bℓ be a
RHS vector made up of the elements of b corresponding to the rows of Aℓ. Also, for
16ℓ6k, let Λℓ be a sequence of relaxation parameters which will be used with the
equations of the system Aℓx = bℓ. We also assume that we are given a sequence of

weights Ω = (ω1, . . . , ωk) s.t. 06ωℓ61 for 16ℓ6k and
∑k

ℓ=1 ωℓ = 1; these weights
will be used for the weighted averaging of the strings. We will use the following
notations:

A =
(
A1, . . . , Ak

)
, b =

(
b1, . . . , bk

)
,Λ =

(
Λ1, . . . ,Λk

)
.

The quadruple (A, b ,Λ,Ω) will be called a “string-averaging setup” for the (nor-
malized) linear system 2.1. For x ∈ Rn, we define the operator SAVG : Rn → Rn

as the weighted average of the string results:

(5.1) SAVG(A, b , x,Λ,Ω) =

k∑
ℓ=1

ωℓKSWP
(
Aℓ, bℓ, x,Λℓ

)
.

In [9], SA is also described for Bregman projections, and also with a general operator
on the results of the strings instead of averaging. Before proceeding with the main
result, we need the following

Lemma 5.1. Given an m×n normalized linear system (2.1), a sequence of m
relaxation parameters Λ, and some constant α, then for any x ∈ Rn

KSWP(A,αb, αx,Λ) = αKSWP(A, b, x,Λ).

Proof. Let x ∈ Rn be given. We define two finite sequences that lead to the two
KSWP terms: y0 = x and z0 = αx, and for 16 i6m,

yi = yi−1 + λi

(
bi − ⟨ai, yi−1⟩

)
ai, zi = zi−1 + λi

(
αbi − ⟨ai, zi−1⟩

)
ai



CIMMINO-KACZMARZ EQUIVALENCE 265

Claim: For 06 i6m, zi = αyi. The claim is proved by a simple induction on i. For
i = 0, the claim follows from the definition of y0 and z0. Assume that the claim is
true for i, then, for i+ 1, we have

zi+1 = zi + λi+1

(
αbi+1 − ⟨ai+1, zi⟩

)
ai+1

= αyi + λi+1

(
αbi+1 − ⟨ai+1, αyi⟩

)
ai+1

= α
(
yi + λi+1

(
bi+1 − ⟨ai+1, yi⟩

)
ai+1

)
= αyi+1.

Therefore, zm = αym ⇒ KSWP(A,αb, αx,Λ) = αKSWP(A, b, x,Λ). �

Theorem 5.2. Given a string-averaging setup (A, b ,Λ,Ω) for the m×n normalized

linear system (2.1), let m̄ =
∑k

ℓ=1mℓ, where mℓ is the number of rows of Aℓ for
16ℓ6k. Then the following four items can be constructed

• a matrix Â,
• a corresponding RHS vector b̂,
• a suitable sequence of relaxation parameters Λ̂,
• an operator E : Rn → Rk×n,

so that for any point x ∈ Rn,

(5.2) SAVG
(
A, b , x,Λ,Ω

)
= C

(
KSWP

(
Â, b̂, E(x), Λ̂

))
.

Proof. Let x = (x1, . . . , xn) be given. We denote αℓ = kωℓ for 1 6 ℓ 6 k; these
constants are needed for weighted averaging. If only regular averaging is needed,
they can all be set to 1. To construct Â and b̂, we first present a matrix

−
A and

a corresponding RHS b̄:
−
A is a generalization of the matrix used in the proof of

Theorem 4.4: instead of shifting single rows of A by n positions, the matrices Aℓ

are taken as blocks and shifted by n positions w.r.t. each other, and the vacant
positions are filled with zeros. Clearly,

−
A is of size m̄×kn. The structures of

−
A and

b̄ are illustrated in Fig. 5.1.

A

A

A

A = b =

k

1

2

0

0

α

α

α

1
1b

2b

kbk

2

Figure 5.1. Matrix Ā and RHS b̄ for the superspace equivalent of
String Averaging, where k is the number of strings. For 16ℓ6k, Aℓ

consists of all the rows of A that are needed for the ℓth string and
αℓb

ℓ is the corresponding RHS.
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We now set

Â =

( −
A
−
V

)
, b̂ =


b̄
0
...
0

 ,

where
−
V is the averaging matrix for vectors, as in Eq. (3.2) and the proof of Theorem

4.4, and the zeros in b̂ are the RHS of
−
V .

The required sequence of relaxation parameters Λ̂ is the concatenation of Λ =
(Λ1, . . . ,Λk) and a sequence of ones for the averaging operations. Similarly to the
expansion mapping of Eq. (3.1), the expansion mapping E(x) consists of k copies of
x, but now, each copy of x is multiplied by a different α factor:

E (x1, . . . , xn) =
(
α1x1, . . . , α1xn, α2x1, . . . , α2xn, . . . , αkx1, . . . , αkxn

)
Let y0 = E(x), and consider now the operation of KSWP

(
Â, b̂, y0, Λ̂

)
. The very

first step is

y1 = y0 +
(
α1b

1
1 − ⟨ā1, y0⟩

)
ā1

It is clear from the structure of
−
A that y1 differs from y0 only in the first n elements.

Also, after m1 steps, the result, y
m1 , also differs from y0 only in the first n elements.

These n elements of ym1 are exactly KSWP(A1, αb1, α1x,Λ
1). So now we have

ym1 =


KSWP(A1, α1b

1, α1x,Λ
1)

α2x
...

αkx

 .

Consider now ym1+1: due to the structure of
−
A and b̄, ym1+1 differs from ym1 only

in the next n elements. Eventually, after m̄ steps, we get

ym̄ =

 KSWP(A1, α1b
1, α1x,Λ

1)
...

KSWP(Ak, αkb
k, αkx,Λ

k)



=

 α1KSWP(A1, b1, x,Λ1)
...

αkKSWP(Ak, bk, x,Λk)
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The last equality follows from Lemma 5.1. Hence, after the averaging projections
and the contraction, we get

C
(
KSWP

(
Â, b̂, E(x), Λ̂

))
=

1

k

k∑
ℓ=1

αℓKSWP
(
Aℓ, bℓ, x,Λℓ

)

=
1

k

k∑
ℓ=1

kωℓKSWP
(
Aℓ, bℓ, x,Λℓ

)

=

k∑
ℓ=1

ωℓKSWP
(
Aℓ, bℓ, x,Λℓ

)
= SAVG

(
A, b , x,Λ,Ω

)
.

�
As noted previously, the general definition of String Averaging in [9] permits

any type of operator on the string results. A case in point is CARP: the separate
Kaczmarz operations on the different blocks are strings in the SA terminology, and
the CARP operation of averaging components is an operator on the string results.

6. Conclusions

We have shown how projection methods which involve averaging are mathemati-
cally equivalent to the Kaczmarz algorithm in some superspace of the given problem
space. Such equivalence is based on two elements:

• A structural transformation of the given linear system into a certain linear
system in the superspace.

• An application of the Averaging Lemma [22, 25], according to which the
averaging operations are equivalent to projections in the superspace.

Additionally, by using a modification of the transformation, weighted averaging can
also done in the case of the Cimmino algorithm [13] and String Averaging [9].

Explicit constructions were given for a generalized Cimmino algorithm, with vary-
ing relaxation parameters, and String Averaging. In String Averaging, our results
apply to orthogonal projections with weighted averaging. These results also hold
for a so-called Subset-Cimmino, which is a block-iterative variant of Cimmino. It
then follows that the results also hold for the CAV [12] and BICAV [11] algorithms.

A consequence of our results is that convergence proofs for methods that involve
projections and averaging simply follow from well-known convergence proofs for the
Kaczmarz algorithm. Another important consequence is that such methods can be
accelerated by the Conjugate Gradients method, as in the CGMN algorithm [5, 23]
and CARP-CG [25]. Note that the projections used by the Averaging Lemma use a
relaxation parameter of 1, so if this is used in conjunction with different relaxation
parameters, then one actually needs the cyclic version of CGMN, called CGMNC
in [25]. Formal convergence proofs for such accelerated methods then follow from
the known convergence of CG.
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