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there exists a continuous linear functional f on L such that

(2.1) sup
x∈K2

f(x) < inf
y∈K1

f(y).

The main tool of this paper (Theorem 2.2) is the special case of Theorem 2.1
when K1 is a single point, L = X∗ is the dual space of the Banach space X, and
X∗ is endowed with the weak∗ topology. In the latter case, the weak* continuous
linear functionals on X∗ are precisely those of the form x̂, for each x ∈ X, defined
on X∗ by

(2.2) x̂(x∗) := x∗(x) for each x∗ ∈ X∗

(see, e.g., [7, p. 422]). It is well-known that X and X̂ := {x̂ | x ∈ X} ⊂ X∗∗ are

isometrically isomorphic. X is called reflexive if X̂ = X∗∗.
Thus the main tool of this paper can be stated as the following corollary of

Theorem 2.1.

Theorem 2.2 (Main Tool). Let X be a (real) normed linear space, Γ a weak* closed
convex cone in X∗, and x∗ ∈ X∗ \ Γ. Then there exists x ∈ X such that

(2.3) sup
y∗∈Γ

y∗(x) = 0 < x∗(x).

Proof. By Theorem 2.1 (with L = X∗ endowed with its weak* topology, K1 = Γ,
and K2 = {x∗}), we deduce that there exists x ∈ X such that

(2.4) sup
y∗∈Γ

y∗(x) < x∗(x).

Since Γ is a cone, 0 ∈ Γ so that supy∗∈Γ y
∗(x) ≥ 0. But if supy∗∈Γ y

∗(x) > 0, then
there exists y∗0 ∈ Γ such that y∗0(x) > 0. Since Γ is a cone, ny∗0 ∈ Γ for each n ∈ N
and hence limn→∞ ny∗0(x) = ∞. But this contradicts the fact that this expression
is bounded above by x∗(x) from the inequality (2.4). This proves (2.3). □

A cone is a set C such that ρc ∈ C for each c ∈ C and ρ ≥ 0.
Recall that the dual cone (annihilator) in X∗ of a set S ⊂ X, denoted S⊖

(S⊥), is defined by

S⊖ := {x∗ ∈ X∗ | x∗(s) ≤ 0 for each s ∈ S}

(S⊥ := S⊖ ∩ [−S⊖] = {x∗ ∈ X∗ | x∗(s) = 0 for each s ∈ S}).
Clearly, S⊖ (S⊥) is a weak∗ closed convex cone (subspace) in X∗. Similarly, if
Γ ⊂ X∗, then the dual cone (annihilator) in X of Γ, denoted Γ⊖ (Γ⊥), is
defined by

Γ⊖ := {x ∈ X | x∗(x) ≤ 0 for all x∗ ∈ Γ}
(Γ⊥ := Γ⊖ ∩ [−Γ⊖] = {x ∈ X | x∗(x) = 0 for all x∗ ∈ Γ}).

Clearly, Γ⊖ (Γ⊥) is a closed convex cone (subspace) in X. The conical hull of a
set S ⊂ X, denoted cone (S), is the smallest convex cone that contains S, i.e., the
intersection of all convex cones that contain S. Equivalently,

(2.5) cone (S) :=

{
n∑
1

ρisi | ρi ≥ 0, si ∈ S, n < ∞

}
.
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The (norm) closure of cone (S) will be denoted by cone (S). If S ⊂ X∗, then the
weak∗ closure of cone (S) will be denoted by w∗− cl(cone (S)).

Definition 2.3. Let Γ be a subset of X∗. An element x∗ ∈ X∗ is said to be
positive relative to Γ if x ∈ X and y∗(x) ≥ 0 for all y∗ ∈ Γ imply that x∗(x) ≥ 0.

Similarly, by replacing both “≥” signs in Definition 2.3 by “≤” signs, we obtain
the notion of x∗ being negative relative to Γ. The following theorem governs this
situation.

Theorem 2.4. Let X be a normed linear space, Γ ⊂ X∗, and x∗ ∈ X∗. Then the
following statements are equivalent:

(1) x∗ is positive relative to Γ.
(2) x∗ is negative relative to Γ.
(3) Γ⊖ ⊂ (x∗)⊖.
(4) x∗ ∈ w∗− cl(cone (Γ)), the weak∗ closed conical hull of Γ.
(5) x∗ ∈ cone Γ.

Moreover, if X is reflexive, then each of these statements is equivalent to (5) x∗ ∈

cone Γ, the (norm) closed conical hull of Γ.

Proof. (1) ⇒ (2). Suppose (1) holds, z ∈ X, and y∗(z) ≤ 0 for all y∗ ∈ Γ. Then
y∗(−z) ≥ 0 for all y∗ ∈ Γ. By (1), x∗(−z) ≥ 0 or x∗(z) ≤ 0. Thus (2) holds.

(2) ⇔ (3). Suppose (2) holds. If x ∈ Γ⊖, then y∗(x) ≤ 0 for all y∗ ∈ Γ. By (2),
x∗(x) ≤ 0 so x ∈ (x∗)⊖. Thus (3) holds. Conversely, if (3) holds, then (2) clearly
holds.

(3) ⇒ (4). If (4) fails, then x∗ /∈ w∗− cl(cone (Γ)). By Theorem 2.2, there exists
x ∈ X such that

(2.6) sup{y∗(x) | y∗ ∈ cone (Γ)} = 0 < x∗(x).

In particular, y∗(x) ≤ 0 for all y∗ ∈ Γ, but x∗(x) > 0. Thus x∗ is not negative
relative to Γ. That is, (2) fails.

(4) ⇒ (1). If (4) holds, then there is a net (y∗α) ∈ cone (Γ) such that x∗(x) =
limα y

∗
α(x) for all x ∈ X. If z ∈ X and y∗(z) ≥ 0 for all y∗ ∈ Γ, then, in particular,

y∗α(z) ≥ 0 for all α implies that x∗(z) = limα y
∗
α(z) ≥ 0. That is, x∗ is positive

relative to Γ. Hence (1) holds, and the first four statements are equivalent.
Finally, suppose that X is reflexive. It suffices to show that cone (Γ) = w∗−

cl(cone (Γ)). Since X is reflexive, the weak topology and the weak∗ topology agree
onX∗ (see, e.g., [8, Proposition 3.113]). But a result of Mazur (see, e.g., [8, Theorem
3.45]) implies that a convex set is weakly closed if and only if it is norm closed. □

In a Hilbert space H, we denote the inner product of x and y by ⟨x, y⟩ and the

norm of x by ∥x∥ =
√
⟨x, x⟩. Then, owing to the Riesz Representation Theorem

which allows one to identify H∗ with H, Definition 2.3 may be restated as follows.

Definition 2.5. A vector x in a Hilbert space H is said to be positive relative
to the set Γ ⊂ H if y ∈ H and ⟨z, y⟩ ≥ 0 for all z ∈ Γ imply that ⟨x, y⟩ ≥ 0.
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Similarly, in a Hilbert space H, we need only one notion of a dual cone (annihi-
lator). Namely, if S ⊂ H, then

S⊖ := {x ∈ H | ⟨x, y⟩ ≤ 0 for all y ∈ S}(
S⊥ = S⊖ ∩ (−S⊖) = {x ∈ H | ⟨x, y⟩ = 0 for all y ∈ S}

)
.

Since a Hilbert space is reflexive, we obtain the following immediate consequence of
Theorem 2.4.

Corollary 2.6. Let H be a Hilbert space, Γ ⊂ H, and x ∈ H. Then the following
statements are equivalent:

(1) x is positive relative to Γ.
(2) x is negative relative to Γ.
(3) Γ⊖ ⊂ (x)⊖.
(4) x ∈ cone Γ.

Well-known examples of reflexive spaces are finite-dimensional spaces, Hilbert
spaces, and the Lp spaces for 1 < p < ∞. (The spaces L1 and C(T ), for T compact,
are never reflexive unless they are finite-dimensional.)

For a general convex set, we have the following relationship.

Lemma 2.7. Let K be a convex subset of a normed linear space X. Then

(2.7) (K⊖)⊖ = cone (K)

Proof. By definition, K⊖ = {x∗ ∈ X∗ | x∗(K) ≤ 0}. Thus

(K⊖)⊖ = {x ∈ X | x∗(x) ≤ 0 for all x∗ ∈ K⊖}
= {x ∈ X | x∗(x) ≤ 0 for each x∗ such that x∗(K) ≤ 0}
⊃ K.

Since (K⊖)⊖ is a closed convex cone, it follows that (K⊖)⊖ ⊃ cone (K). If the
lemma were false, then there would exist x ∈ (K⊖)⊖ \ cone (K). By Theorem 2.1,
there exists x∗ ∈ X∗ such that supx∗[cone (K)] < x∗(x). Arguing as in the proof
of Theorem 2.2, we deduce that supx∗[cone (K)] = 0 < x∗(x). But this contradicts
the fact that x∗ ∈ K⊖ and x ∈ (K⊖)⊖. □

Corollary 2.8. If C is a nonempty subset of X, then C is a closed convex cone in
X if and only if

(2.8) C = (C⊖)⊖.

It follows that every closed convex cone has the same special form. More precisely,
we have the following easy consequence.

Lemma 2.9. Let X be a normed linear space and let C be a nonempty subset of
X. Then the following statements are equivalent:

(1) C is a closed convex cone.
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(2) There exists a set Γ ⊂ X∗ such that

C = {x ∈ X | y∗(x) ≤ 0 for each y∗ ∈ Γ}.

(In fact, Γ = C⊖ works.)

(3) There exists a set Γ̃ ⊂ X∗ such that

C = {x ∈ X | y∗(x) ≥ 0 for each y∗ ∈ Γ̃}.

(In fact, Γ̃ = −C⊖ works.)

We will need the following fact that goes back to Minkowski (see, e.g., [5, Lemma
6.33]).

Fact 2.10. If a nonzero vector x is a positive linear combination of the vectors
x1, x2, . . . , xn, then x is a positive linear combination of a linearly independent
subset of {x1, x2, . . . , xn}.

Theorem 2.11. Let X be a reflexive Banach space and Γ ⊂ X∗ be weakly compact.
Suppose there exists y ∈ X such that y∗(y) > 0 for each y∗ ∈ Γ and dim(Γ) = n
(so Γ contains a maximal set of n linearly independent vectors). Then each nonzero
x∗ ∈ cone (Γ) has a representation as

(2.9) x∗ =

m∑
1

ρiy
∗
i ,

where m ≤ n, ρi > 0 for i = 1, 2, . . . ,m, and {y∗1, y∗2, . . . , y∗m} is a linearly indepen-
dent subset of Γ.

Proof. Let δ := inf{y∗(y) | y∗ ∈ Γ}. If δ = 0, then there exists a sequence (y∗n) in Γ

such that lim y∗n(y) = 0. By the Eberlein-S̆mulian Theorem (see, e.g., [8, p. 129]),
Γ is weakly sequentially compact, so there is a subsequence (y∗nk

) which converges
weakly to y∗ ∈ Γ and, in particular, 0 = lim y∗nk

(y) = y∗(y) > 0, which is absurd.
Thus δ > 0.

Let x∗ ∈ cone (Γ) \ {0}. Then there exists a sequence (x∗N )∞1 in cone (Γ) such
that ∥x∗N − x∗∥ → 0. Since x∗ ≠ 0, we may assume that x∗N ̸= 0 for all N . Then
(x∗N ) is bounded, say c := supN ∥x∗N∥ < ∞, and

(2.10) x∗N =
∑
i∈FN

ρN,ix
∗
N,i

for some scalars ρN,i ≥ 0, x∗N,i in Γ, and FN is finite. By the hypothesis dim(Γ) = n

and Fact 2.10, we may assume that FN = {1, 2, . . . , n}. Thus we have that

(2.11) x∗N =
n∑
1

ρN,ix
∗
N,i

where ρN,i ≥ 0 for all i. Now

(2.12) x∗N (y) =
N∑
i=1

ρN,ix
∗
N,i(y) ≥

n∑
i=1

ρN,iδ ≥ ρN,iδ for each i = 1, 2, . . . , n.
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Thus, for each i ∈ {1, . . . , n}, we have

(2.13) ρN,i ≤ (δ)−1x∗N (y) ≤ (δ)−1∥x∗N∥∥y∥ ≤ (δ)−1∥y∥c < ∞.

This shows that, for each i = 1, 2, . . . , n, the sequence of scalars (ρN,i) is bounded.
By passing to a subsequence, we may assume that there exist ρi ≥ 0 such that
ρN,i → ρi for each i.

Since Γ is weakly sequentially compact, by passing to a further subsequence, say
(N ′) of (N), we may assume that for each i = 1, 2, . . . , n, there exist y∗i ∈ Γ such
that x∗N ′,i → y∗i weakly. Thus, for all x ∈ X, we have

(2.14) x∗(x) = lim
N ′

n∑
i=1

ρN ′,ix
∗
N ′,i(x) =

n∑
i=1

ρiy
∗
i (x).

That is, x∗ =
∑n

1 ρiy
∗
i . By appealing to Fact 2.10, we get the representation (2.9)

for x∗. □

Again, in the case of Hilbert space, this result reduces to the following fact
that was first established by Tchakaloff [16], who used it to prove the existence of
quadrature rules having positive coefficients (see also Theorem 3.1 below).

Corollary 2.12. Let H be a Hilbert space and Γ ⊂ H be weakly compact. Suppose
there exists e ∈ H such that ⟨y, e⟩ > 0 for each y ∈ Γ and dim(Γ) = n (so Γ contains
a maximal set of n linearly independent vectors). Then each nonzero x ∈ cone (Γ)
has a representation as

(2.15) x =

m∑
1

ρiyi,

where m ≤ n, ρi > 0 for i = 1, 2, . . . ,m, and {y1, y2, . . . , ym} is a linearly indepen-
dent subset of Γ.

3. Some applications of theorem 2.4

In this section we show the usefulness of Theorem 2.4 by exhibiting a variety of
different applications.

3.1. An Application to the Existence of Positive Quadrature Rules. In
the first application, we show the existence of quadrature rules that are exact for
polynomials of degree at most n, are based on a set of n+1 points, and have positive
coefficients. Let Pn denote the set of polynomials of degree (at most) n regarded
as a subspace of C[a, b]. That is, Pn is endowed with the norm ∥x∥ = max{|x(t)| |
a ≤ t ≤ b}. Define the linear functionals x∗ and x∗t on X := Pn by

(3.1) x∗(x) :=

∫ b

a
x(t) dt for all x ∈ X

and

(3.2) x∗t (x) := x(t) for all x ∈ X.
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Theorem 3.1 (Numerical Quadrature). Let X = Pn. Then there exists m ≤ n+1
points a ≤ t1 < t2 < · · · < tm ≤ b and m scalars wi > 0 such that x∗ =

∑m
1 wix

∗
ti.

More explicitly,

(3.3)

∫ b

a
x(t) dt =

m∑
1

wix(ti) for all x ∈ X.

Proof. First note that x∗ is positive relative to the set Γ := {x∗t | t ∈ [a, b]},
since a function that is nonnegative at each point in [a, b] must have a nonnegative
integral. Since X is finite-dimensional, it is reflexive. By Theorem 2.4(4), we have
x∗ ∈ cone (Γ). Next note that for the identically 1 function e on [a, b], we have
x∗t (e) = 1 for all t ∈ [a, b]. Further, it is easy to check that Γ is a closed and
bounded subset of X∗, hence is compact since in a finite-dimensional space X all
linear vector space topologies on X∗ coincide (see, e.g., [8, Corollary 3.15]). Finally,
since dimX∗ = dimX = n+ 1, we can apply Theorem 2.11 to get the result. □

3.2. Applications Related to Farkas Type Results. In this section we note
that the so-called Farkas Lemma is a consequence of Theorem 2.4. According to
Wikipedia,

Farkas’ lemma is a solvability theorem for a finite system of linear
inequalities in mathematics. It was originally proven by the Hun-
garian mathematician Gyula Farkas [9]. Farkas’ lemma is the key
result underpinning the linear programming duality and has played
a central role in the development of mathematical optimization (al-
ternatively, mathematical programming ). It is used amongst other
things in the proof of the Karush-Kuhn-Tucker theorem in nonlinear
programming.

Since the setting for this result is in a Hilbert space, we will be appealing to the
Hilbert space version of Theorem 2.4, namely, Theorem 2.6.

Theorem 3.2. Let H be a Hilbert space and {b, a1, a2, . . . , am} ⊂ H. Then exactly
one of the following two systems has a solution:

System 1:
∑m

1 yiai = b for some yi ≥ 0.
System 2: There exists x ∈ H such that ⟨ai, x⟩ ≤ 0 for i = 1, . . . ,m and ⟨b, x⟩ > 0.

Proof. Letting Γ := {a1, a2, . . . , am}, we see that the cone generated by Γ is finitely
generated and, as is well-known, must be closed (see, e.g., [5, Theorem 6.34]). Hence
cone (Γ) = {

∑m
1 ρiai | ρi ≥ 0}.

Clearly, system 1 has a solution if and only if b ∈ cone {a1, a2, . . . , am}. By
Theorem 2.6, system 1 has a solution if and only if b is negative relative to Γ :=
{a1, a2, . . . , am}.

But obviously, system 2 has a solution if and only if b is not negative relative to
Γ. This completes the proof. □

If this theorem is given in its (obviously equivalent) matrix formulation, then it
can be stated as in the following theorem. This is the version given by Gale, Kuhn,
and Tucker [10] (where vector inequalities are interpreted componentwise).
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Theorem 3.3. Let A be an m × n matrix and b ∈ Rn. Then exactly one of the
following two systems has a solution:

System 1: AT y = b and y ≥ 0 for some y ∈ Rm.
System 2: There exists x ∈ Rn such that Ax ≤ 0 and ⟨b, x⟩ > 0.

The next theorem extends a result of Hiriart-Urruty and Lemaréchal [12, Theo-
rem 4.3.4] who called it a generalized Farkas theorem.

Theorem 3.4. Let J be a index set and (b, r) and (sj , pj) ∈ Rn × R for all j ∈ J .
Suppose that the system of inequalities

(3.4) ⟨sj , x⟩ ≤ pj

has a solution x ∈ Rn. Then the following statements are equivalent:

(1) ⟨b, x⟩ ≤ r for all x that satisfy relation (3.4).
(2) (b, r) ∈ cone {(sj , pj) | j ∈ J}.
(3) (b, r) ∈ cone ({(0, 1)} ∪ {(sj , pj) | j ∈ J}).

Proof. First note that x ∈ Rn is a solution to (3.4) if and only if (x,−1) ∈ Rn × R
is a solution to

(3.5) ⟨(sj , pj), (x,−1)⟩ ≤ 0 for all j ∈ J.

Using this fact, we see that statement (1) holds ⇐⇒

(3.6) ⟨b, x⟩ − r ≤ 0 for all x that satisfy (3.5)

⇐⇒

⟨(b, r), (x,−1)⟩ ≤ 0 for all x such that ⟨(sj , pj), (x,−1)⟩ ≤ 0 for all j ∈ J .

But the last statement just means that (b, r) is negative relative to the set {(sj , pj) |
j ∈ J}. By Corollary 2.6, this is equivalent to statement (2). Thus we have proved
(1) ⇐⇒ (2).

Clearly (2) implies (3) since the conical hull in (3) is larger than that of (2).
Finally, the same proof of (3) implies (1) as given in [12, Theorem 4.3.4] works
here. □

Remark 3.5. Hirriart-Urruty and Lemaréchal [12, Theorem 4.3.4] actually proved
the equivalence of statements (1) and (3) of Theorem 3.4. The sharper equivalence
of statements (1) and (2) proven above was seen to be a simple consequence of
Corollary 2.6.

3.3. An Application to Best Approximation. In this section we give an appli-
cation to a problem of best approximation from a convex cone in a Hilbert space. We
will need a special case of the following well-known characterization of best approx-
imations from convex sets. This characterization goes back at least to Aronszajn
[1] in 1950 (see also [5, Theorem 4.1]). The fact that every closed convex subset C
of a Hilbert space H admits unique nearest points (best approximations) to each
x ∈ H is due to Riesz [15]. If x ∈ H, we denote its unique best approximation in C
by PC(x).
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Fact 3.6. Let C be a closed convex set in a Hilbert space H, x ∈ H, and x0 ∈ C.
Then x0 = PC(x) if and only if x− x0 ∈ (C − x0)

⊖, i.e.,

(3.7) ⟨x− x0, y − x0⟩ ≤ 0 for each y ∈ C.

In the special case when C is a closed convex cone, Moreau [13] showed, among
other things, that this result could be sharpened to the following.

Fact 3.7. Let C be a closed convex cone in the Hilbert space H, x ∈ H, and
x0 ∈ C. Then x0 = PC(x) if and only if x− x0 ∈ C⊖ ∩ x⊥0 , i.e.,

(3.8) ⟨x− x0, y⟩ ≤ 0 for all y ∈ C and ⟨x− x0, x0⟩ = 0.

Moreover, H = C ⊞C⊖, which means that each x ∈ H has a unique representation
as x = c+ c′ where c ∈ C, c′ ∈ C⊖, and ⟨c, c′⟩ = 0. In fact,

(3.9) x = PC(x) + PC⊖(x) for each x ∈ H.

(For proofs of these facts, see, e.g., [5, Theorems 4.1, 4.7, and 5.9].)

Figure 1

The main result of this section is Theo-
rem 3.9. To provide some motivation, we
exhibit a simple example.

Example 3.8. Let X = ℓ2(2) denote Eu-
clidean 2-space, K denote the line segment
joining the two points k1 = (0,−1) and
k2 = (1, 1), and C = −K⊖, i.e., C =
{y ∈ X | ⟨y, ki⟩ ≥ 0 for i = 1, 2}, see Fig-
ure 1. Let x = (2, 1) and x0 = (2, 0). Then
x0 = x+ k1 = PC(x).

Theorem 3.9. Let K be a compact set in
the Hilbert space H, and suppose that there exists e ∈ H such that

(i) ⟨k, e⟩ > 0 for all k ∈ K, and
(ii) dimK = n.

Let C be (the closed convex cone) defined by

(3.10) C := −K⊖ = {y ∈ H | ⟨y, k⟩ ≥ 0 for all k ∈ K}.
Let x ∈ H \ C and x0 ∈ C. Then the following statements are equivalent:

(1) x0 = PC(x);
(2)

(3.11) x0 = x+
m∑
1

ρiki,

where 1 ≤ m ≤ n, ρi > 0, ki ∈ K for i = 1, 2, . . . ,m, where the vectors
k1, k2, . . . , km are linearly independent, and ⟨ki, x0⟩ = 0 for i = 1, 2, . . . ,m.

Moreover, if dimH = n and x0 ̸= 0 in any of the two statements, then m ≤ n−1.

Proof. (1) ⇒ (2). If (1) holds, then by Fact 3.6, we have that ⟨x − x0, y⟩ ≤ 0 for
all y ∈ C and ⟨x − x0, x0⟩ = 0. Thus if y ∈ X and ⟨y, k⟩ ≥ 0 for all k ∈ K, then
y ∈ C so that −⟨x0 − x, y⟩ = ⟨x − x0, y⟩ ≤ 0, so ⟨x0 − x, y⟩ ≥ 0. Thus x0 − x
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is positive relative to K. By Corollary 2.6, we see that x0 − x ∈ cone (K). By
Corollary 2.12, we have that x0 − x =

∑m
1 ρiki, where ρi > 0 for all i, m ≤ n, and

the set {k1, . . . , km} is linearly independent. Also, since ⟨x − x0, x0⟩ = 0, we see
that

(3.12)
m∑
1

ρi⟨ki, x0⟩ =

⟨
m∑
1

ρiki, x0

⟩
= ⟨x0 − x, x0⟩ = 0

which, since ⟨ki, x0⟩ ≥ 0 and ρi > 0 for all i, implies that ⟨ki, x0⟩ = 0 for all i. Thus
(2) holds.

(2) ⇒ (1). If (2) holds, then x0−x =
∑m

1 ρiki and ⟨ki, x0⟩ = 0 for all i. Thus for
all y ∈ C we have ⟨x0−x, y⟩ =

∑m
1 ρi⟨ki, y⟩ ≥ 0 and ⟨x0−x, x0⟩ =

∑m
1 ρi⟨ki, x0⟩ = 0.

In other words, x − x0 ∈ C◦ ∩ x⊥0 . By Fact 3.7, we see that x0 = PC(x), i.e., (1)
holds. This proves the equivalence of the two statements.

Finally, if dimX = n and x0 ̸= 0 in any of the two statements, then we see
that ⟨x0, ki⟩ = 0 for each i = 1, . . . ,m. But the null space of x0, i.e., x

⊥
0 := {y ∈

X | ⟨x0, y⟩ = 0}, is an (n − 1)-dimensional subspace of the n-dimensional space
X. Since {k1, . . . , km} is a linearly independent set contained in x⊥0 , we must have
m ≤ n− 1. □

Remark 3.10. It is worth noting that if either of the equivalent statements (1) or
(2) holds in Theorem 3.9, then there exists at least one i such that ⟨x, ki⟩ < 0.

To see this, assume (2) holds. Then

m∑
1

ρi⟨ki, x⟩ =

⟨
m∑
1

ρikk, x

⟩
= ⟨x0 − x, x⟩ = ⟨x0 − x, x− x0⟩

= −∥x0 − x∥2 < 0

which, since ρi > 0 for each i, implies that ⟨ki, x⟩ < 0 for some i.
The following corollary of Theorem 3.9 shows that in certain cases, one can even

obtain an explicit formula for the best approximation to any vector.

Corollary 3.11. Let K = {k1, k2, . . . , kn} be an orthonormal subset of the Hilbert
space H, and suppose that there exists e ∈ H such that ⟨e, ki⟩ > 0 for each i. Let

(3.13) C := −K⊖ = {y ∈ H | ⟨y, ki⟩ ≥ 0 for each i},

and x ∈ H. Then

(3.14) PC(x) = x+
n∑

i=1

max{0,−⟨x, ki⟩}ki.

Proof. If x ∈ C, then PC(x) = x and ⟨x, ki⟩ ≥ 0 for each i implies that
max{0,−⟨x, ki⟩} = 0 for each i and thus formula (3.14) is correct. Hence we may
assume that x ∈ H \ C.

Let x0 = x +
∑n

i=1 ρiki, where ρi = max{0,−⟨x, ki⟩}. It suffices to show that
x0 = PC(x). Let J = {j ∈ {1, 2, . . . , n} | ⟨x, kj⟩ < 0}. Since x /∈ C, we see that J is
not empty, ρj = −⟨x, kj⟩ for each j ∈ J , ρi = 0 for all i /∈ J , and x0 = x+

∑
j∈J ρjkj .



SEPARATION THEOREM 209

Using the orthonormality of the set K, we see that for all j ∈ J ,

(3.15) ⟨x0, kj⟩ = ⟨x, kj⟩+

⟨∑
i∈J

ρiki, kj

⟩
= ⟨x, kj⟩+ ρj = 0,

and for each i /∈ J ,

(3.16) ⟨x0, ki⟩ = ⟨x, ki⟩+
∑
j∈J

ρj⟨kj , ki⟩ = ⟨x, ki⟩ ≥ 0.

The relations (3.15) and (3.16) together show that x0 ∈ C. Finally, the equality
(3.15) shows that Theorem 3.9(2) is verified. Thus x0 = PC(x), and the proof is
complete. □

We next consider two alternate versions of Theorem 3.9 which may be more useful
for the actual computation of best approximations from finitely generated convex
cones.

We consider the following scenario. Let H be a Hilbert space, {k1, k2, . . . , km} a
finite subset of H, and C the convex cone generated by K:

(3.17) C :=

{
m∑
i=1

ρiki

∣∣∣∣ ρi ≥ 0 for all i

}
= cone {k1, k2, . . . , km}.

By definition of the dual cone, we have

C⊖ = {y ∈ H | ⟨y, c⟩ ≤ 0 for all c ∈ C}
= {y ∈ H | ⟨y, ki⟩ ≤ 0 for all i = 1, . . . ,m}.(3.18)

As an easy consequence of a theorem of the first author characterizing best ap-
proximations from a polyhedron ([5, Theorem 6.41]), we obtain the following.

Theorem 3.12. Let {k1, k2, . . . , km} be a finite subset of the Hilbert space H, and
let C be the finitely-generated cone defined by equation (3.17). Then for each x ∈ H,

(3.19) PC⊖(x) = x−
m∑
1

ρiki and PC(x) =

m∑
1

ρiki

for any set of scalars ρi that satisfy the following three conditions:

(3.20) ρi ≥ 0 (i = 1, 2, . . . ,m)

(3.21) ⟨x, ki⟩ −
m∑
j=1

ρj⟨kj , ki⟩ ≤ 0 (i = 1, 2, . . . ,m)

and

(3.22) ρi[⟨x, ki⟩ −
m∑
j=1

ρj⟨kj , ki⟩] = 0 (i = 1, 2, . . . ,m).

Moreover, if x ∈ H and x0 ∈ C⊖, then x0 = PC⊖(x) if and only if

(3.23) x0 = x−
∑

i∈I(x0)

ρiki for some ρi ≥ 0,

where I(x0) := {i | ⟨x0, ki⟩ = 0}.
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Proof. In [5, Theorem 6.41], take X = H, ci = 0 and hi = ki for all i = 1, 2, . . . ,m,
and note that Q = {y ∈ H | ⟨y, ki⟩ ≤ 0} = C⊖. The conclusion of [5, Theorem
6.41] now shows that PC⊖(x) = PQ(x) = x −

∑m
1 ρiki, where the ρi satisfy the

relations (3.20), (3.21), and (3.22). Finally, by Fact 3.7, we obtain that PC(x) =
x− PC⊖(x) =

∑m
1 ρiki.

The last statement of the theorem follows from the last statement of [5, Theorem
6.41]. □

We will prove an alternate characterization of best approximations from finitely
generated cones that yields detailed information of a different kind. But first we
need to recall some relevant concepts.

For the remainder of this section, we assume that T : H1 → H2 is a bounded
linear operator between the Hilbert spaces H1 and H2 that has closed range. Then
the adjoint mapping T ∗ : H2 → H1 also has closed range (see, e.g., [5, Lemma
8.39]). We denote the range and null space of T by

R(T ) := {T (x) | x ∈ H1}, N (T ) := {x ∈ H1 | T (x) = 0}.

The following relationships between these concepts are well-known (see, e.g., [5,
Lemma 8.33]):

N (T ) = R(T ∗)⊥, N (T ∗) = R(T )⊥, and(3.24)

N (T )⊥ = R(T ∗) = R(T ∗), N (T ∗)⊥ = R(T ) = R(T ).(3.25)

Definition 3.13. For any y ∈ H2, the set of generalized solutions to the equation
T (x) = y is the set

G(y) := {x0 ∈ H1 | ∥T (x0)− y∥ ≤ ∥T (x)− y∥ for all x ∈ H1}.

Since R(T ) is closed, it is a Chebyshev set so G(y) is not empty. For each y ∈ H2,
let T †(y) denote the minimal norm element of G(y). The mapping T † : H2 → H1

thus defined is called the generalized inverse of T .
The following facts are well-known (see, e.g., [11] or [5, pp 177–185]).

Fact 3.14. (1) T † is a bounded linear mapping.
(2) (T ∗)† = (T †)∗.
(3) TT † = PR(T ) = PN (T ∗)⊥ .

(4) T †T = PN (T )⊥ .

(5) TT †T = T .

As in the above Theorem 3.12, we again let {k1, k2, . . . , km} be a finite subset of
the Hilbert space H and C be the convex cone generated by the ki:

(3.26) C = cone {k1, k2, . . . , km} =

{
m∑
1

ρiki
∣∣ ρi ≥ 0 for all i

}
.

It follows that

C⊖ = {y ∈ H | ⟨y, c⟩ ≤ 0 for all c ∈ C}(3.27)

= {y ∈ H | ⟨y, ki⟩ ≤ 0 for all i}.(3.28)
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Let S : Rm → H be the bounded linear operator defined by

(3.29) S(α) =

m∑
1

αiki for all α = (α1, α2, . . . , αm) ∈ Rm.

If S∗ : H → Rm denotes the adjoint of S, then

(3.30) ⟨S∗(y), ej⟩ = ⟨y, S(ej)⟩ = ⟨y, kj⟩ for all j,

where ej denote the canonical bases vectors in Rm, i.e., ej = (δ1j , δ2j , . . . , δmj), and
δij is Kronecker’s delta—the scalar which is 1 when i = j and 0 otherwise.

As was noted in Fact 3.7, if C is a closed convex cone in a Hilbert space H, then
H = C⊞C⊖, which means that each x ∈ H has a unique orthogonal decomposition
as x = PC(x) +PC⊖(x). In the case of a finitely generated cone, we will strengthen
and extend this even further by showing that C⊖ has an even stronger orthogonal
decomposition as the sum of N(S∗) and a certain subset of N (S∗)⊥. For a vector
ρ = (ρ1, . . . , ρm) ∈ Rm, we write ρ ≥ 0 to mean ρi ≥ 0 for each i.

Lemma 3.15. The following orthogonal decomposition holds:

(3.31) C⊖ = N (S∗)⊞ B, where

(3.32) B := {z ∈ H | z = −(S∗)†(ρ), ρ ∈ N (S)⊥, ρ ≥ 0} ⊂ N (S∗)⊥.

In particular, each c′ ∈ C⊖ has a unique representation as c′ = y + z, where
y ∈ N (S∗), z ∈ B and ⟨y, z⟩ = 0.

Proof. We first show that B ⊂ N (S∗)⊥. If z ∈ B, then z = −(S∗)†(ρ), where
ρ ∈ N (S)⊥. Since N (S)⊥ = R(S∗) by the relation (3.25), we can write z =
−(S∗)†S∗(u), for some u ∈ H. Further, by Fact 3.14(4), we see that z = −PN (S∗)⊥(u) ∈
N (S∗)⊥, which proves B ⊂ N (S∗)⊥ and thus verifies (3.32).

Let

D := N (S∗)⊞ {z ∈ H | z = −(S∗)†(ρ), ρ ∈ N (S)⊥, ρ ≥ 0}.

If we can show that D = C⊖, then the last statement of the lemma will follow from
this and relation (3.32). Thus to complete the proof, we need to show that D = C⊖.

Let y ∈ C⊖. For each j = 1, . . . ,m, let ρj := −⟨y, kj⟩. Since y ∈ C⊖, it follows

that ρj ≥ 0 and so ρ ≥ 0. To see that ρ ∈ N (S)⊥, take any η ∈ N (S). Then
S(η) = 0 and

⟨ρ, η⟩ =
m∑
1

ρjηj = −
m∑
1

⟨y, kj⟩ηj(3.33)

= −⟨y,
m∑
1

ηjkj⟩ = −⟨y, S(η)⟩ = 0.(3.34)

Since η ∈ N (S) was arbitrary, it follows that ρ ∈ N (S)⊥.
The definition of ρj yields

⟨ρ, ej⟩ = ρj = −⟨y, kj⟩ = −⟨y, S(ej)⟩ = −⟨S∗(y), ej⟩ = ⟨−S∗(y), ej⟩.
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Since this holds for all the basis vectors ej , it follows that ρ = −S∗(y). Further, by

Fact 3.14(4), we see that (S∗)†S∗ = PN (S∗)⊥ and hence we can write

y = y − (S∗)†S∗(y) + (S∗)†S∗(y) = y0 − (S∗)†(ρ),

where

y0 := [I − (S∗)†S∗](y) = [I − PN (S∗)⊥ ](y) = PN (S∗)(y) ∈ N (S∗).

Thus y ∈ D and hence C⊖ ⊂ D.
For the reverse inclusion, suppose that y ∈ D. Then y = z0 − (S∗)†(ρ) for some

z0 ∈ N (S∗) and ρ ∈ N (S)⊥ with ρ ≥ 0. Then, for each j = 1, 2, . . . ,m, we have

⟨y, kj⟩ = ⟨z0, kj⟩ − ⟨(S∗)†(ρ), kj⟩ = ⟨z0, S(ej)⟩ − ⟨(S∗)†(ρ), kj⟩
= ⟨S∗(z0), ej⟩ − ⟨(S∗)†(ρ), kj⟩ = −⟨(S∗)†(ρ), S(ej)⟩
= −⟨S∗(S∗)†(ρ), ej⟩ = −⟨PN (S)⊥(ρ), ej⟩ (using Fact 3.14(3))

= −⟨ρ, ej⟩ = −ρj ≤ 0,

which implies that y ∈ C⊖ and hence D ⊂ C⊖. Thus D = C⊖ and the proof is
complete. □

Based on this lemma, we can now give a detailed description of best approxima-
tions from C and C⊖ to any x ∈ H.

Theorem 3.16. Let C and S be defined as in equations (3.26) and (3.29). For
each x ∈ H, let x0 := x− (S∗)†S∗(x). Then x0 ∈ N (S∗) and there exist ρ, η ∈ Rm

such that

(1) x = S(ρ) + x0 − (S∗)†(η).
(2) ρ ≥ 0, η ≥ 0, η ∈ N (S)⊥, and ⟨ρ, η⟩ = 0.
(3) PC⊖(x) = x0 − (S∗)†(η), and ⟨x0, (S∗)†(η)⟩ = 0.
(4) PC(x) = S(ρ) = (S∗)†[S∗(x) + η].

Proof. Using Fact 3.14(5), we see that

S∗(x0) = S∗(x)− S∗(S∗)†S∗(x) = S∗(x)− S∗(x) = 0

and hence x0 ∈ N (S∗).
By Fact 3.7, we have that x = PC(x) + PC⊖(x) and ⟨PC(x), PC⊖(x)⟩ = 0. By

definition of C, PC(x) = S(ρ) for some ρ ∈ Rm with ρ ≥ 0. Also, since PC⊖(x) ∈
C⊖, we use Lemma 3.15 to obtain that PC⊖(x) = y − (S∗)†(η) for some y ∈ N (S∗)
and −(S∗)†(η) ∈ N (S∗)⊥ for some η ∈ N (S)⊥ with η ≥ 0, and ⟨y, (S∗)†(η)⟩ = 0.
We can rewrite this as

(3.35) PC⊖(x) = x0 − (S∗)†(η) + y − x0.

Also observe that

(3.36) x− PC⊖(x) = (S∗)†S∗(x) + (S∗)†(η)︸ ︷︷ ︸
∈N (S∗)⊥

+ x0 − y︸ ︷︷ ︸
∈N (S∗)

since (S∗)†(η) ∈ N (S∗)⊥ and S∗(x) ∈ R(S∗) = N (S)⊥.
Claim: y = x0.
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For if y ̸= x0, then by the Pythagorean theorem we obtain

∥x− PC⊖(x)∥2 = ∥(S∗)†S∗(x) + (S∗)†(η)∥2 + ∥x0 − y∥2

> ∥(S∗)†S∗(x) + (S∗)†(η)∥2 = ∥x− z∥2,
where z := x0 − (S∗)†(η) ∈ C⊖. This shows that z is a better approximation to x0
from C⊖ than PC⊖(x) is, which is absurd and proves the claim.

Thus PC⊖(x) = x0 − (S∗)†(η) and this proves statement (3). Altogether we have
that x = S(ρ) + x0 − (S∗)†(η) and this proves statement (1). Statement (4) follows
from (3) and Fact 3.7: PC(x) = x− PC⊖(x). To verify statement (2), it remains to
show that ⟨ρ, η⟩ = 0. But

0 = ⟨PC(x), PC⊖(x)⟩ = ⟨S(ρ), x0 − (S∗)†(η)⟩
= ⟨ρ, S∗(x0)− S∗(S∗)†(η)⟩
= ⟨ρ,−PN (S)⊥(η)⟩ (using x0 ∈ N (S∗) and Fact 3.14(3))

= ⟨ρ,−η⟩ (since η ∈ N (S)⊥).

This completes the proof. □
Remark 3.17. Related to the work of this section, we should mention that Ekárt,
Németh, and Németh [14] have suggested a “heuristic” algorithm for computing best
approximations from finitely generated cones, in the case where the generators are
linearly independent. While they did not prove the convergence of their algorithm,
they stated that they numerically solved an extensive set of examples which seemed
to suggest that their algorithm was both fast and accurate.

We believe that Theorems 3.9, 3.12, and 3.16 will assist us in obtaining an efficient
algorithm for the actual computation of best approximations from finitely generated
cones in Hilbert space. This will be the subject of a future paper.

3.4. An Application to Shape-Preserving Approximation. In this section,
we give a class of problems related to “shape-preserving” approximation that can
be handled by Theorem 3.9.

Given x ∈ L2[−1, 1], we want to find its best approximation from the set of
polynomials of degree at most n whose rth derivative in nonnegative:

(3.37) C = Cn,r := {p ∈ Pn | p(r)(t) ≥ 0 for all t ∈ [−1, 1]}.
It is not hard to show that C is a closed convex cone in L2[−1, 1]. The interest in
such a set is to preserve certain shape features of the function being approximated.
For example, if r = 0, 1, or 2, then C represents all polynomials of degree ≤ n
that are nonnegative, increasing, or convex, respectively, on [−1, 1]. It is natural,
for example, to want to approximate a convex function in L2[−1, 1] by a convex
polynomial in Pn

Choose an orthonormal basis {p0, p1, . . . , pn} for Pn. For definiteness, suppose
these are the (normalized) Legendre polynomials. The first five Legendre polyno-
mials are given by

(0) p0(t) =
√
2
2 ,

(1) p1(t) =
√
6
2 t,

(2) p2(t) =
√
10
4 (3t2 − 1),
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(3) p3(t) =
√
14
4 (5t3 − 3t),

(4) p4(t) =
3
√
2

16 (35t4 − 30t2 + 3).

Thus for each p ∈ Pn we can write its Fourier expansion as p =
∑n

0 ⟨p, pi⟩pi.
For each α ∈ [−1, 1], define

(3.38) kα :=
n∑

i=0

p
(r)
i (α)pi

and set

(3.39) K := {kα | α ∈ [−1, 1]}.

Lemma 3.18. For each α ∈ [−1, 1] and p ∈ Pn, we have

(3.40) ⟨kα, p⟩ = p(r)(α).

In other words, kα is the representer of the linear functional “the rth derivative
evaluated at α” on the space Pn.

Proof. Using the orthonormality of the pi, we get

⟨kα, p⟩ =

⟨
n∑

i=0

p
(r)
i (α)pi,

n∑
j=0

⟨p, pj⟩pj

⟩
=

n∑
i=0

n∑
j=0

p
(r)
i (α)⟨p, pj⟩⟨pi, pj⟩

=

n∑
i=0

⟨p, pi⟩p(r)i (α) = p(r)(α).

□

Lemma 3.19. (1) K is a compact set in Pn.
(2) If e(t) = tr, then ⟨e, k⟩ = r! > 0 for all k ∈ K.
(3) If C = Cn,r is defined as in eq. (3.37), then

(3.41) C = {p ∈ Pn | ⟨p, kα⟩ ≥ 0 for all α ∈ [−1, 1]}.

Proof. (1) Let (xm) be a sequence in K. Then there exist αm ∈ [−1, 1] such that
xm = kαm for each m. Since the αm are bounded, there is a subsequence αm′ which
converges to some point α ∈ [−1, 1]. Since kα is a continuous function of α, it
follows that kαm′ converges to kα. Thus K is compact.

(2) The rth derivative of tr is the constant r!.
(3) This is an immediate consequence of Lemma 3.18. □

The following result was first proved in the unpublished thesis of the first author
[4, Theorem 17].

Theorem 3.20. Let r, n be integers with 0 ≤ r < n, X = Pn, and

(3.42) C = Cn,r := {p ∈ Pn | p(r)(t) ≥ 0 for all t ∈ [−1, 1]}.

Let x ∈ X \ C, x0 ∈ C, and let kα be defined as in (3.38). Then the following
statements are equivalent:

(1) x0 = PC(x);
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(2) x0 = x+
∑m

1 ρikαi, where m ≤ n+ 1, ρi > 0, αi ∈ [−1, 1] and x
(r)
0 (αi) = 0

for all i, and {kα1 , kα2 , . . . , kαm} is linearly independent.

Moreover, if x
(r)
0 ̸≡ 0 in any of the statements above, then

m ≤ 1

2
(n− r + 2).

Proof. The equivalence of the statements (1) and (2) is a consequence of Theorem
3.9 along with Lemmas 3.18 and 3.19.

It remains to show that m ≤ (1/2)(n − r + 2) when x
(r)
0 ̸≡ 0. Since the vectors

kαi are linearly independent, it follows that α1 . . . , αm are distinct points in [−1, 1].

Now x
(r)
0 is a (nonzero) polynomial of degree at most n− r, so it has at most n− r

zeros. Since x
(r)
0 (αi) = 0 for i = 1, . . . ,m, we must havem ≤ n−r. If x

(r)
0 (α) = 0 for

some α with −1 < α < 1, then α cannot be a simple zero of x
(r)
0 (i.e., x

(r+1)
0 (α) = 0

also) since x
(r)
0 (t) ≥ 0 for all −1 ≤ t ≤ 1. It follows that x

(r)
0 can have at most

1/2(n − r) zeros in the open interval (−1, 1). If x
(r)
0 has a zero at one of the end

points t = ±1, then x
(r)
0 can have at most 1+ 1/2(n− r− 1) = 1/2(n− r+1) zeros

in [−1, 1]. Finally, if x
(r)
0 has zeros at both end points t = ±1, then we see that x

(r)
0

has at most 2+1/2(n−r−2) = 1/2(n−r+2) zeros in [−1, 1]. In all possible cases,

we see th at x
(r)
0 has at most m ≤ 1/2(n− r + 2) zeros in [−1, 1]. □

4. Elements vanishing relative to a set

Definition 4.1. Let X be a normed linear space and Γ ⊂ X∗. An element x∗ ∈ X∗

is said to vanish relative to Γ if x ∈ X and y∗(x) = 0 for all y∗ ∈ Γ imply that
x∗(x) = 0.

Again, when X is a Hilbert space, the above definition reduces to the following
form.

Definition 4.2. Let X be a Hilbert space and Γ ⊂ X. An element x ∈ X is said
to vanish relative to Γ if z ∈ X and ⟨z, y⟩ = 0 for all y ∈ Γ imply that ⟨x, z⟩ = 0.

This idea can be characterized in a useful way just as “positive relative to a set”
was in Theorem 2.4.

Theorem 4.3. Let X be a normed linear space, Γ ⊂ X∗, and x∗ ∈ X∗. Then the
following statements are equivalent:

(1) x∗ vanishes relative to Γ.
(2) Γ⊥ ⊂ (x∗)⊥.
(3) x∗ ∈ w∗− cl(span (Γ)), the weak* closed linear span of Γ.

Moreover, if X is reflexive, then each of these statements is equivalent to
(4) x∗ ∈ span (Γ), the (norm) closed linear span of Γ.

Proof. (1) ⇒ (2). Suppose (1) holds. Let x ∈ Γ⊥. Then y∗(x) = 0 for all y∗ ∈ Γ.
By (1), x∗(x) = 0. That is, x ∈ (x∗)⊥. Hence (2) holds.

(2) ⇒ (3). If (3) fails, x∗ /∈ w∗− cl(span (Γ)). By Theorem 2.1, there exists a
weak∗ continuous linear functional f on X∗ such that

(4.1) sup f(span (Γ)) < f(x∗).
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But f = x̂ for some x ∈ X. Thus we can rewrite the inequality (4.1) as sup x̂(span (Γ)) <
x̂(x∗), or

(4.2) sup{y∗(x) | y∗ ∈ span (Γ)} < x∗(x).

Since span (Γ) is a linear subspace, the only way the expression on the left side of
(4.2) can be bounded above is if y∗(x) = 0 for each y∗ ∈ Γ. In this case, it follows
that x∗(x) > 0. Thus x ∈ Γ⊥ \ (x∗)⊥ and (2) fails.

(3) ⇒ (1). Let x∗ ∈ w∗− cl(span (Γ)). If x ∈ X and y∗(x) = 0 for all y∗ ∈ Γ, then
clearly y∗(x) = 0 for all y∗ ∈ span (Γ). Since x∗ ∈ w∗− cl(span (Γ)), there exists a
net (y∗α) ∈ span (Γ) such that y∗α weak∗ converges to x∗, i.e., y∗α(z) → x∗(z) for each
z ∈ X. But y∗α(x) = 0 for all α, so x∗(x) = 0. That is, x∗ vanishes relative to Γ and
(1) holds.

If X is reflexive, then the same proof as in Theorem 2.4 works. □
Corollary 4.4. Let X be a normed linear space, Γ ⊂ X∗, and x∗ ∈ X∗. If x∗ is
positive relative to Γ, then x∗ vanishes relative to Γ.

Proof. By Theorem 2.4, we have x∗ ∈ w∗− cl(cone (Γ)). A fortiori, x∗ ∈ w∗−
cl(span (Γ)). By Theorem 4.3, the result follows.

A simpler, more direct, proof goes as follows. For any subset S of X∗, we have
S⊖ ∩ (−S⊖) = S⊥. Hence if Γ⊖ ⊂ (x∗⊖), then −Γ⊖ ⊂ −(x∗⊖) and hence

Γ⊥ = Γ⊖ ∩ [−Γ⊖] ⊂ (x∗)⊖ ∩ [−(x∗)⊖] = (x∗)⊥

In other words, using Theorem 4.3, x∗ vanishes relative to Γ. □

The following simple example shows that the converse to this theorem is not
valid.

Example 4.5. Let X = R with the absolute-value norm: ∥x∥ := |x|. Let x = −1
and Γ = {1}. Then x vanishes relative to Γ, but x is not positive relative to Γ.

Again, by the same argument as in Theorem 2.4, we note that in a reflexive
Banach space X, a convex set in X∗ is (norm) closed if and only if it is weak∗

closed. Thus we have the following result.

Corollary 4.6. Let X be a reflexive Banach space, Γ ⊂ X∗, and x∗ ∈ X∗. Then
x∗ vanishes relative to Γ if and only if x∗ ∈ span (Γ), the (norm) closed linear span
of Γ.

Corollary 4.7. Let H be a Hilbert space, Γ ⊂ H, and x ∈ H. Then x vanishes
relative to Γ if and only if x ∈ span (Γ), the norm closed linear span of Γ.

One important application of Theorem 4.3 is the following.

Lemma 4.8. Let X be a normed linear space and f, f1, . . . , fn be in X∗. Then the
following statements are equivalent:

(1) f vanishes relative to Γ = {f1, f2, . . . , fn}.
(2) If x ∈ X and fi(x) = 0 for each i = 1, 2, . . . , n, then f(x) = 0 .
(3) ∩n

i=1f
−1
i (0) ⊂ f−1(0).

(4) f ∈ span {f1, f2, . . . , fn}.
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Proof. The equivalence of (1) and (2) is just a rewording of the definition, and
the equivalence of (2) and (3) is obvious. Finally, (1) holds if and only if f lies
in the weak∗ closed linear span of Γ by Theorem 4.3. But the linear span of Γ,
being finite-dimensional, is weak∗ closed (see, eg., [8, Corollary 3.14]). That is, (4)
holds. □

This result—in even more general vector spaces—has proven useful in studying
weak topologies on vector spaces (see, e.g., [7, p. 421] or [8, Lemma 3.21]).
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