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Row and column methods seek to solve the minimum norm problem, and the
least squares problem respectively. For inconsistent data their asymptotic behav-
ior is therefore different. The row-action methods exhibit cyclic convergence but
not in general to a least squares solution. The column methods on the other hand
converge to a least squares solution but not in general to the minimum norm solu-
tion. In tomographic reconstructions it is not uncommon that there are errors in
the implementation of the forward projector, and/or the backprojector [67]. Hence
the matrices that represent these operators are not each other’s transpose. The
influence of such errors were recently studied [33], both on the two underlying mini-
mization problems, and on the behavior of row- and column iterations used to solve
these problems. The connections between row-action methods and multiplicative
Schwarz methods are considered in [54]. Here also convergence rates are studied
both for random and cyclic control.

We will here only consider cyclic control, i.e. the blocks of rows/columns respec-
tively are picked up in a cyclic order. For other controls see [1, 24, 19, 23], and for
randomized Kaczmarz’s methods see [64, 30, 52, 54].

Notation. Let Q be a matrix, then Q† is its pseudoinverse, and R(Q), N(Q)
denote the rangespace and nullspace of Q respectively. Further PΩ is the orthog-
onal projector onto a closed convex set Ω. For square matrices we let ρ(Q) be the
spectral radius of Q. The inner product of two vectors is denoted (x, y) with the

corresponding norm ∥x∥ = ∥x∥2 =
√

(x, x). Further spd stands for symmetric and

positive definite, Q1/2 for the square root of a spd matrix Q, and ∥x∥2Q = xTQx.

2. Block-Row Iteration

Our starting point will be a large linear system of equations (not necessarily
consistent),

(2.1) Ax = b, A ∈ Rm×n, b ∈ Rm.

The system is assumed to arise from discretization of an ill-posed problem. We
assume that the matrix A does not contain rows/columns identically equal zero.
Let A be partitioned into p disjoint block rows and let b be partitioned accordingly,

A =

 R1
...
Rp

 , b =

 b1
...
bp

 , Ri ∈ Rmi×n, bi ∈ Rmi , i = 1, 2, . . . , p.

Also, let {ωi}pi=1 be a set of positive relaxation parameters and let Mi ∈ Rmi×mi ,
i = 1, 2, . . . , p be a set of given spd matrices.

The following generic algorithm, which uses the blocks Ri in a sequential fashion,
covers several important special cases.

Algorithm BRI: Block-Row Iteration
**********************************************

Initialization: x0 ∈ Rn is arbitrary.
For k = 0, 1, 2, . . . (cycles or outer iterations)

v0 = xk

For i = 1, 2, . . . , p (inner loop)
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vi = vi−1 + ωiR
T
i Mi

(
bi −Ri v

i−1
)

End
xk+1 = vp

End
*********************************************

With p = 1 there is just one block so Mi = M ∈ Rm×m, and the method
becomes fully simultaneous. On the other end when p = m each block consists of a
single row so Mi ∈ R, i = 1, 2, . . . ,m, and the iteration becomes fully sequential.
For a study of implementation/performance issues of block-iterative iterations on
multicore architectures see [62].

Let a cycle denote one pass through all blocks, i.e., one outer iteration. Since
block iteration uses a single block in each inner iteration it takes p iterations to
complete a cycle.

Let slt(Q) denote the strictly lower block-triangular part of a matrix Q. Define

(2.2) Lr = slt(AAT ) =


O O

R2R
T
1

. . .
...

. . .
. . .

RpR
T
1 . . . RpR

T
p−1 O

 ,

and

(2.3) Dr =


ω−1
1 M−1

1 O
. . .

. . .

O ω−1
p M−1

p

 := diag(ω−1
i M−1

i ).

Further put

(2.4) Mrw = (Dr + Lr)
−1.

Proposition 2.1. One cycle of Algorithm BRI can be written

(2.5) xk+1 = xk +ATMrw(b−Axk).

Proof. [34, Proposition 4]. �

We stress that (2.5) holds for the particular subsequence {xk} generated in Algo-
rithm BRI (i.e. using the blockrow-ordering (1, 2, . . . , p)). For other subsequences
the matrix Mrw will change. We next study how it is changed. First let PijA
interchange block rows i and j in A. The entries of Pij are 0 or 1. In each row

and column of Pij there is exactly one 1. It’s easily seen that P T
ij = P−1

ij , i.e. Pij

is orthogonal. The matrix Pij is called an elementary permutation matrix see [45]
for the case of block rows of dimension 1. We provide an example. Let p = 2 and



222 T. ELFVING

R1, 3× n, R2, 2× n. Then

P12 =


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 , so that P12A =

(
R2

R1

)
.

Let (i1, i2, . . . , ip) denote an arbitray subsequence. Obviously such a sequence can
be generated by Algorithm BRI by considering a permuted system PAx = Pb
with P a product of elementary permutation matrices. Let Â = PA, and L̂r =
slt(ÂÂT ), D̂r = PDrP

T . It follows

M̂rw = (slt(PAATP T ) + PDrP
T )−1.

Continuing the example above we get

M̂rw =

(
ω−1
2 M−1

2 0
R1R

T
2 ω−1

1 M−1
1

)
,whereas Mrw =

(
ω−1
1 M−1

1 0
R2R

T
1 ω−1

2 M−1
2

)
.

Remark 2.2. The iterates are not sensitive to the ordering of the unknowns, unless
such a transformation also changes Mi (to say M̄i) as can be seen as follows. Let P
be any permutation matrix, and consider now the transformation (from the right)
AP so that the system becomes APP Tx = b. With Ā = AP, y = P Tx we then get

(2.6) Āy = b.

Note that Ā has blockrows equal {RiP}. We now apply (2.5) to (2.6) and get

yk+1 = yk + ĀT M̄rw(b− Āyk).

After multiplication with P from the left, and putting Pyk = xk we retrieve (2.5),

provided Mrw = M̄rw. Now Lr = slt(AAT ) = slt(ĀĀT ) = L̄r. Hence Mrw =
(Dr + Lr)

−1 = (D̄r + L̄r)
−1 = M̄rw provided Mi = M̄i, i = 1, 2, . . . , p. It follows

then that the use of P only affects the order of the components in the iterates but
not their numerical values.

We shall later see how Mi transforms for different examples. The iterates do how-
ever, even in the consistent case, depend on the order of the equations. In fact the
bigger the angle between successive hyperplanes (p = m) the faster convergence.We
will return to this in connection with the examples.

Theorem 2.3. Assume that b ∈ R(A). The iterates of Algorithm BRI converge
towards a solution x̂ of Ax = b if

(2.7) ωi ∈ Ωi = (ϵ, (2− ϵ)/ρ(RT
i MiRi)), i = 1, 2, . . . , p, 0 < ϵ < 2.

If further

(2.8) (i) N(AT ) = ∅ and/or (ii) R(Mrw) ⊆ R(A),

then (2.7) is also necessary for convergence. If, in addition x0 ∈ R(AT ), then x̂ is
unique and of minimal 2-norm.
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The proof is given in Section 4. Sufficient convergence conditions are also given
in [47, Theorem II.I] and [12, Theorem 3.1].

We next consider the inconsistent case.

Theorem 2.4. If conditions (2.7) hold then the iterates in (2.5) converge towards
a solution of

(2.9) ATMrwAx = ATMrwb.

Proof. The convergence of subsequences in the inconsistent case (also called cyclic
convergence) was shown in [65] for Kaczmarz’s method (ωi = 1, p = m). For general
weight matrices see [29, Theorem 1.3] (and cf. [34, Proposition 6]) or [47, Theorem
II.I]. The fact that the limit satisfies (2.9) follows from Proposition 2.1. �

We now consider the fully simultaneous case p = 1. Put ω1 = ω, M1 = M. Then
Algorithm BRI becomes

(2.10) xk+1 = xk + ωATM(b−Axk).

Theorem 2.5. The iterates of (2.10) converge towards a minimizer x̂ of ∥b−Ax∥M
if and only if

(2.11) ω ∈ (ϵ, (2− ϵ)/ρ(ATMA)), 0 < ϵ < 2.

If, in addition x0 ∈ R(AT ), then x̂ is unique and of minimal 2-norm.

The proof is given in Section 4. The fully simultaneous iteration (2.10) (often
referred to as Landweber iteration) has been analyzed and used frequently. In
particular replacing ωATM in (2.10) by ωkU

TATM with U,M both diagonal with
positive diagonal elements, and ωk ∈ (0, 1] [12, Theorem 4.1] provides sufficient
conditions on the diagonal elements to insure convergence. For the case U,M spd
and allowing the relaxation parameter ω to depend on k (nonstationary iteration)
[59, Theorem IV.3] gives a necessary and sufficient condition for convergence. It is
easily verified that this condition, using a constant relaxation parameter ω becomes
identical to (2.11).

2.1. Symmetric Block-Row Iteration. In the symmetric version one first per-
forms one cycle of Algorithm BRI followed by another cycle but now taking the
row-blocks in reverse order.

Algorithm SBRI: Symmetric Block-Row Iteration
**********************************************

Initialization: x0 ∈ Rn is arbitrary.
For k = 0, 1, 2, . . . (cycles or outer iterations)

v0 = xk

For i = 1, 2, . . . , 2p− 1, (inner loop)
If i ≤ p then j(i) = i else j(i) = 2p− i
vi = vi−1 + ωj(i)R

T
j(i)Mj(i)(bj(i) −Rj(i)v

i−1),

End
xk+1 = v2p−1

End
*********************************************
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For the fully sequential case p = m this method was considered in [9].
Let

(2.12) Msr = MT
rwD̃rMrw, D̃r = 2Dr − blockdiag(AAT ).

Proposition 2.6. One cycle of Algorithm SBRI can be written

(2.13) xk+1 = xk +ATMsr(b−Axk).

If the conditions (2.7) hold then Msr is positive definite.

Proof. [34, Proposition 10]. �

We again stress that Msr depends on the row-ordering.

Theorem 2.7. The iterates of Algorithm SBRI converge towards a solution of
min ∥Ax− b∥Msr if and only if the conditions (2.7) hold.

The proof will be given in Section 4. In the consistent case it follows that the
limit point satisfies Ax = b. In the inconsistent case we will have cyclic convergence
since the limit point depends on Msr, i.e. on the row-ordering.

We summarize the convergence results in a table as follows (where N means
necessary condition and S sufficient condition, and x̂ is the limit point).

Algorithm Restriction cond (2.7) source limit
BRI b ∈ R(A) S. Theorem 2.3 Ax̂ = b
BRI b ∈ R(A), and (2.8) N. and S. Theorem 2.3 Ax̂ = b
BRI b /∈ R(A) S. Theorem 2.4 cyclic convergence
BRI p = 1 (simultaneous) N. and S. Theorem 2.5 argmin ∥b−Ax̂∥M
SBRI b ∈ R(A) N. and S. Theorem 2.7 Ax̂ = b
SBRI b /∈ R(A) N. and S. Theorem 2.7 cyclic convergence

2.2. Examples: Row-Iteration. Several well known iterative methods appear as
special cases of Algorithm BRI.

Example 1 (Block-Kaczmarz). Then Mi = (RiR
T
i )

−1, so that M̄i = Mi, cf. Re-
mark 2.2. Here it is tacitly assumed that Ri has full row-rank. The block version
of Kaczmarz’s method was studied in [31] (later published in [32]) without this re-
striction. There the method is derived by applying the classical SOR-method on
the equations AAT y = b, x = AT y. We next simplify the convergence conditions
by first observing that RT

i MiRi = PR(RT
i ). It follows that ρ(RT

i MiRi) = 1, and

hence condition (2.7) in this case is equivalent with ωi ∈ (0, 2), i = 1, 2, . . . , p. The
classical row version appears for p = m. We also note that the inner loop can be
written

vi = ωiP{Riz=bi}v
i−1 + (1− ωi)v

i−1,

and hence can be seen as an instance of the projection onto convex sets (POCS)
algorithm [24]. Kaczmarz’s method [48] has a long and rich history see, e.g. [44,
51, 24, 65] (ωi = 1, p = m), [32, Theorem 2] (block-case), [26, 46] among others.
In [50] the convergence, taking all relaxation parameters equal one, was studied in
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an infinite dimensional Hilbert space setting. For results on more general classes of
projection algorithms see [6, 24, 38, 11, 13].

As remarked above the rate of convergence depends on the angles between hy-
perplanes. In [44, p. 209] a strategy is suggested (for matrices appearing in image
reconstruction) for sorting the rows in an efficient way. A similar strategy is sug-
gested in [40]. A different approach for picking the order of the equations is based
on the fact that the vectors vi − vi−1 and vi − x are perpendicular when ωi = 1,
and x is a solution of Ax = b. Thus

∥vi − x∥2 = ∥vi−1 − x∥2 − ∥vi − vi−1∥2.

Hence picking i such that ∥vi − vi−1∥ = ∥RT
i Mi

(
bi − Riv

i−1
)
∥, is maximal gives

the largest possible decrease of the error in step i. This would however require
evaluating bj−Rjv

i−1 over all j. A more efficient implementation (specially when p
is large), requiring only evaluation over a subset is considered in [30]. Note however
that this approach neither leads to a stationary iteration nor to cyclic control.

Example 2 (Block-Cimmino [25]). Let {θij} be given positive weights such that

Σmi
j=1θ

i
j = 1. Further rij denotes the jth row in Ri. Then

Mi = MCim
i = diag(θij/∥rij∥2), i = 1, 2, . . . , p.

Since A by assumption has no zero rows MCim
i is well defined. Taking equal weights

it holds MCim
i = 1/mi( diag(R

T
i Ri) )

−1, so Cimmino can be considered as using a
diagonal approximation of the corresponding matrix in Kaczmarz’s method. It also
follows that M̄i = Mi. It’s easily seen that ρ(RT

i MiRi) ≤ 1 (see, e.g., [18, (7.27)]
so that by Theorems 2.3 and 2.4 convergence occurs for ωi ∈ (0, 2). However this is
now only a sufficient condition even if conditions (2.8) are satisfied. In fact, as has
been verified experimentally in, e.g. [20, Figures 4.7-9] the upper bound 2 is quite
restrictive especially for large and sparse matrices so that taking too small value of
ωi results in poor rate of initial convergence.

Example 3 (Component averaging (CAV)). This method was introduced by Cen-
sor, Gordon and Gordon [21] to overcome the slow initial rate of Cimmino. Let siν
be the number of nonzero elements in column ν in Ri. Then

(2.14) Mi = diag

(
1

∥rij∥2Si

)
, Si = diag

(
siν
)
, i = 1, 2, . . . , p.

Since A has no zero-row it easily follows that ∥rij∥2Si
̸= 0. In [18, Corollary 7.1]

it is shown that ρ(RT
i MiRi) ≤ 1. Hence we can again deduce convergence when

ωi ∈ (0, 2). Although this is again only a sufficent condition it seems more tight (for
sparse matrices) than the bound for Cimmino [20, Figures 4.7-9]. Further using that
r̄ij = rijP and S̄i = PSiP (note that a permutation matrix is always symmetric) it

holds ∥rij∥2Si
= ∥r̄ij∥2S̄i

. Hence Mi = M̄i. Sufficient convergence conditions for CAV

(both for strictly block and for fully simultaneous versions) are also given in [12].
In our two following examples the inner loop in Algorithm BRI is replaced by

vi = vi−1 + ωiURT
i Mi(bi −Riv

i−1),
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where U ∈ Rn×n is a given spd matrix. By defining

R̃i = RiU
1/2, ui = U−1/2vi

the inner loop takes the form

(2.15) ui = ui−1 + ωiR̃
T
i M̄i(bi − R̃iu

i−1).

Hence using the matrix U corresponds to performing Algorithm BRI on the system
Ãz = b where Ã = AU1/2, z = U−1/2x. Let U.alg denote algorithm BRI on the
form (2.15). If column permutations are done (which we denote P ◦U.alg) Remark
2.2 applies. If however the order is reversed (U.alg ◦P ), i.e. the matrix U is chosen
based on the permuted system the iterates will change (unless U remains the same
for the permuted and the unpermuted system).

Example 4 (Diagonally-Relaxed orthogonal projection Methods (DROP)). Here
we consider the version DROP1 [20, (3.10)]. Then

(2.16) Mi = MCim
i = M̄i, i = 1, 2, . . . , p, U = diag(1/τν),

where

τν ≥ max
i

{siν , 1 ≤ i ≤ p}, 1 ≤ ν ≤ n.

Here it is not assumed that Σmi
j=1θ

i
j = 1. It holds [20, Theorem 2.10]

ρ(U1/2RT
i MiRiU

1/2) ≤ max
j

θij .

Hence picking θij = 1 for all i, j we can again deduce convergence when ωi ∈ (0, 2).
Both CAV and DROP were constructed to improve slow rate of convergence of

the Cimmino method by explicitly allowing the iteration parameters to depend on
sparsity. For a fully dense matrix the three methods coincide.

Example 5 (Simultaneous Algebraic Reconstruction Technique (SART)). This
method was introduced by Andersen and Kak [2]. Here we consider the block-
version BSSART proposed in [18, (7.15)]. Then (note that here the 1-norm is used)

(2.17) U = diag(1/∥aℓc∥1), Mi = diag

(
1

∥rij∥1

)
, i = 1, 2, . . . , p.

Here aℓc is the ℓth column of A. Then following result is from [18, (7.18)]

ρ(U1/2RT
i MiRiU

1/2) = ρ(RT
i MiRiU)

≤ ∥RT
i Mi∥1 ∗ ∥RiU∥1 = 1.

Hence we can again deduce convergence when ωi ∈ (0, 2). Since ∥x∥1 = ∥xP∥1 it
follows that Mi = M̄i. Note that U is well defined by the assumption that A does
not contain zero columns.

Example 6 (Mixture). Note that we can mix the first three examples, i.e., within
each cycle pick different types of Mi. However the choice should be independent of
the outer index k so that the resulting iteration still is stationary.

All six examples given above can also be used in Algorithm SBRI. Row-iteration
methods can also be used for solving linear inequalities [27, 22, 18, 28, 20, 13, 15].
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We finish this section by a few notes on inconsistency. As mentioned, see Theorem
2.4, the BRI-algorithm exhibits in general cyclic convergence when applied to an
inconsistent system. In [17] however it was shown for Kaczmarz’s method with
ωi = ω that as ω → 0 the iterates converge towards a scaled least squares solution (a
similar result is [34, Proposition 12] for algorithm SBRI). An interesting approach
for handling inconsistency is due to Popa and coo-workers, e.g. [57, 58, 56]. A
starting point here is to apply Kaczmarz’s method on the augmented system [8,
section 2.5.3] (

I A
AT 0

)(
r
x

)
=

(
b
0

)
.

This system is equivalent with the normal equations and therefore always consistent.
Note that the method requires access to both rows and columns of A during a cycle.

3. Block-Column iteration

Let A be partitioned into q disjoint column-blocks {Ai}q1, where

Ai ∈ Rm×ni ,

q∑
i=1

ni = n,

and let the vector x be partitioned similarly, i.e.

x = (x1, x2, . . . , xq), xi ∈ Rni .

Let {ωi}qi=1 be a set of positive relaxation parameters, and {Ni ∈ Rni×ni}qi=1 a set
of given spd matrices.

Algorithm BCI: Block-Column Iteration
**********************************************

Initialization: x0 ∈ Rn is arbitrary. r0,1 = b−Ax0.
For k = 0, 1, 2, . . . (cycles or outer iterations)

For i = 1, 2, . . . , q (inner loop)

xk+1
i = xki + ωiNiA

T
i r

k,i

rk,i+1 = rk,i −Ai(x
k+1
i − xki )

End
rk+1,1 = rk,q+1

End

*********************************************
Hence for each cycle the method requires q applications of Ai, A

T
i respectively. It

is easily seen that the update generating rk,i+1 in the inner loop is an efficient way
to compute the residual given by

(3.1) rk,i+1 = b−
i∑

j=1

Ajx
k+1
j −

q∑
j=i+1

Ajx
k
j .
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Let

(3.2) Lc = slt(ATA) =


O O

AT
2 A1

. . .
...

. . .
. . .

AT
q A1 . . . AT

q Aq−1 O

 , Dc = diag(ω−1
i N−1

i ).

Proposition 3.1. Let Mcl = (Dc + Lc)
−1. One cycle of Algorithm CRI can be

written

(3.3) xk+1 = xk +MclA
T (b−Axk).

Proof. [36, Proposition 4]. �
Theorem 3.2. The iterates of Algorithm BCI converge toward a minimizer of
∥b−Ax∥ if and only if

(3.4) ωi ∈ Ω̄i =
(
ϵ, (2− ϵ)/ρ(AiNiA

T
i )
)
, i = 1, 2, . . . , q, 0 < ϵ < 2.

Theorem 3.2 will be proved in section 4.

Remark 3.3. The iterates in Algorithm BCI are not sensitive to the ordering of
the equations unless Ni also changes. To see this let again P be a permutation
matrix, and consider a permutation of (2.1)

Āx = b̄, Ā = PA, b̄ = Pb.

By applying (3.3) on this system we get

xk+1 = xk + M̄clĀ
T (b̄− Āxk) = xk + M̄clA

T (b−Axk).

Since Lc = L̄c the iterates based on the permuted system will be the same as the
iterates based on the original system provided Ni = N̄i, i = 1, 2, . . . , q. The rate of
convergence however depends on the ordering of the unknowns.

3.1. Symmetric Block-Column Iteration. We finally present, for completeness,
the symmetric version (which was, for q = n also described in [9]).

Algorithm SBCI: Symmetric Block-Column Iteration
**********************************************

Initialization: x0 ∈ Rn is arbitrary. r0,1 = b−Ax0.
For k = 0, 1, 2, . . . (cycles or outer iterations)

For i = 1, 2, . . . , 2q − 1 (inner loop)
if i ≤ q then
zi = xki + ωiNiA

T
i r

k,i

rk,i+1 = rk,i −Ai(zi − xki )
else j(i) = 2q − 1

xk+1
j(i) = zj(i) + ωj(i)Nj(i)A

T
j(i)r

k,i

rk,i+1 = rk,i −Aj(i)(x
k+1
j(i) )− zj(i))

End
rk+1,1 = rk,2q

End

*********************************************
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3.2. Examples: Column-Iteration. Here we shortly describe the column-versions
of the row-iterations presented in 2.2.

Example 1, SOR. Then

(3.5) Ni = (AT
i Ai)

−1,

so that AiNiA
T
i = AiA

†
i = PR(Ai). It follows that ρ(AiNiA

T
i ) = 1, and hence by

Theorem 3.2 the method converges if and only if ωi ∈ (0, 2). Here we assume that Ai

has full column rank, otherwise see [32]. This method is matematically equivalent
with applying the classical SOR method on the normal equations.

Example 2, Column-Cimmino. Let {θij} be given positive weights such that

Σni
j=1θ

i
j = 1. Further aji denote the jth column of block Ai. Then

Ni = diag(θij/∥a
j
i∥

2), i = 1, 2, . . . , q.

Taking equal weights it holds Ni = 1/ni( diag(A
T
t At) )

−1, so Cimmino can be con-
sidered as using a diagonal approximation of the matrix from SOR. This can be
useful when AT

i Ai is a full matrix (which occurs in certain models in computed
tomography). We next investigate condition (3.4) (assuming for notational conve-
nience equal weights). It holds

ρ(AiNiA
T
i ) = ∥AiNiA

T
i ∥ =

1

ni

∥∥∥∥∥∥
ni∑
j=1

1

∥aji∥
aji (a

j
i )

T

∥∥∥∥∥∥(3.6)

=
1

ni

∥∥∥∥∥∥
ni∑
j=1

PR(aji )

∥∥∥∥∥∥ ≤ 1 ⇒ ωi ∈ (0, 2).

Note however that now the upper bound 2 is only a sufficient condition (similarly
as for row-iteration) and may lead to slow rate of convergence.

Example 3, Column-CAV. Let sνi be the number of nonzero elements in row ν of
Ai. Then

(3.7) Ni = diag

(
1

∥aji∥2Si

)
, Si = diag (sνi ) , i = 1, 2, . . . , q.

This defines the column version of the row-action method CAV [21] mentioned in
the previous section. Similarly as for the row version [18, Corollary 7.1] one finds
that ρ(AiNiA

T
i ) ≤ 1 so convergence holds for ωi ∈ (0, 2).

In a similar way we can define column versions of DROP and SART, and also
combine, within a cycle, Examples 1,2,3.

4. Convergence analysis

Consider the possibly singular but consistent linear system

(4.1) Qx = d, d ∈ R(Q),

where Q ∈ Rn×n, d ∈ Rn. Let V be a given nonsingular matrix. We will study the
following stationary iteration

(4.2) xk+1 = Txk + c, T = I − V −1Q, c = V −1d,
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for finding a solution of (4.1). The following result is [61, Corollary 2.2].

Proposition 4.1. The iterates {xk} in method (4.2) converge to a solution of (4.1)
if and only if ρ(PT ) < 1, where P = PR(QT ) = Q†Q.

For the symmetric case the following classical result by Keller holds [49, Theorem
2].

Proposition 4.2. Assume that Q is symmetric, and let

(4.3) S = V + V T −Q be positive definite.

Then the iteration (4.2) is convergent if and only if Q is positive semidefinite.

However we wish to find both necessary and sufficient convergence conditions on
the iteration parameters (which are hidden in the matrix S) so the following result
is more appropiate [37, Theorem 3.1].

Theorem 4.3. Assume that Q is symmetric and positive semidefinite. Then the
iteration (4.2) is convergent if and only if S is positive definite.

The proof in [37] is different in character from the one in [49]. Here we give a
’Keller’-like proof of Theorem 4.3. The first part (sufficiency) is taken from Keller
(which we repeat for the convenience of the reader). Also by using Proposition 4.1
the proof can be much shortened.

Proof. Let (λ, u) be any eigenpair of T, i.e. Tu = λu. Hence

(4.4) Qu = (1− λ)V u.

It follows that λ = 1 if and only if Qu = 0. Now let u /∈ N(Q) be an eigenvector of
T with λ = α + iβ the corresponding eigenvalue. Then Qu ̸= 0 so that λ ̸= 1 and
(Qu, u) > 0. Take the inner product of (4.4) with u to get

(4.5)
1

1− λ
=

(V u, u)

(Qu, u)
.

By adding (4.5) to its complex conjugate, and using that Q is symmetric and that
¯(V u, u) = (u, V u) = (V Tu, u) it follows

2Re
1

1− λ
=

((V + V T )u, u)

(Qu, u)
=

((S +Q)u, u)

(Qu, u)
= 1 +

(Su, u)

(Qu, u)
.(4.6)

Now Re(1− λ)−1 = (1− α)/((1− α)2 + β2). Let

(4.7) φ(α, β) =
2(1− α)

(1− α)2 + β2

Then (4.6) becomes

(4.8) φ(α, β) = 1 +
(Su, u)

(Qu, u)
.

Sufficiency, (following [49]). Assume that S is positive definite. Then by (4.8)
φ(α, β) > 1 which yields

2(1− α) > (1− α)2 + β2, or α2 + β2 < 1.

Since ρ(PT ) = ρ(TP ) convergence follows by Proposition 4.1.
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Necessity, (new). Next assume that the iteration (4.2) is convergent, i.e., (by
Proposition 4.1), α2 + β2 < 1. Then

φ(α, β) >
2(1− α)

(1− α)2 + sup(β2)
=

2(1− α)

(1− α)2 + 1− α2
= 1.

We conclude by (4.8) that
(Su, u)

(Qu, u)
> 0,

whence S is positive definite. �
We will now prove the convergence theorems, and start with Algorithm BCI.

Proof. of Theorem 3.2 (Algorithm BCI). By Proposition 3.1, T = I−MclA
TA, Q =

ATA, d = AT b. Hence any limit-point will be a least squares solution (independent
of Mcl). Further V

−1 = Mcl = (Dc + Lc)
−1. It follows

S = V + V T −Q = 2Dc + Lc + LT
c −ATA = 2Dc − diag(AT

i Ai).

We will show that ωi ∈ Ω̄i, i = 1, 2, . . . , q ⇔ S is positive definite. Hence the result
will follow by Theorem 4.3. Assume first that S is positive definite. Since both Dc

and diag(AT
i Ai) are block-diagonal with the same size of the corresponding blocks

the following inequalities hold

2

ωi
vTi N

−1
i vi − vTi A

T
i Ai vi > 0, i = 1, 2, . . . , q

or equivalently (using that vTi A
T
i Aivi = ∥Aivi∥22)

(4.9) 0 < ωi < 2/ci, ci =
∥Aivi∥22
vTi N

−1
i vi

, ∀vi ∈ Rni , vi ̸= 0.

Put vi = N
1/2
i ξi. Then

ci =
∥∥AiN

1/2
i ξi

∥∥2
2
/∥ξi∥22 ≤

∥∥AiN
1/2
i

∥∥2
2
.

For any matrix X it holds ∥X∥22 = ∥XXT ∥2 = ρ(XXT ). Thus
∥∥AiN

1/2
i

∥∥2
2

=

ρ
(
AiNiA

T
i

)
. Hence the relaxation parameters {ωi} fulfill (3.4).

Next assume (3.4), i.e. ωi < 2/ρ(AiNiA
T
i ). Now (as shown above) ci ≤ ρ(AiNiA

T
i ).

It follows (for all i = 1, 2, . . . , q) ωi < 2/ρ(AiNiA
T
i ) ≤ 2/ci. So by (4.9) S is positive

definite, which completes the proof. �
The ’if-part’ was already proved in [36, Proposition 9].

Proof. of Theorem 2.5 (simultaneous iteration). Here T = I −ωATMA. Let Q =

ATMA, d = ATMb. Since M is spd the limit-point satisfies argmin ∥M1/2(b−Ax∥2.
Put V −1 = ωI. We use Theorem 4.3 where now

S = V + V T −Q =
2

ω
I −ATMA.

Assume first that S is spd. We get (similarly as (4.9))

(4.10) 0 < ω < 2/c, c =
∥M1/2Av∥22

∥v∥22
, ∀v ∈ Rn, v ̸= 0.
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The result now follows as in the proof of Theorem 3.2. �

Proof. of Theorem 2.7 (Algorithm SBRI). By comparing the two iterations (2.13)
and (4.2) we find that Q = ATMsrA, V = I. It is shown in [34, Proposition 10]
that (i): Msr (and hence Q) is spd if and only if the conditions (2.7) hold, and (ii):
the matrix I − Q is spd. Since S = 2I − Q the convergence result follows from
Theorem 4.3. Also by the fact that Msr is spd the limit point is a weighted least
squares solution. �

Proof. of Theorem 2.3 (Algorithm BRI, consistent case). We first observe that
Theorem 4.3 cannot be used here since Q = ATMrwA does not fulfill the conditions
needed. Instead we apply Algorithm BCI (iterating in yki ) on the system AT y = z
with b = Az. Further we take q = p,mi = ni, Ni = Mi, Ai = RT

i , i = 1, 2, . . . , p. By
Proposition 3.3 one cycle can be written

(4.11) yk+1 = yk +MclA(z −AT yk).

By the above choices it follows that Lc = Lr, Dc = Dr so that Mcl = Mrw. Also
ρ(AiNiA

T
i ) = ρ(RT

i MiRi). Hence with T = I − MrwAAT , Q = AAT , d = Az we
can use Theorem 3.2 to conclude that lim yk → ŷ such that AAT ŷ = Az = b if and
only if conditions (2.7) hold. Multiplying (4.11) by AT , and putting xk = AT yk it
follows that

xk+1 = xk +ATMrw(b−Axk)

which by Proposition 2.7 is identical to one cycle of Algorithm BRI. It follows
that when yk → ŷ then xk → x̂, such that Ax̂ = b. Hence (2.7) is sufficient for
convergence. If on the other hand xk = AT yk → x̂, and N(AT ) = ∅ then yk

must also converge so that (2.7) becomes necessary for convergence. Similarly if
R(Mrw) ⊆ R(A) then yk ∈ R(A) so yk must converge. Hence (2.7) is necessary also
in this case. �

5. Miscelaneous

Here we shortly mention some topics not covered above. The first is constraints.
To impose wanted properties on the solution of an ill-posed problem can be very
beneficial. In, e.g. X-ray tomography the attenuation x is known to be nonnega-
tive. To include this property into the solution process using Kaczmarz’s method
one simply, usually after each cycle, project the current iterate onto the nonnegative
orthant. This fits well with the overall structure of the method. For more on con-
straining see [24, 44, 15, 11, 57]. In particular the connection between incremental
proximal methods [7], and row-action methods is utilized in [3] to extend these to
include both convex constraints and regularization terms.

Another, quite recent, methodology to incorporate constraints is superiorization.
Here the original iteration, e.g. Algorithm BRI, is preserved but perturbation steps
are included between iterations. The perturbation steps move the iterates according
to a secondary criterion (corresponding to the constraints) [16, 23, 53].

Another subject we wish to mention is semi-convergence, which was brought
up already in [51], see also [44]. Let b = b̄ + δb, and let x̄k denote the iterate
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corresponding to using the (ideal) data b̄ whereas xk uses the given data b. With x̂
the sought solution we have the following decomposition of the error

xk − x̂ = (xk − x̄k) + (x̄k − x̂),

where the first term is called the noise error (or data error) and the second term
is called the iteration error. During the first iterations of a convergent method
the iteration error dominates, and hence the total error decreases - but after a
while the noise error starts to grow which results in semi-convergence. Expressions
for the noise error for Algorithm BRI was recently presented in [35] (this analysis
also includes projections onto arbitrary closed convex sets) and independently in

[50]. Both bounds are of the form c
√
k∥δb∥. However the constant c given in [35]

usually grossly overestimates the real error. The analysis in [50] come with a price
though. The iteration matrices governing the two errors are different. Therefore
to insure the result a new sufficient condition is needed. In [33] a bound of the

same form c
√
k∥δb∥ is presented for Algorithm BCI. Here the same iteration matrix

governs both the noise and iteration error so no new condition is needed. Due to
semi-iteration it is important to stop the iterations before the noise error starts to
dominate. We refer to [43] for a recent discussion and evaluation of several stopping
criteria.

As a final point we mention the possibility of accelerating the basic methods by
Chebycheff or Conjugate Gradient technique [9, 42, 4, 10, 60, 39, 40].
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