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state cost in the cost functional was studied. Using an auxiliary game with an
impulsive dynamics, a new game of reduced order, having the same value as the
original game, was constructed. The open-loop solution of the original singular
game was derived in some class of generalized functions. In the work of [45], a
finite-horizon differential game was analyzed by a regularization approach i.e., by
its approximate converting to an auxiliary regular game, in the case where the cost
functional does not contain the minimizer’s control cost, while contains the terminal
state cost.

The paper of [22] deals with a more general case of the singular game than
in the work of [45]. Namely, the cost functional of the considered differential game
contains the minimizer’s control cost. The weight matrix of this cost is singular but,
in general, nonzero. This game does not have, in general, an optimal minimizer’s
control in the class of regular functions. The considered game is treated also by a
regularization. This regularization yields an auxiliary differential game with partial
cheap control of the minimizer.

Differential games with total cheap control of at least one of the players were
studied in the literature, see for example [17, 40, 47, 51–53]. However, to the best
knowledge of the authors, differential games with partial cheap control of at least
one of the players, have been studied only in a few works, for example [22].

It should be noted that the regularization approach was applied in the literature
to studying singular optimal control problems, see e.g. [7, 18–20, 37] and references
therein. In the papers of [45] and [22], this approach was applied to rigorous analysis
of a singular differential game.

In the present paper, we considered a slightly more general case of the singular
game than in the work of [22], where the weight matrix of the minimizer’s control
cost has general singular form. As a particular case of such a problem we consider
an pursuit-evasion game and applied appropriate gradient methods under certain
assumptions to solution of this game. So, our aim is to find a saddle-point of a
special case of zero-sum singular differential game by using gradient methods and
not a regularization approach that was used in [53] and [22].

In Subsection 1.1, we survey the results of the Gibali, Censor and Reich [10–12]
and of Glizer and Kelis [21–23] which pour light on the two different approaches
that will be tested in this paper for finding saddle points.

Our paper is organized as follows. In Section 2 the problem formulation of a
zero-sum differential game with linear dynamics and quadratic cost functional is
considered. Then in Section 3 we study the Singular Differential Game (SDG)
which follows by a special case of a singular problem, an pursuit-evasion game, in
Section 4. In Section 5 we present numerical illustrations by applying two gradient
methods, the Arrow-Hurwicz-Uzawa algorithm [4] and Korpelevich’s extragradient
method [35]. Finally in Sections 6 our conclusions are presented.

1.1. Relation to previous work.

1.1.1. The works of Gibali, Censor and Reich.
Lets us first recall the Variational Inequality Problem (VIP) in the Euclidean space
En. Let C ⊂ En be a non-empty, closed and convex set and let F : En → En. The
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VIP consists in finding a point x∗ ∈ C, such that

(1.1) x∗ ∈ C and ⟨F (x∗), x− x∗⟩ ≥ 0, for all x ∈ C.

This problem, which is fundamental in Optimization Theory was introduced by
Hartman and Stampacchia in [28]. Many algorithms for solving the VIP are pro-
jection algorithms that employ projections onto C or onto some related set in order
to reach iteratively a solution. For an excellent treatise on variational inequality
problems in finite-dimensional spaces, see the two-volume book by Facchinei and
Pang [13]. The books by Konnov [34] and Patriksson [39] contain extensive studies
of VIPs including applications, algorithms and numerical results. For a wide range
of applications of VIPs, see, e.g., the book by Kinderlehrer and Stampacchia [32].
See also Auslender and Teboulle [5] and the recent book of Zaslavski [54].

The importance of VIPs stems from the fact that several fundamental problems
in Optimization Theory can be formulated as VIPs, as the following few examples
show.

Example 1.1. Constrained minimization. Let C ⊂ En be a nonempty, closed and
convex subset and let g : En → E be a continuously differentiable function which is
convex on C. Then x∗ is a minimizer of g over C if and only if x∗ solves the VIP

(1.2) ⟨∇g(x∗), x− x∗⟩ ≥ 0 for all x ∈ C,

where ∇g is the gradient of g (see, e.g., [8, Proposition 3.1, p. 210]). When g is not
differentiable, we get the VIP

(1.3) ⟨u∗, x− x∗⟩ ≥ 0 for all x ∈ C,

where u∗ ∈ ∂g(x∗) and ∂g is the (set-valued) subdifferential of g (see, e.g., [26,
Chapter 4, Subsection 3.5]).

Example 1.2. Let En and En be two Euclidean spaces, and let C1 and C2 be two
convex subsets of En and En, respectively. Given a bifunction g : En × Em → E,
the Saddle-Point Problem (SDP) is to find a point (u∗1, u

∗
2) ∈ C1 × C2 such that

(1.4) g(u∗1, u2) ≤ g(u∗1, u
∗
2) ≤ g(u1, u

∗
2) for all (u1, u2) ∈ C1 × C2.

This problem can be written as the VIP of finding (u∗1, u
∗
2) ∈ C1 × C2 such that

(1.5)

⟨(
∇gu1(u

∗
1, u

∗
2)

−∇gu2(u
∗
1, u

∗
2)

)
,

(
u1
u2

)
−

(
u∗1
u∗2

)⟩
≥ 0 for all (u1, u2) ∈ C1 × C2.

Many algorithms for solving the VIP are projection algorithms that employ pro-
jections onto C (the feasible set of the VIP ) or onto some related set in order to reach
iteratively a solution. Korpelevich method for example [35] (see also Antipin [2])
which is known as the Extragradient Method uses two orthogonal projections onto
C per each iteration, according to the following rule. Given the current iterate xk,
calculate

(1.6) yk = PC(x
k − τF (xk)),

(1.7) xk+1 = PC(x
k − τF (yk)),

where τ is some positive number and PC denotes the Euclidean nearest point pro-
jection onto C. Although the convergence of the algorithm is guaranteed under
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the assumptions of Lipschitz continuity and pseudo-monotonicity of the involved
mapping F , there is still the need to calculate two projections onto C, which might
seriously affect the efficiency of the algorithm. as a first step to overcome this ob-
stacle, Censor, Gibali and Reich in [10–12] presented the Subgradient Extragradient
Method (SEM), in which the second projection (1.7) onto C is replaced by a projec-
tion onto a specific constructible half-space which is actually one of the subgradient
half-spaces.

In order to prove convergence the authors assume that F is monotone on C,
Lipschitz continuous on En, and the Lipschitz constant L is known, so τ ∈ (0, 1/L).
Later Gibali [16], motivated by the work of Khobotov [33], proposed a modified
version of the SEM is presented in which the mapping F is assumed to be only
continuous instead of Lipschitz. The advantage of the later proposed method is
that it is using an Armijo-Goldstein-type ([3]) adaptive step-rule size τ which guar-
antee the convergence of the algorithm. The subgradient extragradient algorithm
is presented next.

The subgradient extragradient algorithm
Step 0: Select an arbitrary starting point x0 ∈ En and τ > 0, and set k = 0.
Step 1: Given the current iterate xk, compute

(1.8) yk = PC(x
k − τf(xk))

construct the set

(1.9) Tk :=
{
w ∈ En |

⟨(
xk − τf(xk)

)
− yk, w − yk

⟩
≤ 0

}
and calculate the next iterate

(1.10) xk+1 = PTk
(xk − τf(yk)).

Step 2: If xk = yk then stop. Otherwise, set k ← (k+1) and return to Step 1.

In the rest of this paper the extragradient method is used as an iterative procedure
to find a saddle-point of a zero-sum linear-quadratic differential games.

1.1.2. The works of Glizer and Kelis.
An abstract form of zero-sum linear-quadratic differential game contains a dynamic
system (1.11) and cost functional (1.12):

(1.11)
dz(t)

dt
= Az(t) +Bu(t) + Cv(t), z(0) = z0, t ∈ [0, tf ],

(1.12) J(u, v) = z(tf )
TFz(tf ) +

tf∫
0

[zT (t)Dz(t) + uT (t)Guu(t)− vT (t)Gvv(t)]dt

where, tf is a given final time moment; superscript T denotes transposition; z(t) ∈
En is a state vector; u(t) ∈ Er, (r ≤ n), v(t) ∈ Es are the players’ controls; A,
B and C are given constant matrices of corresponding dimensions; z0 is a given
n-vector; F , D, are given positive semi-definite symmetric matrix; Gv is a given
positive definite symmetric matrix; Gu is a given symmetric matrix.
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1.1.3. The regularization approach.
In (1.12) the weight matrix Gu can have several forms, two of them, in which the
game is singular, are:

(1) Gu = 0, which means that all the coordinates of the minimizer’s control are
singular. In the study of Shinar, Glizer and Turetsky in [45] the functional J(u, v)
has the form:

(1.13) Jε(u, v) = z(tf )
TFz(tf ) +

tf∫
0

[zT (t)Dz(t) + ε2uT (t)u(t)− vT (t)Gvv(t)]dt.

(2) Gu has the following diagonal form

(1.14) Gu = diag

gu1 , ..., guq , 0, ..., 0︸ ︷︷ ︸
r−q

 , 0 ≤ q < r,

which means that only part of coordinates of the minimizer’s control is singular,
while the rest are regular. In this case Glizer and Kelis in [22] consider the following
more complicated functional:
(1.15)

Jε(u, v) = zT (tf )Fz(tf ) +

tf∫
0

(
zT (t)Dz(t) + uT (t) (Gu + E)u(t)− vT (t)Gvv(t)

)
dt,

where

(1.16) Gu + E = diag

gu1 , ..., guq , ε
2, ..., ε2︸ ︷︷ ︸
r−q


It should be noted that in both cases ε > 0 is a small parameter.

In both cases the game (1.11)-(1.12) is singular and hence the approach which is
used is the regularization approach, this means that the singular game is replaced
with a ”regular” form. Namely, the dynamic system (constraint) (1.11) is the same
but the cost functional J(u, v) in (1.12) is augmented with the control cost of the
minimizer multiplied by a small positive coefficient. These ”regular” cheap/partial
cheap control games were analyzed by using the singular perturbation techniques
which includes investigation of appropriate Riccati matrix differential equation (for
finite time case) or Riccati matrix algebraic equation (for infinite time case). For
more details see the works of Shinar, Glizer and Turetsky, [45], Glizer and Kelis, [22]
and Glizer and Kelis [21,23], respectively.

It is important to note that although the regularization approach which is used
in the paper of [23] is similar to the approach used in the works [21,22,45], the main
results of [23], as well as their derivation, differ considerably from the ones of these
works. Namely, in [22, 45] the finite horizon games were considered in wide classes
of the players’ admissible feedback controls. Each control of this class guarantees
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the existence and uniqueness of the absolutely continuous solution to the equation
of the game’s dynamics (subject to a given initial condition) against any square
integrable open-loop control of the opponent. Moreover, the time realization of the
feedback control along this solution is square integrable. In these classes of the
players’ admissible feedback controls, subject to proper conditions, the complete
solutions of the games (optimal control of the maximizing player, optimal control
sequence of the minimizing player and the game value) were obtained.

2. Problem formulation

Consider the differential equation (1.11) controlled by two decision makers (play-
ers) with tf a given final time moment; z(t) ∈ En is a state vector; u(t) ∈ Er,
(r ≤ n), v(t) ∈ Es are the players’ controls; A, B and C are given constant matrices
of corresponding dimensions; z0 ∈ En is a given vector. The cost functional, to be
minimized by u (the minimizer) and maximized by v (the maximizer), is defined in
(1.12) with F , D, Gv and Gu are as described below.

In what follows we assume the following assumptions.

AI. The matrix B has full rank r;
AII. The matrices F , D and Gu are positive semidefinite;
AIII. The matrix Gv is positive definite;
AVI. The players’ controls u(t) and v(t) are square integrable functions in [0, tf ].

An essential result to our analysis in the sequel is the Singular-Value Decompo-
sition (SVD) Theorem [50] which is phrased and proved for the convenience of the
readers next.

Theorem 2.1. Given a m× n matrix A, there exist positive constants (singular
values of A, actually the square roots of the eigenvalues of ATA) σ1 ≥ σ2 ≥ ... ≥
σr > 0 for some integer r such that

(2.1) UTAV = Σ

where U and V are orthogonal matrices (U is m×m and V is n× n) and Σ is the
m× n matrix

(2.2) Σ =


σ1 0 0 0 0 . . . 0
0 σ1 0 0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . .

 .

Proof. Since the matrix ATA is real symmetric then by the spectral theorem for
symmetric matrices it has a complete set of orthonormal eigenvectors: ATAxj =
λjxj , and

(2.3) xTi A
TAxj = λjx

T
i xj = λjδij

where δij is the Kronecker delta.
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For positive λj ’s (say j = 1, ..., r), we define σj =
√

λj and qj =
Axj

σj
; Then

qTi qj = δij .
Next, we extend the qi’s to a basis for Em and putting x’s in V and q’s in U , then

(2.4)
(
UTAV

)
ij
= qTi Axj =

{
0 if j > r;
σjq

T
i qj = σjδij , if j ≤ r.

Hence, we obtain UTAV = Σ and the proof is complete. �

Using the SVD theorem there exist orthogonal matrixes U and V of appropriate

dimensions such that Gu = UT ĜuV where the r × r-matrix Gu has the following
form

(2.5) Gu = diag
(
gu1 , ..., guq , 0, ..., 0︸ ︷︷ ︸

r−q

)
, 0 ≤ q < r,

with gu1 ≥ ... ≥ guq > 0 and rankGu = q < r. Then the cost functional translates
to (1.12).

Remark 2.2. In the sequel of this paper, we deal with the differential game (1.11)-
(1.12). The cost functional J(u, v) of this game is minimized by the control u(t) and
maximized by the control v(t). Since the weight matrix of the minimizer’s control
cost in the cost functional J(u, v) is singular, the solution of (1.11)-(1.12) (if any)
can be obtained neither by the Isaacs’s MinMax principle nor by the Bellman-Isaacs
equation method. Moreover, this game does not have, in general, an optimal control
of the minimizer among regular functions. We call such a game Singular Differential
Game (SDG). Singular differential games of the above mentioned form were studied
in the works of [21], [22], and [23].

3. Regularization of the SDG

To study SDG we use a regularization approach. Namely, we replace it with
a regular differential game, which is close in some sense to the SDG. This new
game has the same dynamics (1.11) as the SDG has. However, in contrast with the
SDG, the cost functional in the new game has the ”regular” form, i.e., it contains a
quadratic control cost of the minimizer with a ”regular” (positive definite) weight
matrix. Its form is as in (1.15) and (1.16).

Since the parameter ε > 0 is small, the problem (1.11), (1.15) is a partial cheap
control differential game, i.e., a differential game with a cost of some control coor-
dinates of at least one of the players much smaller than costs of the other control
coordinates and a state cost in the cost functional. We call this game the Partial
Cheap Control Game (PCCG). Due to the smallness of the cost of respective control
coordinates, the boundary-value problem, as well as the Bellman-Isaacs equation,
associated with partial cheap control game by controls optimality conditions, are
singularly perturbed. It should be noted that PCCG (1.11), (1.15) was investigated
in [22]. Also, various results on the topic of singularly perturbed differential games
can be found, for instance, in the works of [17,21,23,42,45] and references therein.



244 A. GIBALI AND O. KELIS

4. Pursuit-evasion game

Consider a particular case of the singular problem (1.11)-(1.13). Namely, n = 2,
r = 1, s = 1, q = 0. The matrices of coefficients in (1.11)-(1.13) are

A =

(
0 1
0 0

)
, D =

(
0 0
0 0

)
, F =

(
0 0
0 f

)
(4.1)

(4.2) BT = (0, 1), CT = (0, 1), Gu = 0, Gv = g

where the scalar g, f > 0.
The initial position z0 is

(4.3) zT0 (0) = (0, 1).

The system (1.11) subject to the data (4.2), (4.2) has the following form:

(4.4)

{
dz1(t)
dt = z2(t)

dz2(t)
dt = u(t) + v(t)

.

The solution of (4.4) with initial position (4.3) has the following integral form:

(4.5)

z(t) =
(
z1(t)

T | z2(t)T
)

= M (t)M (0)−1 z0(0) +

∫ t

0
M (t)M (s)−1 f (s) ds,

where

(4.6) M (t) =

(
1 t
0 1

)
is a fundamental matrix solution of the corresponding homogeneous system

(4.7)

{
dz1(t)
dt = z2(t)

dz2(t)
dt = 0

and

(4.8) f (s) =

(
0

u(s) + v(s)

)
.

Thus, the analytical solution (after some technical calculations in (4.5) with (4.6),
(4.8)) can be written as

z1(t) = t+

∫ t

0
(t− s) · (u(s) + v(s))ds(4.9)

z2(t) = 1 +

∫ t

0
(u(s) + v(s))ds.(4.10)

The system (4.4), with (4.3) is a linearized kinematic model of a planar engage-
ment between two vehicles - an interceptor (pursuer) and a target (evader) where
both vehicles are directly controlled by their lateral accelerations u(t) = −ap(t) and
v(t) = ae(t), respectively. The coordinates of the state vector z(t) (z1(t) and z2(t))
are the relative lateral separation and the relative lateral velocity of the vehicles.
More details of such an engagement can be found, for instance, in [27] and [43].
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The behavior of each player in this engagement is evaluated by the cost functional
(1.13) of the form

(4.11) J(u, v) = fz22(tf ) +

∫ tf

0

(
−gv2(t)

)
dt.

The cost functional (4.11) has to be minimized by the pursuer and maximized by
the evader.

In what follows, the game, consisting of the dynamics (1.11), with the data (4.1),
(4.2) and initial condition (4.3) and the cost functional (4.11) is called the (Singular)
Pursuit-evasion Differential Game.

Remark 4.1. It should be noted that a more general form of such an Pursuit-
evasion Differential Game was considered in [45] and was admitted an explicit
analytical solution using the regularization method i.e., solving a certain Riccati
differential equation.

The regularized Pursuit-evasion Differential Game has the same equation of dy-
namics (1.11) and the following functional

(4.12) Jε(u, v) = fz22(tf ) +

∫ tf

0

(
ε2u2 (t)− gv2(t)

)
dt.

Our goal is to minimize (with respect to u) and maximize (with respect to v)
the cost functional (4.12), over a sets of admissible controls Q ⊆ L2[0, tf ] and
R ⊆ L2[0, tf ] (closed, convex and bounded sets of the Hilbert space L2[0, tf ]). The
problem is then

(4.13) min
u∈Q

max
v∈R

Jε(u, v).

It is well known that Jε of (4.12) is continuous, convex in u, concave in v (convex-
concave) and differentiable. Hence, we will study the Jε min-max problem (4.13)
by investigating its equivalent saddle-point reformulation. We wish to find a saddle-
point (u∗, v∗) ∈ Q×R (see Example 1.2) such that

(4.14) Jε(u∗, v) ≤ Jε(u∗, v∗) ≤ Jε(u, v∗)

for all v ∈ R and u ∈ Q.
Saddle-point problems is one of the fundamental problems in Convex Program-

ming and Game theory, for an intensive and complete investigation on saddle-point
function we refer the reader to Rockafellar [41]. One class of iterative methods for
approximating saddle-points is known as gradient methods. One of the earliest and
simples gradient method is the Arrow-Hurwicz-Uzawa algorithm [4]. Another re-
lated method in this area is the Korpelevich’s extragradient method [35], see also [2],
see Subsection 1.1. Many other extension and related algorithms can also be used,
for example the works of Censor, Gibali and Reich [10–12] and Iusem and Nasri [31].
In addition, in the recent book of Zaslavski [54], Chapters 12 and 13 are focus on
solving variational inequalities by the extragradient method with perturbations,
which are mainly extensions to inexact version of the method.
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So, our goal is to test the performances of the Arrow-Hurwicz-Uzawa algorithm
and Korpelevich’s extragradient method for approximating the saddle-point prob-
lem (4.14). Since these methods require the evaluation of gradients of Jε (subgra-
dients in general), we first wish to explain briefly how this is done by recalling the
definition of functional derivative (variation derivative) in one variable, see e.g., [15]
for further details.

Definition 4.2. Given a functional of one variable F : M → E, where M is a
manifold representing continues functions y. The functional differential of
F (y), denoted by δF , defined in terms of the functional derivative, denoted by δF

δy

as follows:

(4.15) δF (y) =

∫
δF

δy
(x) δy(x)dx = lim

h→0

F (y + hδy)− F (y)

h
,

where δy is the variation of y.

We show the calculation of the functional derivatives of Jε(u, v) with respect to
u and v based on Definition 4.2.

Proposition 4.3. Given the following functional:

Jε(u, v) = f

(
1 +

∫ tf

0
(u(t) + v(t))dt

)2

+

∫ tf

0

(
ε2u2 (t)− gv2(t)

)
dt

its derivatives with respect to u and v, are

(4.16)
δJε(u, v)

δu (t)
= 2f

(
1 +

∫ tf

0
(u(t) + v(t))dt

)
+ 2ε2u (t)

and

(4.17)
δJε(u, v)

δv (t)
= 2f

(
1 +

∫ tf

0
(u(t) + v(t))dt

)
− 2gv (t) .

Proof. We start by calculating the functional differential with respect to u, namely,
δJε(u, v), using Definition 4.2

δJε(u, v) = lim
h→0

Jε(u+ hδu, v)− δJε(u, v)

h

= lim
h→0

[
f
(
1+

∫ tf
0 (u+hδu+v)dt

)2
+
∫ tf
0 (ε2(u+hδu)2−gv2)dt

]
−
[
f
(
1+

∫ tf
0 (u+v)dt

)2
+
∫ tf
0 (ε2u2−gv2)dt

]
h

= lim
h→0

f

[(
1+

∫ tf
0 (u+hδu+v)dt

)2
−
(
1+

∫ tf
0 (u+v)dt

)2
]
+
∫ tf
0 (ε2(u2+2uhδu+(hδu)2)−gv2)dt−

∫ tf
0 (ε2u2−gv2)dt

h

= lim
h→0

f
[((

1+
∫ tf
0 (u+hδu+v)dt

)
+
(
1+

∫ tf
0 (u+v)dt

))((
1+

∫ tf
0 (u+hδu+v)dt

)
−
(
1+

∫ tf
0 (u+v)dt

))]
h

+ lim
h→0

h
∫ tf
0 2ε2uδudt+h2

∫ tf
0 (δu)2dt

h

= lim
h→0

f
(
2+2

∫ tf
0 (u+v)dt+h

∫ tf
0 δudt

)
·h

∫ tf
0 δudt+h

∫ tf
0 2ε2uδudt+h2

∫ tf
0 (δu)2dt

h

= lim
h→0

[
f
(
2 + 2

∫ tf
0 (u+ v) dt+ h

∫ tf
0 δudt

)
·
∫ tf
0 δudt+

∫ tf
0 2ε2uδudt+ h

∫ tf
0 (δu)2 dt

]
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=
[
2f

(
1 +

∫ tf
0 (u+ v) dt

)
·
∫ tf
0 δudt+

∫ tf
0 2ε2uδudt

]
.

From here one can read that the functional derivative δJε(u,v)
δu has the form

δJε(u, v)

δu
= 2f

(
1 +

∫ tf

0
(u+ v) dt

)
+ 2ε2u

as in (4.16).

In a similar way, using Definition 4.2 one derive the functional derivative δJε(u,v)
δv

as in (4.17)and the proof is complete. �
Remark 4.4. Equivalent forms of functionals derivatives in the sense of Gâteaux
and Frèchet, we refer the reader, for instance, to [15].

Remark 4.5. It should be noted that investigation of a more general forms of
convex-concave functionals than (4.12), in zero-sum differential games, which does
not differentiable it need to use the subdifferentials (subgradients) in the sense
of [41]. For these we refer the reader to [25] and references therein.

For illustrations we choose two gradient methods, the Arrow-Hurwicz-Uzawa al-
gorithm [4] (see also [38]) Korpelevich’s extragradient method [35] (consult also [2]).

The Arrow-Hurwicz-Uzawa iterative step is as follows. Given the current iterate
(uk, vk), calculate the next iterate via

uk+1 = PQ
(
uk − α

δJε(uk, vk)

δu (t)

)
= PQ

(
uk − 2αf

(
1 +

∫ tf

0
(uk(t) + vk(t))dt

)
+ 2αε2uk

)
,(4.18)

and

vk+1 = PR
(
vk + α

δJε(uk, vk)

δv (t)

)
= PR

(
vk + 2αf

(
1 +

∫ tf

0
(uk(t) + vk(t))dt

)
− 2αgvk

)
(4.19)

where PQ and PR denote the orthogonal projection operators onto the sets Q and
R, respectively. The vectors u0 ∈ Q and v0 ∈ R are initial iterates, and the scalar
α > 0 is a constant step-size.

On the other hand, Korpelevich’s extragradient computes an additional gradient
per each iterations and this is the reason for its name, its iterative step is as follows.
Given the current iterate (uk, vk), calculate the next iterate via

uk = PQ
(
uk + 2αf

(
1 +

∫ tf

0
(uk(t) + vk(t))dt

)
+ 2αε2uk

)
;(4.20)

vk = PR
(
vk + 2αf

(
1 +

∫ tf

0
(uk(t) + vk(t))dt

)
− 2αgvk

)
;(4.21)

uk+1 = PQ
(
uk + 2αf

(
1 +

∫ tf

0
(uk(t) + vk(t))dt

)
+ 2αε2uk

)
;(4.22)

vk+1 = PR
(
vk + 2αf

(
1 +

∫ tf

0
(uk(t) + vk(t))dt

)
− 2αgvk

)
;(4.23)
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A standard assumption for the convergence of the above methods is the so-
called Boundedness of the derivatives, which means that the functional derivatives
of Jε(uk, vk) and Jε(uk, vk) with respect to u and v respectively, (see above) are
uniformly bounded, i.e., there is a constant M > 0 such that

(4.24)

∣∣∣∣∣∣∣∣δJε(uk, vk)

u(t)

∣∣∣∣∣∣∣∣
Q×R

≤M,

∣∣∣∣∣∣∣∣δJε(uk, vk)

v(t)

∣∣∣∣∣∣∣∣
Q×R

≤M,

for all k ≥ 0.

5. Numerical Illustrations and discussion

In this section the cost functional (4.12) is considered for f = 0.5, tf = 4. From
the functional derivatives (4.16) and (4.17) once can check that a critical point of
(4.12) is (u, v) = (−0.25, 0) which is a saddle-point of (4.12). In Figure 1 we present
a numerical experiment with the following choice of parameters: g = 0.3, 3000
iteration ε = 0.005, α = 0.001 and (u0, v0) = (1, 1). In Figure 2, we tested the
performance of the algorithms with a smaller ε = 0.001. In both figures, the first
rows are the graphs for the pursuer control u and the evader control v as well as of
z(t) = (z1(t), z2(t)) (z1 is the relative separation and z2 is the relative velocity) are
presented. The graphs of z1 and z2 obey the analytical solution (4.9) and (4.10).
From these and other choices of parameters, it appears that both methods converges
to the saddle-point (u, v) = (−0.25, 0) but probably due to the extra evaluation of
the gradients per each iteration in Korpelevich’s method, the cpu time and number
of computations is higher with respect to the Arrow-Hurwicz-Uzawa algorithm.
In addition, the Arrow-Hurwicz-Uzawa produces u which is closer to −0.25 than
Korpelevich method and consequently, z2 approaches to zero faster in the final
moment.

It should be noted and seen in Figures 1 and 2 that for ε → 0+, the value z2(4)
approaching zero, this means that relative lateral velocity of the vehicles z2 tends
to zero at the end of the game. Moreover, for ε→ 0+ the relative lateral separation
z1 tends to the constant function 2 at the end of the game. Hence, in this game the
pursuer doesn’t intercept the evader.

6. Conclusions

We considered finite-horizon singular zero-sum linear-quadratic differential game
where the weight matrix of the minimizer’s control cost has general singular form
than in [22]. As a particular case of such a game we considered a so-called pursuit-
evasion game where our purpose was to find a min-max point using gradient meth-
ods, in particular the Arrow-Hurwicz-Uzawa and the Korpelevich’s algorithms. We
established by calculation of appropriate functional derivatives that a min-max point
of the presented pursuit-evasion game is (−0.25, 0). It should be noted that the
achieved saddle point (−0.25, 0) by the above two gradient methods coincides with
symbolic computations in Maple for small positive epsilon. Using MATLAB R2017a
on an Intel Core i5-4200U 2.3GHz running 64-bit Window, we examined numerical
illustrations showing the convergence of the gradient methods to the same saddle-
point. The preliminaries results show that a more general setting of functionals and
correspondingly the differential game, can be considered, for example, functionals
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Figure 1. Illustration of Arrow-Hurwicz-Uzawa and Korpelevich
algorithms with the parameters ε = 0.005, α = 0.001, g =
0.3, 3000 maximum number of iteration, and starting points are
(u0(t), v0(t)) ≡ (1, 1) (constant function 1).
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Figure 2. Illustration of Arrow-Hurwicz-Uzawa and Korpelevich
algorithms with the parameters ε = 0.001, α = 0.001, g =
0.3, 3000 maximum number of iteration, and starting points are
(u0(t), v0(t)) ≡ (1, 1) (constant function 1).
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which are not necessary differentiable and then subgradient methods can be ap-
plied. Concerning more general pursuit-evasion games, our objective is to study the
scenario in which the relative lateral separation z21(tf ) appears in (1.13) together or
instead of the relative velocity z22(tf ), and moreover, the matrix D is not necessary
equals zero. Of course, other iterative methods should be concerned for such games.
It is all part of our future goals for research.
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[38] A. Nedić and A. Ozdaglar, Subgradient methods for saddle-point problems, J. Optim. Theory
Appl. 142 (2009), 205–228.

[39] M. Patriksson, Nonlinear Programing and Variational Inequality Problems, A Unified Ap-
proach, Kluwer Academic Publisher, Dordrecht, The Netherlands 1999.

[40] I. R. Petersen,Linear-quadratic differential games with cheap control, Syst Control Lett. 8
(1986), 181–188.

[41] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[42] V. R. Saksena, J. O’Reilly and P. V. Kokotovic, Singular perturbations and time-scale methods

in control theory: survey 1976-1983. Automatica, A J. IFAC. 20 (1984), 273–293.
[43] J. Shinar, Solution techniques for realistic pursuit-evasion games, in: Advances in Control

and Dynamic Systems, C. Leondes (Ed.), vol. 17, Academic Press, New York, NY, 1981, pp.
63–124.

[44] J. Shinar and V. Y. Glizer, Application of receding horizon control strategy to pursuit-evasion
problems, Optim Control Appl Methods. 16 (1995), 127–141.



252 A. GIBALI AND O. KELIS

[45] J. Shinar, V. Y. Glizer and V. Turetsky, Solution of a singular zero-sum linear-quadratic
differential game by regularization, Int. Game Theory Rev. 16 (2014), 14–32.

[46] E. N. Simakova, Differential pursuit game, Autom. Remote Control 28 (1967), 173–181.
[47] A. W. Starr and Y.-C. Ho,Nonzero-sum differential games, J. Optim. Theory Appl. 3 (1969),

184–206.
[48] A. A. Stoorvogel, The singular zero-sum differential game with stability using H∞ control

theory, Math. Control Signals Systems, 4 (1991), 121–138.
[49] A. A. Stoorvogel, The H∞ Control Problem: A State Space Approach, Ann Arbor, MI: Uni-

versity of Michigan Press 2000.
[50] G. Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press 1993.
[51] V. Turetsky and V. Y. Glizer, Robust state-feedback controllability of linear systems to a hy-

perplane in a class of bounded controls, J. Optim. Theory Appl. 123 (2004), 639–667.
[52] V. Turetsky and V. Y. Glizer, Robust solution of a time-variable interception problem: a cheap

control approach. Int. Game Theory Rev. 9 (2007), 637–655.
[53] V. Turetsky, V. Y. Glizer and J. Shinar, Robust trajectory tracking: differential game/cheap

control approach, Internat. J. Systems Sci. 45 (2014), 2260–2274.
[54] A. J. Zaslavski, Numerical Optimization with Computational Errors, Springer, 2016.

Manuscript received June 2 2017

revised October 4 2017

A. Gibali
Department of Mathematics, ORT Braude College, 2161002 Karmiel, Israel

The Center for Mathematics and Scientific Computation, University of Haifa, Mt. Carmel, Haifa
3498838, Israel

E-mail address: avivg@braude.ac.il

O. Kelis
Department of Mathematics, ORT Braude College, 2161002 Karmiel, Israel,
&
Department of Mathematics, Faculty of Natural Sciences, University of Haifa, Mount Carmel,
Haifa, 31905, Israel.

E-mail address: olegkelis@braude.ac.il


