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1.1. An Ill-conditioned Problem. Let A be a real M by N matrix, with M ≥ N
and ATA invertible. If the ratio of the largest eigenvalue of ATA to the smallest is
much greater than one the problem of minimizing the function f(x) = 1

2∥Ax− b∥2
will be ill-conditioned. In that case, small changes in b can lead to large changes
in the computed solution. Sometimes the norm of the computed solution will be
unreasonably large. This happens in band-limited extrapolation [36], but, somewhat
surprisingly, the instability can be helpful in solving the optical phase retrieval
problem [15]. To regularize the problem and control the growth of the norm we can
minimize f(x) + 1

k∥x∥
2 to obtain the approximate solution xk. As k → +∞ the

sequence {f(xk)} ↓ inf f(x). With additional conditions we can have convergence
of {xk} to a minimizer of f(x). However, as pointed out in [46], as k → +∞ the
constrained problem becomes increasingly as ill-conditioned as the unconstrained
problem.

1.2. Barrier-function Methods. The barrier-function approach is a good illus-
tration of the use of AF algorithms for constrained minimization. Suppose that
X is an arbitrary set, C ⊆ X a nonempty subset, f : X → R, and we want
to minimize f(x) over x ∈ C. Using the barrier-function approach, we select a
function b : X → (0,+∞], with b(x) < +∞ if and only if x ∈ C, and minimize
Bk(x) = f(x) + 1

kb(x) to get xk ∈ C. If C = X, then this is regularization. We
have the following theorem.

Theorem 1.1. The sequence {f(xk)} is decreasing to a limit β∗ ≥ β
.
= infx∈C f(x),

the sequence {b(xk)} is increasing, and β∗ = β.

Proof. Since Bk(x
k) ≤ Bk(x

k−1) and Bk−1(x
k−1) ≤ Bk−1(x

k), we have

1

k − 1
[b(xk)− b(xk−1)] ≥ f(xk−1)− f(xk) ≥ 1

k
[b(xk)− b(xk−1)],

establishing the first two claims in the theorem. Now suppose that β∗ > β. Then
there must be z ∈ C with f(xk) ≥ β∗ > f(z) ≥ β, for all k. From Bk(z) ≥ Bk(x

k)
we get

1

k
(b(z)− b(xk)) ≥ f(xk)− f(z) ≥ β∗ − f(z) > 0.

But 1
k

(
b(z)− b(xk)

)
→ 0, since 1

k b(z) ↓ 0. �

It is helpful to note that minimizing Bk(x) is equivalent to minimizing

kf(x) + b(x) = f(x) + (k − 1)f(x) + b(x) = f(x) + (k − 1)Bk−1(x)

and therefore xk minimizes

Gk(x) = f(x) + (k − 1)Bk−1(x)− (k − 1)Bk−1(x
k−1) = f(x) + dk(x, x

k−1),

with dk(x, x
k−1) ≥ 0 and dk(x

k−1, xk−1) = 0. This is something like a proximal
minimization algorithm to be discussed shortly, except that the distances dk vary
with k and depend on the function f(x). With gk(x) = dk(x, x

k−1) above we have
an AF algorithm and

Gk(x)−Gk(x
k) = gk+1(x),(1.1)
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which will serve to motivate our definition of the SUMMA class of AF algorithms. A
penalty-function method for minimizing f(x) over x ∈ C is to minimize f(x)+kp(x)
to get xk, where p : X → [0,+∞) and p(x) = 0 if and only if x ∈ C. Writing
f(x)+kp(x) as p(x)+ 1

kf(x), we find that penalty-function methods can be analyzed
using the barrier-function approach [35]. For further discussion of barrier-function
and penalty-function methods and related ideas see [58].

1.3. Proximal Minimization Algorithms. Once again, however, the constrained
problem of minimizing Bk(x) may grow increasingly ill-conditioned as k increases.
Censor and Zenios [46] suggest that we consider relaxation methods to minimize
f(x) over x ∈ C. General proximal minimization algorithms (PMA) are a type
of relaxation algorithms in which we minimize f(x) + d(x, xk−1) to get xk, where
f : X → R, d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y. Clearly the sequence
{f(xk)} is decreasing to some β∗ ≥ β

.
= infx∈C f(x). Again, we want β∗ = β. With

additional conditions placed on X, f and d we can say more, as we shall see.

1.4. Using Bregman Distances. The methods called proximal minimization us-
ing D-functions (PMD) in [46], and called in this paper PMAB methods, involve
minimizing Gk(x)

.
= f(x) + Dh(x, x

k−1) to get xk, where X = RN , Dh(x, y) is a
Bregman distance [10, 6, 46, 24, 13], with

Dh(x, y)
.
= h(x)− h(y)− ⟨∇h(y), x− y⟩(1.2)

and f : X → R is convex. The reader should note that we use the term Bregman
distance in a somewhat looser sense than in [46, 13] and elsewhere. For us a gener-
alized distance Dh(x, z) will be called a Bregman distance if it has the form given
in Equation (1.2), where h : C ⊆ RN → R is convex on the closed convex set C and
differentiable in the nonempty interior of C. We will assume also that, for each k,
xk is the unique minimizer of f(x) +Dh(x, x

k−1) and lies in the interior of C.
To prove convergence of the PMAB algorithm we will need additional assump-

tions. As we shall see shortly, all PMAB algorithms are in the SUMMA class,
since

Gk(x)−Gk(x
k) ≥ Dh(x, x

k)(1.3)

for all x. Therefore, the sequence {f(xk)} ↓ β = infx∈C f(x). From the inequality
in (1.3) we have

Dh(x, x
k−1)−Dh(x, x

k) ≥ f(xk)− f(x),(1.4)

for all x. If there is x̂ ∈ C such that f(x) ≥ f(x̂), for all x ∈ C, then

Dh(x̂, x
k−1)−Dh(x̂, x

k) ≥ f(xk)− f(x̂) ≥ 0,(1.5)

for all k. Therefore, the sequence {Dh(x̂, x
k)} is decreasing. If the Bregman distance

Dh(z, ·) has bounded level sets, then the sequence {xk} is bounded, there is a cluster
point of the sequence, call it x∗, and f(x∗) = f(x̂). Replacing x̂ with x∗, we find
that the sequence {Dh(x

∗, xk)} is decreasing. Under reasonable assumptions on
Dh [46, 35] it will follow that a subsequence converges to zero, the entire sequence
converges to zero, and the sequence {xk} converges to x∗.
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2. The SUMMA class

An AF algorithm is said to belong to the SUMMA class if the following SUMMA
Inequality holds for all k and x ∈ X:

Gk(x)−Gk(x
k) ≥ gk+1(x).(2.1)

We already know that {f(xk)} ↓ β∗ ≥ β
.
= infx∈C f(x). We have the following

theorem.

Theorem 2.1. If an AF algorithm is in the SUMMA class then β∗ = β.

Proof. From the inequality in (2.1) we have

f(x) + gk(x) ≥ f(xk) + gk(x
k) + gk+1(x).

If β∗ > β then there is z ∈ C with

β∗ > f(z) ≥ β,

so that

gk(z)− gk+1(z) ≥ f(xk)− f(z) ≥ β∗ − f(z) > 0.

But the decreasing sequence {gk(z)} cannot have successive increments bounded
away from zero. �

From Equation (1.1) we see that the barrier-function algorithms are in the SUMMA
class. Proximal minimization algorithms using Bregman distances (PMAB) are also
in the SUMMA class.

Theorem 2.2. Let f : RN → (−∞,+∞] be convex and, for each k, gk(x) =
Dh(x, x

k−1). Then the AF algorithm is in the SUMMA class.

Proof. Since xk minimizes f(x) + h(x)− h(xk−1)− ⟨∇h(xk−1), x− xk−1) it follows
that

0 ∈ ∂f(xk) +∇h(xk)−∇h(xk−1),

where ∂f(xk) denotes the subdifferential of f at xk. Therefore, there is uk ∈ ∂f(xk)
with

∇h(xk−1) = uk +∇h(xk).

From

Gk(x)−Gk(x
k) = f(x) +Dh(x, x

k−1)− f(xk)−Dh(x
k, xk−1)

= f(x) + h(x)− f(xk)− h(xk)− ⟨∇h(xk−1), x− xk)⟩,
it follows that

Gk(x)−Gk(x
k) = f(x)− f(xk)− ⟨uk, x− xk⟩+Dh(x, x

k)

and so

Gk(x)−Gk(x
k) ≥ Dh(x, x

k) = gk+1(x).

�
Corollary 2.3. If gk(x) = 1

2∥x − xk−1∥2 then the AF algorithm to minimize the

convex function f(x) over all x ∈ RN is PMAB and therefore is in the SUMMA
class.
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For a > 0 and b > 0, KL(a, b) = a log a
b + b− a is the Kullback-Leibler distance

[64], which is positive, unless a = b. Using limits, we define KL(a, 0) = +∞ and
KL(0, b) = b. We then extend coordinate-wise to get

KL(x, z) =

J∑
j=1

KL(xj , zj)

for nonnegative vectors x and z. With x+
.
=
∑J

j=1 xj we have the identity

KL(x, z) = KL(x+, z+) +KL(x,
x+
z+

z)(2.2)

from which we get the useful inequality

KL(x+, z+) ≤ KL(x, z).(2.3)

The KL distance is a Bregman distance Dh for h(x) =
∑J

j=1 xj log xj − xj .

Corollary 2.4. If gk(x) = KL(x, xk−1), for nonnegative vectors x and xk−1, then
the AF algorithm to minimize the convex function f(x) over all x ≥ 0 is PMAB
and therefore is in the SUMMA class.

3. The EM algorithm and PMA

Maximizing the likelihood function is a well known tool in statistical parameter
estimation. Assume that Y is a random vector governed by a probability density
function or probability function fY (y|θ∗), for some parameter vector θ∗ ∈ Θ. We
have one realization y of Y , from which we want to estimate θ∗. Our maximum-
likelihood estimate is the θ for which the likelihood function L(θ)

.
= fY (y|θ) is

maximized over θ ∈ Θ. The expectation maximization (EM) algorithm [52, 67] is
not one algorithm, but a template or recipe for the design of iterative methods for
maximizing likelihood in statistics. As discussed in [35], the usual presentation of
the EM algorithm, as found in [67] and elsewhere, is flawed. The STEM approach
discussed here can be viewed as an improvement upon the usual EM method, al-
though the two are the same in most cases.

In this section we present our nonstochastic EM for optimization and define our
STEM template in terms of NSEM. It will follow from results concerning NSEM
that likelihood is always increasing for STEM algorithms.

3.1. NSEM. We assume that there is a function b : Θ× Ω → R+, where (Ω, µ) is
a measure space and

a(θ)
.
=

∫
Ω
b(θ, ω)dµ(ω).(3.1)

Let f(θ) = −a(θ) and θ0 be arbitrary. For k = 1, 2, ..., we maximize∫
Ω
b(θk−1, ω) log b(θ, ω)dµ(ω)(3.2)

to get θk. Note that the integration may be replaced by summation, as needed.
Using the Kullback–Leibler distance, we can reformulate the NSEM.
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With the shorthand notation b(θ) = b(θ, ω) we define

KL (b(θ), b(γ)) =

∫
Ω
KL (b(θ, ω), b(γ, ω)) dµ(ω).

Proposition 3.1. The sequence {a(θk)} is increasing.

Proof. We have

a(θk−1) = a(θk−1)−KL
(
b(θk−1), b(θk−1)

)
≤ a(θk)−KL

(
b(θk−1), b(θk)

)
.

Therefore,

a(θk)− a(θk−1) ≥ KL
(
b(θk−1), b(θk)

)
.

�
We see easily that θk minimizes

Gk(θ) = KL
(
b(θk−1), b(θ)

)
− a(θ) = f(θ) + d(θ, θk−1),(3.3)

for
d(θ, γ) = KL (b(γ), b(θ)) .

Consequently, the NSEM is a PMA.

3.2. STEM. Now we define the STEM class of iterative algorithms as a subclass
of the NSEM. For any random vectors X and Y governed by the joint probability
density function or joint probability function fX,Y (x, y|θ) we have

fY (y|θ) =
∫

fX,Y (x, y|θ)dx.(3.4)

With a(θ) = fY (y|θ) and b(θ, ω) = fX,Y (x, y|θ) we see that Equation (3.4) becomes
Equation (3.1). For the case of probability functions, the integration is replaced by
summation. So our STEM template fits into that of the NSEM. The iterative step
is then to find θk by maximizing the function∫

fX,Y (x, y|θk−1) log fX,Y (x, y|θ)dx.

It follows from our discussion of the NSEM that the sequence {fY (y|θk)} is increas-
ing. Of course, additional restrictions are needed to prove that the sequence {θk}
converges to a maximizer of the likelihood function L(θ) = fY (y|θ).

4. Concerning computation

We haven’t said anything yet about the difficulties involved in computing the xk

in AF algorithms. Minimizing f(x) + 1
2∥x− xk−1∥2 leads to

xk = xk−1 −∇f(xk),

so we do not have a closed-form expression for xk. Similarly, minimizing f(x) +
KL(x, xk−1) over x ≥ 0 leads to

log xkj = log xk−1
j −∇f(xk)j .

Once again, we have no closed-form expression for xk. How can we remedy this
situation?
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4.1. A Remedy. Suppose that we select g(x) convex and differentiable, with h(x)
.
=

g(x)− f(x) also convex. Then minimizing f(x) +Dh(x, x
k−1) is equivalent to min-

imizing f(x) +Dg(x, x
k−1)−Df (x, x

k−1). Therefore, we have

∇g(xk) = ∇g(xk−1)−∇f(xk−1).

Now suppose we have selected g(x) so that this equation is easily solved. Then we
would have a closed-form expression for the iterate xk.

For example, suppose that ∇f(x) is L-Lipschitz continuous and 0 < γ < 1
L . Then

h(x)
.
= 1

2γ ∥x∥
2 − f(x) is convex. Minimizing f(x) +Dh(x, x

k−1) now leads to

xk = xk−1 − γ∇f(xk−1),

which is a gradient-descent algorithm. If f(x) = 1
2∥Ax− b∥2 we get the Landweber

algorithm [65].
The simultaneous multiplicative algebraic reconstruction technique, the SMART

[51, 74, 44, 17, 19], is an iterative algorithm that minimizes f(x) = KL(Px, y)
over x ≥ 0, where P is an I by J matrix with nonnegative entries and y is a posi-
tive vector. If we enforce the nonnegativity constraint by minimizing KL(Px, y) +
KL(x, xk−1) to get xk we do not obtain xk in closed form. However, if the col-
umn sums of the matrix P are all equal to one, then KL(Px, Pz) = Df (x, z) and
Dh(x, z)

.
= KL(x, z) −KL(Px, Pz) is a Bregman distance. The SMART iterative

step, obtained by minimizing KL(Px, y) +Dh(x, x
k−1), is

xkj = xk−1
j exp

(
I∑

i=1

Pi,j log
yi

Pxk−1
i

)
.(4.1)

We shall discuss the SMART in more detail later in this paper.

4.2. Forward-Backward Splitting. The forward-backward splitting (FBS) algo-
rithm [49] is used to minimize f(x) = f1(x) + f2(x), where both f1 and f2 are
convex, but f1 need not be differentiable. When ∇f2(x) is L-Lipschitz continuous
and 0 < γ < 1

L we have a Bregman distance

Dh(x, z)
.
=

1

2γ
∥x− z∥2 −Df2(x, z).

We minimize Gk(x) = f(x) +Dh(x, x
k−1) to get

0 ∈ ∂f1(x
k) +∇f2(x

k) +
1

γ
(xk − xk−1)−∇f2(x

k) +∇f2(x
k−1),

or

xk−1 − γ∇f2(x
k−1) ∈ xk + γ∂f1(x

k).

It follows from a characterization of Moreau’s proximity operator prox [68, 69, 70, 49]
that

xk = proxγf1

(
xk−1 − γ∇f2(x

k−1)
)
.(4.2)

This is the FBS iterative step. The FBS is a PMAB algorithm, so we know that
the sequence {f(xk)} is decreasing to β

.
= infx f(x). If f2(x) = 1

2∥Ax − b∥2 and
f1(x) = ιC(x), the function equal to zero for x ∈ C and equal to +∞ otherwise, we
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get the projected Landweber algorithm. We have the following convergence theorem
for the FBS algorithm.

Theorem 4.1. The sequence {xk} given by Equation (4.2) converges to a minimizer
of the function f(x) = f1(x) + f2(x), whenever minimizers exist.

Proof. A relatively simple calculation shows that

Gk(x)−Gk(x
k) =

1

2γ
∥x− xk∥22 +

(
f1(x)− f1(x

k)− 1

γ
⟨(xk−1 − γ∇f2(x

k−1))− xk, x− xk⟩
)
.(4.3)

Since

(xk−1 − γ∇f2(x
k−1))− xk ∈ ∂(γf1)(x

k),

it follows that(
f1(x)− f1(x

k)− 1

γ
⟨(xk−1 − γ∇f2(x

k−1))− xk, x− xk⟩
)

≥ 0.

Therefore,

Gk(x)−Gk(x
k) ≥ 1

2γ
∥x− xk∥22 ≥ gk+1(x);(4.4)

the SUMMA Inequality holds and the FBS algorithm is in the SUMMA class.
Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(x
k) = f(x̂) + gk(x̂)− f(xk)− gk(x

k)

≤ f(x̂) +Gk−1(x̂)−Gk−1(x
k−1)− f(xk)− gk(x

k),

so that(
Gk−1(x̂)−Gk−1(x

k−1)
)
−
(
Gk(x̂)−Gk(x

k)
)
≥ f(xk)− f(x̂) + gk(x

k) ≥ 0.

Therefore, the sequence {Gk(x̂)−Gk(x
k)} is decreasing and the sequences {gk(xk)}

and {f(xk)− f(x̂)} converge to zero.
From

Gk(x̂)−Gk(x
k) ≥ 1

2γ
∥x̂− xk∥22,

it follows that the sequence {xk} is bounded. Therefore, we may select a subsequence
{xkn} converging to some x∗∗, with {xkn−1} converging to some x∗, and therefore
f(x∗) = f(x∗∗) = f(x̂).

Replacing the generic x̂ with x∗∗, we find that {Gk(x
∗∗)−Gk(x

k)} is decreasing
to zero. From the inequality in (4.4), we conclude that the sequence {∥x∗ − xk∥22}
converges to zero, and so {xk} converges to x∗. This completes the proof of the
theorem. �

As shown in [49], using the Baillon–Haddad Theorem [3, 9, 37] and the theory of
firmly non-expansive operators we can allow 0 < γ < 2

ρ(ATA)
.
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4.3. The Split Feasibility Problem. We apply the FBS algorithm to solve the
split feasibility problem (SFP) [40, 24]: given a real M by N matrix A, a closed
convex set C ⊆ RN and a closed convex set Q ⊆ RM , find x ∈ C with Ax ∈ Q. We
consider the more general problem of minimizing the convex differentiable function
f2(x) =

1
2∥PQAx − Ax∥2 over x ∈ C, where PQ denotes the orthogonal projection

onto the set Q. With f1(x) = ιC(x) we know proxγf1(x) = PC(x), and the gradient
of f2(x) is

∇f2(x) = AT (I − PQ)Ax.

For 0 < γ < 1
ρ(ATA)

the iterative sequence

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
(4.5)

converges to a minimizer of f(x) over x ∈ C, whenever such minimizers exist [27].
In recent work Yair Censor and his colleagues have generalized this CQ algorithm
and applied it to problems in proton-beam and x-ray radiation therapy [42, 43, 72].
If A = I, the identity matrix, and γ = 1, then the iteration in Equation (4.5)
becomes xk = PCPQx

k−1, which is the alternating orthogonal projection algorithm
investigated in [47]. It is also an example of an alternating minimization algorithm,
which we discuss later in this paper.

5. The SUMMA2 class

We turn now to several AF algorithms that are not in the SUMMA class, but for
which {f(xk)} ↓ β∗ = β

.
= infx∈C f(x).

5.1. Defining the SUMMA2 Class. We say that an AF method for minimizing
f(x) over x ∈ C is in the SUMMA2 class if, for each sequence generated by the
algorithm, there are functions hk : C → R+ such that

hk(x) + f(x) ≥ hk+1(x) + f(xk),(5.1)

for all x ∈ C. We have the following theorem.

Theorem 5.1. If an AF algorithm is in the SUMMA2 class, then β∗ = β.

Proof. If {f(xk)} ↓ β∗ > β
.
= infx∈C f(x) then there is z ∈ C with β∗ > f(z) ≥ β.

Consequently, we have

hk(z)− hk+1(z) ≥ f(xk)− f(z) ≥ β∗ − f(z) > 0,

for all k, which cannot happen. �

5.2. The Approach of Auslender and Teboulle. The method of Auslander
and Teboulle [2] is a particular example of an AF algorithm not in the SUMMA
class, but for which β∗ = β. We take C to be a closed, convex subset of RN , with
nonempty interior U . At the kth step of their method one minimizes a function

Gk(x) = f(x) + d(x, xk−1)(5.2)

to get xk. Their distance d(x, y) is defined for x and y in U , and the gradient with
respect to the first variable, denoted ∇1d(x, y), is assumed to exist. The distance
d(x, y) is not assumed to be a Bregman distance. Instead, they assume that the
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distance d has an associated induced proximal distance p(a, b) ≥ 0, finite for a and
b in U , with p(a, a) = 0 and

⟨∇1d(b, a), c− b⟩ ≤ p(c, a)− p(c, b),(5.3)

for all c in U . They show that, if the distance d has associated with it an induced
proximal distance, then β∗ = β.

They consider two types of distances d for which there are induced proximal
distances p: the first type are the Bregman distances d = Dh, which are self-
proximal in the sense that d = p; the second type are those having the form

d(x, z) = dϕ(x, z)
.
=

N∑
n=1

znϕ(
xn
zn

),

for functions ϕ having certain properties to be discussed below. In such cases
the induced proximal distance is p(x, z) = ϕ

′′
(1)KL(x, z), where KL(x, z) is the

Kullback–Leibler distance. Then for all x ≥ 0 we have

ϕ
′′
(1)
(
KL(x, xk)−KL(x, xk+1)

)
≥ f(xk)− f(x).(5.4)

The Hellinger distance,

H(x, z) =
N∑

n=1

(
√
xn −

√
zn)

2 ,

fits into this framework.
The required conditions on the function ϕ(t) are as follows: ϕ : R → (−∞,+∞] is

lower semi-continuous, proper and convex, with dom ϕ ⊆ R+, and dom ∂ϕ = R++.
In addition, the function ϕ is C2, strictly convex, and nonnegative on R++, with
ϕ(1) = ϕ′(1) = 0, and

ϕ′′(1)

(
1− 1

t

)
≤ ϕ′(t) ≤ ϕ′′(1) log(t).(5.5)

For the Hellinger case we have ϕ(t) = (
√
t−1)2, so that these conditions are satisfied

and for all x ≥ 0 we have

KL(x, xk)−KL(x, xk+1) ≥ 2
(
f(xk)− f(x)

)
.(5.6)

It can be shown that, whenever there is an induced proximal distance, then, for
any x, we have

p(x, xk)− p(x, xk+1) ≥ f(xk)− f(x).(5.7)

With hk(x)
.
= p(x, xk), the algorithm falls into the SUMMA2 class, and so β∗ = β.

5.3. The EMML Algorithm. The expectation maximization maximum likelihood
(EMML) algorithm [77, 19] is an iterative algorithm that minimizes f(x) = KL(y, Px)
over x ≥ 0. The iterative step of the EMML, similar to that in Equation (4.1), is

xkj = xk−1
j

(
I∑

i=1

Pi,j

(
yi

Pxk−1
i

))
.(5.8)
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The EMML algorithm is not PMAB, and not in the SUMMA class, although it does
minimize f(x) over x ≥ 0. As we shall see, the reason that β∗ = β here is that the
EMML algorithm is in the broader SUMMA2 class of AF methods.

6. Alternating minimization

In this section we review the basics of alternating minimization [50], and then
show that AM and PMA are equivalent. Alternating minimization plays an impor-
tant role in the application of the EM algorithm [52] to medical image reconstruction
[75, 77, 19].

Proximal minimization algorithms (PMA), alternating minimization methods
(AM), and optimization transfer (OT) are three well studied areas involving itera-
tive minimization algorithms. Optimization transfer, also called surrogate-function
methods or majorization minimization, commonly used in statistics [1, 66, 48] (see
also [53]), uses g(x|z) ≥ f(x) = g(x|x) and xk is obtained by minimizing g(x|xk−1).
With d(x, z)

.
= g(x|z)− f(x), it is clear that the OT iteration is equivalent to min-

imizing f(x) + d(x, xk−1), which shows that OT methods are equivalent to PMA.
Alternating minimization methods are also equivalent to PMA, although showing
this takes a bit more work [33].

6.1. AM Algorithms are PMA. Let Φ : P×Q → (−∞,+∞], where P and Q are
arbitrary nonempty sets. In the AM approach we minimize Φ(p, qk−1) over p ∈ P
to get pk and then minimize Φ(pk, q) over q ∈ Q to get qk. It follows immediately
that the sequence {Φ(pk, qk)} is decreasing. We want

{Φ(pk, qk)} ↓ β
.
= inf{Φ(p, q)|p ∈ P, q ∈ Q}.(6.1)

For each p select q(p) for which Φ(p, q(p)) ≤ Φ(p, q) for all q ∈ Q. Then define
f(p)

.
= Φ(p, q(p)). Since qk−1 = q(pk−1), we have

Φ(p, qk−1) = Φ(p, q(pk−1)).

Minimizing Φ(p, qk−1) to get pk is equivalent to minimizing

Gk(p) = Φ(p, q(p)) + Φ(p, q(pk−1))− Φ(p, q(p)) = f(p) + gk(p),(6.2)

where

gk(p) = Φ(p, q(pk−1))− Φ(p, q(p)).

Clearly, gk(p) ≥ 0 and gk(p
k−1) = 0. Therefore, every AM algorithm is also an AF

algorithm.
We define a “distance” d(p, p′) on the set P × P by

d(p, p′)
.
= Φ(p, q(p′))− Φ(p, q(p)).(6.3)

Then we see that pk is obtained by minimizing f(p) + d(p, pk−1). Consequently,
every AM algorithm is PMA. The converse is obvious: minimizing Φ(x, xk−1) =
f(x)+d(x, xk−1) with respect to x gives x = xk and minimizing Φ(xk, x) = f(xk)+
d(xk, x) gives x = xk again. We can formulate an AM algorithm as OT by choosing
Φ(p, q(p′)) to play the role of g(x|z) in OT.
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6.2. The Five-Point Property. In [50] Csiszár and Tusnády show that, if the
function Φ possesses what they call the five-point property (5PP),

Φ(p, q) + Φ(p, qk−1) ≥ Φ(p, qk) + Φ(pk, qk−1),(6.4)

for all p, q, and k, then (6.1) holds. There seemed to be no convincing explanation
of why the five-point property should be used, except that it works. I was quite
surprised when I discovered that, when the AM method is reformulated as above,
as an AF method to minimize a function of the single variable p, the five-point
property for AM is precisely the SUMMA Inequality.

It is often the case that AM methods are described using the three- and four-point
properties (3PP and 4PP). The 3PP is

Φ(p, qk−1)− Φ(pk, qk−1) ≥ ∆(p, pk) ≥ 0,(6.5)

where ∆ : P × P → R+ and ∆(p, p) = 0, for all p ∈ P . The 4PP is the following:

∆(p, pk) ≥ Φ(p, qk)− Φ(p, q),(6.6)

for all p, q, and k. Clearly, the 3PP and 4PP together imply the 5PP.
When the 3PP and 4PP hold we have

∆(p, p′) ≥ d(p, p′) = Φ(p, q(p′))− Φ(p, q(p)).

If we redefine ∆ by ∆(p, p′)
.
= d(p, p′), then the 4PP is automatically true and the

3PP becomes equivalent to the 5PP. The 3PP is now

Φ(p, qk−1)− Φ(pk, qk−1) ≥ d(p, pk).(6.7)

The weak 3PP (w3PP), defined by

Φ(p, qk−1)− Φ(pk, qk) ≥ d(p, pk),(6.8)

implies that the algorithm is in the SUMMA2 class, so is sufficient to guarantee
that β∗ = β.

It is shown in [56] that a Bregman distance that is jointly convex enjoys the 5PP
with respect to closed, convex sets P and Q. Therefore Φ(p, q) = 1

2∥p − q∥2 and
Φ(p, q) = KL(p, q) both have the 5PP for appropriately defined P and Q. Related
work is found in [8].

7. The SMART and the EMML algorithms

In this section we present the tandem development of the SMART and the EMML
algorithms, as originally published in [19]. We assume that y is a positive vector in

RI , P an I by J matrix with nonnegative entries Pi,j , sj =
∑I

i=1 Pi,j > 0, and we
want to find a nonnegative solution or approximate solution x for the linear system
of equations y = Px. The EMML algorithm will minimize KL(y, Px), while the
SMART will minimize KL(Px, y), over x ≥ 0. For notational simplicity we shall
assume that the system has been normalized so that sj = 1 for each j.
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7.1. The SMART. The SMART algorithm [51, 74, 44, 17, 19] minimizes the func-
tion f(x) = KL(Px, y), over nonnegative vectors x. Having found the vector xk−1,
the next vector in the SMART sequence is xk, with entries given by

xkj = xk−1
j exp

(
I∑

i=1

Pij log

(
yi

(Pxk−1)i

))
.(7.1)

The iterative step of the SMART can be described as xk = Sxk−1, where S is the
operator defined by

(Sx)j = xj exp

(
I∑

i=1

Pij log

(
yi

(Px)i

))
.(7.2)

In our proof of convergence of the SMART we will show that any cluster point x∗ of
the SMART sequence {xk} is a fixed point of the operator S. To avoid pathological
cases in which Px∗i = 0 for some index i, we can assume, at the outset, that all the
entries of P are positive. This is wise, in any case, since the model of y = Px is
unlikely to be exactly accurate in applications.

7.2. The EMML Algorithm. The EMML algorithmminimizes the function f(x) =
KL(y, Px), over nonnegative vectors x. Having found the vector xk−1, the next vec-
tor in the EMML sequence is xk, with entries given by

xkj = xk−1
j

(
I∑

i=1

Pij

(
yi

(Pxk−1)i

))
.(7.3)

The iterative step of the EMML algorithm can be described as xk = Mxk−1, where
M is the operator defined by

(Mx)j = xj

(
I∑

i=1

Pij

(
yi

(Px)i

))
.(7.4)

As we shall see, the EMML algorithm forces the sequence {KL(y, Pxk)} to be
decreasing. It follows that (Px∗)i > 0, for any cluster point x∗ and for all i.

7.3. The SMART as AM. In [17] the SMART was derived using the following
alternating minimization (AM) approach. Let X be the set of all nonnegative x for
which Px has only positive entries; all positive x are in X.

For each x ∈ X, let r(x) and q(x) be the I by J arrays with entries

r(x)ij = xjPij

(
yi

(Px)i

)
,(7.5)

and

q(x)ij = xjPij .(7.6)

In the iterative step of the SMART we get xk by minimizing the function

Gk(x) = KL(q(x), r(xk−1)) =

I∑
i=1

J∑
j=1

KL(q(x)ij , r(x
k−1)ij)(7.7)
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over x ≥ 0. Note that f(x) = KL(Px, y) = KL(q(x), r(x)). We have the following
helpful Pythagorean identities:

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Px, Pz);(7.8)

and

KL(q(x), r(z)) = KL(q(Sz), r(z)) +KL(x, Sz).(7.9)

Note that it follows from Equation (2.3) that KL(x, z)−KL(Px, Pz) ≥ 0.
From the Pythagorean identities we find that xk is obtained by minimizing

Gk(x) = KL
(
q(x), r(xk−1)

)
=

KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1),(7.10)

so that

gk(x) = KL(x, xk−1)−KL(Px, Pxk−1).(7.11)

Then

Gk(x)−Gk(x
k) = KL(x, xk) ≥ KL(x, xk)−KL(Px, Pxk) = gk+1(x).

Therefore, the SMART is in the SUMMA class. It follows from the SUMMA In-
equality that, for all x ≥ 0,

gk(x) + f(x) ≥ gk+1(x) + f(xk).(7.12)

Since
J∑

j=1

xkj ≤
I∑

i=1

yi,

the sequence {xk} is bounded and has a cluster point, x∗, with f(xk) ≥ f(x∗) for
all k. With x = x∗ in (7.12), we obtain

Dh(x
∗, xk−1)−Dh(x

∗, xk) ≥ f(xk)− f(x∗) ≥ 0.

Therefore, the sequence {f(xk)} converges to f(x∗). Since the SMART is in
SUMMA, we know that f(x∗) must be the minimum of f(x). Since a subsequence
of {Dh(x

∗, xk)} converges to zero, it follows that {xk} converges to x∗.
Let x̂ be any minimizer of KL(Px, y). Using the Pythagorean identites we find

that

KL(x̂, xk)−KL(x̂, xk+1) = KL(Pxk+1, y)−KL(Px̂, y)+

KL(Px̂, Pxk) +KL(xk+1, xk)−KL(Pxk+1, Pxk).(7.13)

From Equation (7.13) we see that the difference KL(x̂, xk)−KL(x̂, xk+1) depends
only on Px̂, and not on x̂ itself. Summing over the index k on both sides and
“telescoping” , we find that the difference KL(x̂, x0)−KL(x̂, x∗) also depends only
on Px̂, and not on x̂ itself. It follows that x̂ = x∗ is the minimizer of f(x) for which
KL(x̂, x0) is minimized. If y = Px has nonnegative solutions, and the entries of x0

are all equal to one, then x∗ maximizes the Shannon entropy over all nonnegative
solutions of y = Px.



AF MINIMIZATION ALGORITHMS 185

With f(x) = KL(Px, y), we have Df (x, z) = KL(Px, Pz). Therefore, we obtain

the next iterate xk by minimizing Gk(x) given by

KL(q(x), r(xk−1)) = f(x) +KL(x, xk−1)−Df (x, x
k−1).(7.14)

This shows that the SMART is yet another example of the “remedy” used to obtain
PMAB algorithms with iterates that can be simply calculated.

The following theorem summarizes the situation with regard to the SMART
[17, 18, 19].

Theorem 7.1. In the consistent case, in which the system y = Px has nonnegative
solutions, the sequence of iterates of SMART converges to the unique nonnegative so-
lution of y = Px for which the distance KL(x, x0) is minimized. In the inconsistent
case it converges to the unique nonnegative minimizer of the distance KL(Px, y)
for which KL(x, x0) is minimized. In the inconsistent case, if P and every matrix
derived from P by deleting columns has full rank, then there is a unique nonnegative
minimizer of KL(Px, y) and at most I − 1 of its entries are nonzero.

7.4. The EMML Algorithm as AM. Now we want to minimize f(x) = KL(y, Px).
The iterative step of the EMML algorithm is obtained by minimizing

Gk(x) = KL(r(xk−1), q(x))(7.15)

to get xk. We have the following helpful Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) +KL(r(x), r(z));(7.16)

and

KL(r(x), q(z)) = KL(r(x), q(Mx)) +KL(Mx, z).(7.17)

From the Pythagorean identities we have

KL(y, Pxk)−KL(y, Pxk+1) =

KL(r(xk), r(xk+1)) +KL(xk+1, xk),(7.18)

so that

KL(y, Pxk)−KL(y, Pxk+1) ≥ KL(xk+1, xk).(7.19)

The inequality in (7.19) is called the First Monotonicity Property in [55]. We also
have Gk(x) given by

KL(r(x), q(x)) +KL(r(xk−1, r(x)) = f(x) + d(x, xk−1)(7.20)

so that

Gk(x) = f(x) + gk(x),(7.21)

with

d(x, xk−1) = gk(x) = KL(r(xk−1), q(x))−KL(r(x), q(x)).(7.22)

Therefore, the EMML algorithm is an AF algorithm, so that {f(xk)} is decreas-
ing. The EMML algorithm appears not to be a member of the SUMMA subclass;
however, as we shall see shortly, it is a member of the SUMMA2 subclass.
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Lemma 7.2. For {xk} given by Equation (7.3), the sequence {KL(y, Pxk)} is
decreasing and the sequences {KL(xk+1, xk)} and {KL(r(xk), r(xk+1))} converge
to zero.

Lemma 7.3. The EMML sequence {xk} is bounded; for k ≥ 1 we have

J∑
j=1

xkj =

I∑
i=1

yi.

Using (2.3) we obtain the following useful inequality:

KL(r(x), r(z)) ≥ KL(Mx,Mz).(7.23)

From

KL(r(x), q(xk)) = KL(r(xk), q(xk)) +KL(r(x), r(xk))

≥ f(xk) +KL(Mx, xk+1),

and

KL(r(x), q(xk)) = KL(r(x), q(Mx)) +KL(Mx, xk) =

f(x)−KL(Mx, x) +KL(Mx, xk)

we have

KL(Mx, xk)−KL(Mx, xk+1) ≥ f(xk)− f(x) +KL(Mx, x).(7.24)

Note that we have used (7.23) here. With hk(x)
.
= KL(Mx, xk) we get Equation

(5.1), so the EMML is in the SUMMA2 class. With x∗ a cluster point, we have

KL(Mx∗, xk)−KL(Mx∗, xk+1) ≥ f(xk)− f(x∗) ≥ 0.(7.25)

Therefore, the sequence {KL(Mx∗, xk)} is decreasing, and the sequence {f(xk)}
converges to f(x∗). Since the EMML is in the SUMMA2 class, we know that f(x∗)
is the minimum value of f(x) and Mx∗ = x∗.

Let x̂ be a minimizer of f(x) = KL(y, Px). Inserting x = x̂ into Equation (7.24),
we obtain

KL(x̂, xk)−KL(x̂, xk+1) ≥ KL(y, Pxk)−KL(y, Pxk+1).(7.26)

The inequality in (7.26) is called the Second Monotonicity Property in [55].
The following theorem summarizes the situation with regard to the EMML algo-

rithm [17, 18, 19].

Theorem 7.4. In the consistent case, in which the system y = Px has nonnegative
solutions, the sequence of EMML iterates converges to a nonnegative solution of
y = Px. In the inconsistent case it converges to a nonnegative minimizer of the
distance KL(y, Px). In the inconsistent case, if P and every matrix derived from
P by deleting columns has full rank, then there is a unique nonnegative minimizer
of KL(y, Px) and at most I − 1 of its entries are nonzero.

In contrast to the SMART, we have been unable to characterize the limit in terms
of the starting vector x0.
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7.5. Imposing Constraints. In [71] we discussed certain situations in emission
tomographic imaging in which it was helpful to impose reasonable constraints on
the individual pixel values of the reconstructed image. In [71, 31] we presented
modified versions of the SMART and EMML that employed Fermi–Dirac entropy
to incorporate upper and lower bounds on these pixel values. Suppose that, for
each j, we have 0 ≤ aj < bj and we want to minimize KL(Px, y) over all x in
Xab = {x|aj ≤ xj ≤ bj , j = 1, ..., J}. In the version presented in [31] we take sj = 1
for each j and

g(x) =
J∑

j=1

((xj − aj) log(xj − aj) + (bj − xj) log(bj − xj)) .(7.27)

Then

Dg(x, z) =
J∑

j=1

(KL(xj − aj , zj − aj) +KL(bj − xj , bj − zj)) .(7.28)

It was shown there that Dg(x, z) ≥ Df (x, z) = KL(Px, Pz). At the kth step of the
iteration we minimize

KL(Px, y) +Dg(x, x
k−1)−KL(Px, Pxk−1)(7.29)

to get xk. If y = Px has solutions satisfying the constraints, then the sequence {xk}
converges to such a solution.

7.6. Auxiliary Functions For Regularization. We know from Theorems 7.1
and 7.4 that when J > I and there is no nonnegative solution of y = Px the limits
of the SMART and EMML iterative sequences will have at least J−I+1 zero values.
If the x represents a vectorized reconstructed image, these zero values appear to
be randomly placed in the image, making it of little value. To avoid this behavior
regularization is used. By selecting the regularizing functions carefully we can still
get closed-form solutions for the iterates [17]. For regularized SMART we minimize

KL(Px, y) + ϵKL(x, p),(7.30)

where ϵ is a small positive quantity and p is a chosen positive vector, perhaps
incorporating prior information about the desired solution. To get the iterate xk

we minimize

KL(q(x), r(xk−1)) + ϵKL(x, p).(7.31)

To regularize the EMML algorithm we minimize

KL(y, Px) + ϵKL(p, x).(7.32)

To get the iterate xk we minimize

KL(r(xk−1), q(x)) + ϵKL(p, x).(7.33)
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8. Generalized projections and acceleration

It is well known that both the SMART and the EMML algorithm can be slow
to converge. In this section we consider the use of generalized projections [4, 5, 6],
row-action algorithms [39] and relaxation to accelerate convergence [20].

If, for fixed x ≥ 0, we try to minimize KL(x, z) over z ≥ 0 with Pzi = yi, we
find that we cannot obtain the desired z in closed form. However, if we min-
imize

∑J
j=1 Pi,jKL(xj , zj), subject to Pzi = yi, we find that the desired z is

zj = xjyi/Pxi. This z is a generalized projection of x and we denote it by z = Qix.
The SMART iterative step,

xkj = xk−1
j exp

(
I∑

i=1

Pi,j log

(
yi

(Pxk−1)i

))
,

can be written as

xkj =

I∏
i=1

(
Qix

k−1
j

)Pi,j

,

so that xkj is a weighted geometric mean of the generalized projections Qix
k−1
j . The

EMML iterative step,

xkj = xk−1
j

I∑
i=1

Pi,j

(
yi

(Pxk−1)i

)
,

can be written as

xkj =

I∑
i=1

Pi,j(Qix
k−1
j ),

so that xkj is a weighted arithmetic mean of the same generalized projections. The

multiplicative algebraic reconstruction technique (MART) [60], with the iterative
step

xkj = xk−1
j

(
yi

(Pxk−1)i

)Pi,j

,(8.1)

for i = k(mod I) + 1, can be written as

xkj =
(
xk−1
j

)1−Pi,j
(
Qix

k−1
j

)Pi,j

,

which says that xkj is a weighted geometric mean of the current xk−1
j and Qix

k−1
j .

This suggests an iterative algorithm that we have called the EMART [35], with the
iterative step

xkj = (1− Pi,j)x
k−1
j + Pi,j(Qix

k−1
j ),(8.2)

the weighted arithmetic mean of the current xk−1
j and Qix

k−1
j . When there are

nonnegative solutions of y = Px the MART converges to the same solution as the
SMART. The EMART also converges to a nonnegative solution of y = Px, but
nothing further is known.

Let Ci ⊆ RJ , i = 1, ..., I be nonempty closed convex sets with nonempty intersec-
tion C. The convex feasibility problem (CFP) [46] is to find a member of C. The
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generalized projections Qi used here are defined in terms of KL distances that vary
slightly with the index i. This suggests that such multi-projection algorithms may
be used to solve the more general CFP. This idea was investigated in [24, 25, 27].

9. Block-Iterative algorithms

More general block-iterative algorithms extending SMART and the EMMLmethod
were presented in [51, 44, 61, 11, 20, 21]. We consider these briefly in this section.
Block-iterative variants of SMART and EMML will not converge to a single vector
when y = Px has no nonnegative solution. Therefore, when discussing conver-
gence of block-iterative algorithms, we shall assume that y = Px has nonnegative
solutons. A survey of block-iterative methods is found in [31].

9.1. Block-Iterative SMART. For block-iterative algorithms to solve y = Px we
partition the row-index set {i = 1, ..., I} into blocks B1, ..., BN . If we do not require

that the matrix P be normalized to have sj
.
=
∑I

i=1 Pi,j = 1, then the SMART
iterative step becomes

xkj = xk−1
j exp

(
s−1
j

I∑
i=1

Pi,j log

(
yi

(Pxk−1)i

))
.(9.1)

Obviously, all the rows of the matrix P are employed at each step of the iteration.
As various authors have noted, to facilitate the use of parallel computation and to
accelerate convergence it is helpful to process only some of the rows of P at each
step. It may seem obvious that the appropriate block-iterative version of SMART
should have the iterative step

xkj = xk−1
j exp

(
s−1
n,j

∑
i∈Bn

Pi,j log

(
yi

(Pxk−1)i

))
,(9.2)

for n = k(modN) + 1 and sn,j =
∑

i∈Bn
Pi,j . This is not the case, however.

In [21] it was shown that block-iterative variants of the SMART with the following
iterative step are convergent:

xkj = xk−1
j exp

(
γjδn

∑
i∈Bn

Pij log

(
yi

(Pxk−1)i

))
,(9.3)

where 0 < γjδnsn,j ≤ 1. Such iterative algorithms converge to the nonnegative

solution of y = Px that minimizes
∑J

j=1 γ
−1
j KL(xj , x

0
j ), whenever such solutions

exist, for any choice of blocks and any x0 > 0. Since s−1
n,j ̸= γjδn generally, the

iterative algorithm described in Equation (9.2) is not convergent.
For γj = 1 we must have 0 < δn ≤ s−1

n,j ≤ 1, for all j, or δn ≤ minj s
−1
n,j =

1/maxj sn,j . With mn
.
= maxj sn,j , we must have δn ≤ m−1

n . The rescaled block-
iterative SMART (RBI-SMART) [21] uses δn = m−1

n . We can write the iterative
step of the RBI-SMART as

log xkj = log xk−1
j +m−1

n

∑
i∈Bn

Pij log

(
yi

(Pxk−1)i

)
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or, equivalently, as

log xkj = (1− sn,jm
−1
n ) log xk−1

j +m−1
n

∑
i∈Bn

Pi,j logQi(x
k−1)j ,(9.4)

where, once again, we write Qi(x)j = xj
yi

(Px)i
. Therefore, the RBI-SMART iterate

is a weighted geometric mean of the current xk−1 and the generalized projections
Qi(x

k−1) for i ∈ Bn [21, 29]. When each block consists of a single index we get the
MART, so we could also call the RBI-SMART a block-iterative MART or block-
MART [46] algorithm.

9.2. Block-Iterative EMML. The EMML has attracted more attention within
the medical imaging community than has the SMART. Researchers in that field
have noticed its slow convergence and have experimented with various means of
acceleration. In [62, 63] the authors introduced the ordered-subset EM (OSEM)
algorithm and observed that it often led to usable reconstructed images much faster
than did the EMML.

Again, without assuming that sj = 1, the EMML iterative step becomes

xkj = xk−1
j s−1

j

I∑
i=1

Pij

(
yi

(Pxk−1)i

)
.(9.5)

The OSEM is a block-iterative variant of the EMML. It uses an obvious modification
of the EMML iteration and has the iterative step

xkj = xk−1
j s−1

n,j

∑
i∈Bn

Pij

(
yi

(Pxk−1)i

)
,(9.6)

for n = k(modN) + 1. But the OSEM is not the correct block-iterative variant of
EMML; it fails to converge in most cases.

In [29] it was shown that the block-iterative algorithm with the iterative step

xkj = (1− γjδnsn,j)x
k−1
j + xk−1

j γjδn
∑
i∈Bn

Pi,j

(
yi

(Pxk−1)i

)
(9.7)

converges to a nonnegative solution of y = Px for any x0 > 0 and any choice of
blocks, provided that 0 < γjδnsn,j ≤ 1. In those rare cases in which γjδnsn,j = 1
Equation (9.7) reduces to Equation (9.6). As in the RBI-SMART case, we take
γj = 1 and δn = m−1

n to get the RBI-EMML algorithm. The iterative step of the
RBI-EMML algorithm is then

xkj = (1− sn,jm
−1
n )xk−1

j +m−1
n

∑
i∈Bn

xk−1
j Pi,j

(
yi

(Pxk−1)i

)
,(9.8)

which we can write as

xkj = (1− sn,jm
−1
n )xk−1

j +m−1
n

∑
i∈Bn

Pi,jQi(x
k−1)j .(9.9)

This tells us that the RBI-EMML iterate is a weighted arithmetic mean of the
current xk−1 and the generalized projections Qi(x

k−1), for i ∈ Bn. As with RBI-
SMART, the RBI-EMML converges, for any x0 and any choices of blocks, to a
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nonnegative solution of y = Px. However, in contrast to RBI-SMART, we have
no characterization of the particular solution to which it converges nor how that
solution may vary with x0 and the choice of blocks.

9.3. Why Are Block-Iterative Methods Faster? We have made the claim,
and experience has shown, that in the consistent case block-iterative methods can
converge significantly faster than their simultaneous relatives. We investigate this
claim a bit more theoretically now. The arguments given here are not completely
rigorous, but will give some idea of the source of the acceleration. Our goal is to
get orders-of-magnitude estimates, not precise values. We begin by comparing the
simultaneous Landweber algorithm with the sequential ART algorithm for solving
the general system of linear equations Ax = b. Then we compare the simultaneous
SMART with the sequential MART for solving the nonnegative system Px = y.

9.3.1. The Landweber and Cimmino Algorithms. Let Ax = b be a consistent system
of I linear equations in J unknowns, with

∑J
j=1A

2
i,j = 1, for each i = 1, ..., I. The

iterative step of the Landweber algorithm is

xk+1 = xk + γAT (b−Axk),(9.10)

where 0 < γ < 2
L for L = ρ(ATA), the largest eigenvalue of the matrix ATA. The

trace of AAT is I, so 1 ≤ L ≤ I. The choice of γ = 1
I is acceptable.

Simple calculations show that, for any z with Az = b,

∥z − xk∥2 − ∥z − xk+1∥2 ≥ (2γ − Lγ2)∥b−Axk∥2.(9.11)

With the choice of γ = 1
I we get Cimmino’s algorithm:

xk+1 = xk +
1

I
AT (b−Axk),(9.12)

and

∥z − xk∥2 − ∥z − xk+1∥2 ≥ (2/I − L/I2)∥b−Axk∥2.(9.13)

The improvement we obtain in Equation (9.11) will depend L, and the choice of γ.
If we know L, which is probably not the case, especially for large systems, we

may select γ = 1
I , just to be safe; this is Cimmino’s choice. If we have a better

upper bound for L than just I, then we can use it in the choice of γ. For example,
it was shown in [32] that, whenever the rows of A are normalized to length one, L
cannot be larger than the maximum number of nonzero entries in any column of
A. This is useful in the case of sparse A. In transmission tomography there are
typically about

√
I nonzero entries in a column, so the estimate L ≤

√
I is usually

acceptable. If L = 1 and we choose γ = 1, then Equation (9.11) becomes

∥z − xk∥2 − ∥z − xk+1∥2 ≥ ∥b−Axk∥2.(9.14)

However, if L is closer to I than to 1 the choice of γ = 1
I will give us something

more like

∥z − xk∥2 − ∥z − xk+1∥2 ≥ 1

I
∥b−Axk∥2.(9.15)
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9.3.2. The ART. When the rows of A are normalized to have length one, the iter-
ative step of the ART is

xkj = xk−1
j +Ai,j(bi − (Axk−1)i),(9.16)

where i = k(mod I) + 1. We consider the improvement we obtain after one pass
through all the data. For any z with Az = b we have

∥z − x0∥2 − ∥z − xI∥2 =
I∑

i=1

(bi − (Axi−1)i)
2.(9.17)

This is, very roughly, about I times the improvement in Equation (9.15).

9.3.3. The SMART. For SMART we assume that sj =
∑I

i=1 Pi,j = 1, for each j.
Then, with y = Pz, Equation (7.13) tells us that

KL(z, xk)−KL(z, xk+1) ≈ KL(Pxk+1, y).(9.18)

9.3.4. The MART. With mi = max{Pi,j |j = 1, ..., J}, and y = Pz we have

KL(z, x0)−KL(z, x1) ≈ m−1
1 KL(y1, (Px0)1).(9.19)

Since sj = 1, we might estimate m1 ≈ 1
I . Therefore, after one pass through all the

data, we have

KL(z, x0)−KL(z, xI) ≈ I KL(y, Pxi−1),(9.20)

for some representative i. The point is that the improvement we may expect after
one pass through the data may well be a factor of I larger than that obtained by
one SMART iteration. Of course, if the entries of P are not more or less uniformly
distributed, the mi may well be greater than 1

I and the improvement after one pass
through the data may well be somewhat less than before. In the sparse case, in
which there are, say, only

√
I nonnegative entries in any column, the mi will be

more like 1√
I
and the improvement will be only a factor of

√
I better than SMART.

Since, in many applications, I is in the thousands, even this reduced improvement
is significant.

10. Probabilistic mixture problems

When sj = 1 for all j and x+
.
=
∑J

j=1 xj = 1 we can view Px as a prob-
abilistic mixture of the columns of the matrix P , each of which is a probability
vector, with the entries of x the unknown mixing proportions to be determined.
In list-mode positron-emission tomography we sometimes encounter mixtures of
probability-density functions (pdf), not of finite probability vectors [26]. A modifi-
cation of the EMML algorithm, called the Mix-EM algorithm, can be used to solve
this problem. In keeping with the conventions in this area we adopt somewhat
different notation.
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10.1. Probabilistic-Mixture Models. Let X be a random vector governed by a
pdf or discrete probability f(x). The pdf f(x) is said to be a probabilistic mixture
(PM) if f(x) has the form

f(x) =

J∑
j=1

θjfj(x),(10.1)

where the fj(x) are known probability-density functions (pdf) or finite or infinite
discrete probabilities and the nonnegative entries of θ = (θ1, ..., θJ)

T are to be

determined, subject to
∑J

j=1 θj = 1. We have finitely many realizations of X,
denoted x1, ..., xN , from which we must estimate the mixing proportions θj . The
estimate is obtained by maximizing the likelihood function

L(θ) =
N∏

n=1

f(xn) =
N∏

n=1

 J∑
j=1

θjfj(xn)

 .

In a more general formulation of probabilistic mixture the pdf fj(x) involve pa-
rameters to be determined as well. For example, we may wish to model f(x) as a
probabilistic mixture of a small number of normal pdf whose means and variances
are unknown, or a small number of Poisson probabilities with unknown means. If
the fj themselves involve unknown parameters, we have a choice: we can take J
large, but expect only a few of the θj to be non-zero; or we can estimate J , the
non-zero θj , and the parameters associated with those fj for which θj is non-zero. In
most applications of PM models the pdf f(x) is suspected of being a superposition
of a relatively small number of components fj(x) and the goal is to determine the
relative sizes of the θj and, in particular, which θj are non-zero [14, 16]. Such mod-
els have uses in a wide variety of applications, including sonar, radar, astronomy,
spectral analysis, analytic chemistry, and many others.

10.2. The Mix-EM Algorithm. When the fj are probability-density functions
the values fj(xn) can be any nonnegative values. In such cases we cannot apply
the EMML algorithm directly, just by replacing Pi,j with fj(xn). We require a
modification of the EMML algorithm that we call the Mix-EM algorithm [26]. We

start with θ0j > 0, for each j. Having found θk−1
j , for each j, we define

θkj = θk−1
j

1

N

N∑
n=1

(
fj(xn)

1

(Pθk−1)n

)
,(10.2)

where P is the matrix with entries Pn,j
.
= fj(xn) and

(Pθk−1)n =
J∑

j=1

Pn,jθ
k−1
j .(10.3)

The sequence {θk} converges to a vector of maximum-likelihood values of the θj
[26].
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11. Fixed-point algorithms

Suppose that T : X → X is an operator on the set X. We say that z is a
fixed point for T if Tz = z. A variety of problems can be solved using fixed-point
iteration, in which xk = Txk−1 and T is selected so that the solutions of the problem
coincide with the fixed points of T . We have seen this already in this paper, in our
discussion of the FBS methods, the SMART and the EMML algorithm. Most of the
theory of fixed-point iteration is developed within the context of X a Hilbert space
[5, 28, 38], although, as we have seen, this approach can be applied more generally
[10, 57, 17, 19, 46, 6].

Fixed-point theory seems to play little role in AF methods, although a few things
can be said. Consider a SUMMA iteration algorithm in which we minimize f(x) +
gk(x) to get xk. Suppose that xk = xk−1 for some k. Then we must have f(xk) =
β = minx∈C f(x). In PMAB iteration we can define an operator T by setting Tz
equal to the minimizer of f(x)+Dh(x, z). If Tz = z, then f(z) = β so z is a solution
to our problem.

12. Some questions

In this section we survey a few open questions related to the topics discussed in
this article.

12.1. Limit Cycles for MART and EMART. If the M by N system of linear
equations Ax = b has no solution then the algebraic reconstruction technique (ART)
iteration [60], in which xk = PMPM−1 · · · P2P1x

k−1, cannot converge to a single
vector, where Pm denotes the orthogonal projection onto the hyperplane Hm =
{x|(Ax)m = bm}. Tanabe shows in [76] that we get subsequential convergence to a
limit cycle of (usually)M distinct vectors z1, ..., zM , with P1z

M = z1 and Pmzm−1 =
zm, for m = 2, 3, ...,M . When the nonnegative system of linear equations y = Px
has no nonnegative solution neither the MART nor the EMART can converge to a
single vector. In practice we always see subsequential convergence to limit cycles,
but as yet no proof of their existence has emerged.

12.2. The Goldstein–Osher Problem. The following question arises from some
assertions made in [59]. Suppose that xk minimizes

f(x) +Dh(x, x
k−1),

and {xk} converges to x∗. We know that x∗ minimizes f(x) over all x in C, the
domain of the function f . Let S be the set of all such minimizers. Does x∗ also
minimize h(z) over all z in S? In general, the answer is no; Dh does not determine
h uniquely. What if h(x) = Dh(x, x

0); that is, what if h(x0) = 0 and ∇h(x0) = 0?
There are several examples, using both Euclidean and Kullback-Leibler distances,
in which the answer is yes.

12.3. Characterizing the EMML and EMART Solutions. When the nonneg-
ative system of linear equations y = Px has nonnegative solutions then SMART
and MART converge to the nonnegative solution that minimizes KL(x, x0), where
x0 is the positive starting vector for the iteration. It has been shown that both
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EMML and EMART converge to nonnegative solutions in this case, but no similar
characterization of the limit is known.
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