SEMICONTINUITY OF THE SOLUTION MAP TO A PARAMETRIC OPTIMAL CONTROL PROBLEM

BUI TRONG KIEN* AND JEN CHIH YAO ${ }^{\dagger}$

Abstract

This paper studies the solution stability of a parametric optimal control problem governed by nonlinear ordinary differential equations and nonconvex cost functions with control constraints. By using the direct method, the Pontryagin Principle and exploiting structures of the problem, we obtain upper semicontinuity and continuity of the solution map with respect to parameters.

1. Introduction

In this paper we study the following parametric optimal control problem. Determine a control vector $u \in L^{p}\left([0,1], \mathbb{R}^{m}\right)$ with $1<p<\infty$ and a trajectory $x \in W^{1,1}\left([0,1], \mathbb{R}^{n}\right)$ which minimize the cost function

$$
\begin{equation*}
J(x, u, \mu):=\int_{0}^{1} f(t, x(t), u(t), \mu(t)) d t \tag{1.1}
\end{equation*}
$$

with the state equation

$$
\left\{\begin{array}{l}
\dot{x}(t)=A(t, x(t))+B(t, x(t)) u(t)+T(t, \lambda(t)) \text { a.e. } t \in[0,1] \tag{1.2}\\
x(0)=x_{0}
\end{array}\right.
$$

and the control constraint

$$
\begin{equation*}
u(t) \in \mathcal{U}(t) \quad \text { a.e. } \quad t \in[0,1] . \tag{1.3}
\end{equation*}
$$

Here (μ, λ) is a pair of parameters belonging to $L^{r}\left([0,1], \mathbb{R}^{k}\right) \times L^{s}\left([0,1], \mathbb{R}^{l}\right)$ with $1 \leq r, s \leq \infty, f:[0,1] \times \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{k} \rightarrow \mathbb{R} \cup\{+\infty\}$ is a function, $A(t, x)$ is an $n \times 1$ matrix, $B(t, x)$ is an $n \times m$ matrix and $T(t, \lambda)$ is a vector function with n components and $\mathcal{U}:[0,1] \rightrightarrows \mathbb{R}^{m}$ is a measurable multifunction with nonempty closed and convex values.

Recall that $W^{1,1}\left([0,1], \mathbb{R}^{n}\right)$ is a Sobolev space which consists of absolutely continuous functions $x:[0,1] \rightarrow \mathbb{R}^{n}$ such that $\dot{x} \in L^{1}\left([0,1], \mathbb{R}^{n}\right)$ and $C\left([0,1], \mathbb{R}^{n}\right)$ is a Banach space of continuous vector functions $y:[0,1] \rightarrow \mathbb{R}^{n}$. Their norms are given by

$$
\|x\|_{1,1}=|x(0)|+\|\dot{x}\|_{1}, \quad\|y\|_{0}=\sup _{t \in[0,1]}|y(t)|
$$

[^0]respectively. Let us put
\[

$$
\begin{aligned}
& X=W^{1,1}\left([0,1], \mathbb{R}^{n}\right), U=L^{p}\left([0,1], \mathbb{R}^{m}\right), Z=X \times U, \\
& M=L^{r}\left([0,1], \mathbb{R}^{k}\right), \Lambda=L^{s}\left([0,1], \mathbb{R}^{l}\right)
\end{aligned}
$$
\]

and define $K(\lambda)$ for $\lambda \in \Lambda$ by setting

$$
\begin{equation*}
K(\lambda)=\{z=(x, u) \in X \times U \mid(1.2) \text { and (3) are satisfied }\} . \tag{1.4}
\end{equation*}
$$

Then (1)-(3) can be reformulated in the form

$$
P(\mu, \lambda) \quad\left\{\begin{array}{l}
J(z, \mu) \rightarrow \inf \tag{1.5}\\
z \in K(\lambda)
\end{array}\right.
$$

Throughout this paper we denote by $S(\mu, \lambda)$ the solution set of (1)-(3) or $P(\mu, \lambda)$ corresponding to parameters pair (μ, λ). We denote by $(\bar{\mu}, \bar{\lambda})$ the reference point and call $P(\bar{\mu}, \bar{\lambda})$ the unperturbed problem.

Our main concern is to study the solution stability of $P(\mu, \lambda)$, that is, we will investigate the behavior of $S(\mu, \lambda)$ when (μ, λ) varies around $(\bar{\mu}, \bar{\lambda})$. This problem has been interesting to several authors in the last decade. For papers which have a close connection to the present work, we refer the readers to $[4,8,9,11,17-21]$ and the references given therein. The solution stability of optimization problems as well as of optimal control problems has some important applications in parameter estimation problems (see for instance [11]) and in numerical methods of finding optimal solutions. The solution stability guarantees that approximate solutions converge to the original solution because the solution sets of perturbed problems are not very far away from the solution set of an unperturbed problem (see for instance [16]).

It is known that when $J(\cdot, \cdot, \mu)$ is strongly convex for all μ and $K(\lambda)$ is a convex set, then the solution map of (1.5) is single-valued. In this case, under certain conditions, Dontchev [9] showed that the solution map is continuous with respect to parameters. Under regularity conditions and strong second-order conditions of the unperturbed problem together with Lipschitzian assumptions, Ito and Kunisch [11] showed that the solution map is single-valued and Lipshitz continuous in parameters.

Recently Malanowski [17-21] showed that if weak second-order optimality conditions and standard constraints qualifications are satisfied at the reference point, then the solution map is a Lipschitz continuous function of parameters. The obtained results in [17-21] were proved by techniques of implicit function theorem. Note that the obtained results in [17-21] are of problems subject to state constraints without control constraints.

When conditions mentioned above are invalid, the solution map may not be singleton. In this situation, we have to use tools of set-valued analysis in order to treat the problem. Such a treatment has been developed recently by Kien et al. [13] and [14]. In [13] and [14] the authors studied the lower semicontinuous property of the solution map to problem (1)-(3) in the case where the state equation is linear and the cost function is convex in both variables. In this case the problem can be considered as a convex programming problem. By techniques of variational inequalities, the authors showed that if the unperturbed problem is good enough, then the solution map is lower semicontinuous at the reference point.

In this paper we continue to develop the results in [13] and [14] by studying the upper semicontinuity and continuity of the solution map $S(\mu, \lambda)$ of problem (1)(3) for the case where the state equation is nonlinear and the cost function is not required to be convex in both variables. Under this circumstance, the problem is not convex and so the techniques of convex programming problems are failed to apply.

It is noted that in the case of finite-dimensional spaces, the upper semicontinuity of the solution map to parametric mathematical programming problems is easy to obtain. The reason is that the upper semicontinuity of S is near to the closedness of its graph. It is well known that if S has a closed graph and uniformly compact, that is, there exists a compact set D in the strong topology such that $S(\mu, \lambda) \subset D$ for all (μ, λ) in a neighborhood of $(\bar{\mu}, \bar{\lambda})$ then S is upper semicontinuous at $(\bar{\mu}, \bar{\lambda})$ (see $[3$, Corollary, p.112] and [12, Theorem 3.1]). Unfortunately, in the infinite-dimensional setting of problem (1)-(3), although each set $S(\mu, \lambda)$ is a weakly compact set, the family $\{S(\mu, \lambda)\}$ is not strongly uniformly compact. Hence, the closedness of graph of S is far away from the upper semicontinuity of S.

In our paper, by using the direct method, the Pontryagin Maximum Principle and exploiting structures of the problem, we show that under certain conditions, the solution map is (s, w)-upper semicontinuous at reference point (see Definition 2.1 for (s, w)-upper semicontinuity). Besides, we also show that if the unperturbed problem is good enough, then the solution map is (s, s)-continuous with respect to parameters at the reference point. It is worth pointing out that our proofs are based on the direct method and analyzing first order optimality conditions (Pontryagin's Principle) of the problem. We do not use second-order optimality conditions for the results formulation and the proofs as usual.

The paper is organized as follows. In Section 2, we recall some notions of setvalued analysis and state our main results. Section 3 is destined for some auxiliary results. The proofs of the main results are given in Section 4.

2. Statement of the main Results

Let us assume that $F: E_{1} \rightrightarrows E_{2}$ is a multifunction between topological spaces. We denote by $\operatorname{dom} F$ and $\operatorname{gph} F$ the effective domain and the graph of F, respectively, where

$$
\operatorname{dom} F:=\left\{z \in E_{1} \mid F(z) \neq \emptyset\right\}
$$

and

$$
\operatorname{gph} F:=\left\{(z, v) \in E_{1} \times E_{2} \mid v \in F(z)\right\}
$$

A multifunction F is said to be lower semicontinuous at $z_{0} \in E_{1}$ if for any open set V_{0} in E_{2} satisfying $F\left(z_{0}\right) \cap V_{0} \neq \emptyset$, there exists a neighborhood G_{0} of z_{0} such that $F(z) \cap V_{0} \neq \emptyset$ for all $z \in G_{0}$ (see [5, Definition 5.1 .15, p. 173]). F is said to be upper semicontinuous at $z_{0} \in E_{1}$ if for any open set V in E_{2} satisfying $F\left(z_{0}\right) \subset V$, there exists a neighborhood G of z_{0} such that $F(z) \subset V$ for all $z \in G$. If F is lower semicontinuous and upper semicontinuous at z_{0}, we say F is continuous at z_{0}.

Definition 2.1. (a) The solution map $S: M \times \Lambda \rightrightarrows C\left([0,1], \mathbb{R}^{n}\right) \times L^{p}\left([0,1], \mathbb{R}^{m}\right)$ is said to be (s, w)-upper semicontinuous at $(\bar{\mu}, \bar{\lambda})$ if for any open set V_{1} in $C\left([0,1], \mathbb{R}^{n}\right)$
and weakly open set V_{2} in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$ satisfying $S(\bar{\mu}, \bar{\lambda}) \subset V_{1} \times V_{2}$, there exist a neighborhood U_{1} of $\bar{\mu}$ and a neighborhood U_{2} of $\bar{\lambda}$ such that

$$
S(\mu, \lambda) \subset V_{1} \times V_{2}, \forall(\mu, \lambda) \in U_{1} \times U_{2}
$$

(b) S is said to be (s, w)-lower semicontinuous at $(\bar{\mu}, \bar{\lambda})$ if for any open set V_{1}^{\prime} in $C\left([0,1], \mathbb{R}^{n}\right)$ and weakly open set V_{2}^{\prime} in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$ satisfying $S(\bar{\mu}, \bar{\lambda}) \cap\left(V_{1}^{\prime} \times V_{2}^{\prime}\right) \neq$ \emptyset, there exist a neighborhood U_{1}^{\prime} of $\bar{\mu}$ and a neighborhood U_{2}^{\prime} of $\bar{\lambda}$ such that

$$
S(\mu, \lambda) \cap\left(V_{1}^{\prime} \times V_{2}^{\prime}\right) \neq \emptyset, \forall(\mu, \lambda) \in U_{1}^{\prime} \times U_{2}^{\prime}
$$

If S is both (s, w)-upper semicontinuous at $(\bar{\mu}, \bar{\lambda})$ and (s, w)-lower semicontinuous at $(\bar{\mu}, \bar{\lambda})$, then S is called (s, w)-continuous at $(\bar{\mu}, \bar{\lambda})$.

In Definition 2.1, if V_{2} and V_{2}^{\prime} are strongly open subsets of $L^{p}\left([0,1], \mathbb{R}^{m}\right)$, we say that S is (s, s)-upper semicontinuous and (s, s)-lower semicontinuous at $(\bar{\mu}, \bar{\lambda})$, respectively. It is clear that if S is (s, s) - upper semicontinuous at $(\bar{\mu}, \bar{\lambda})$, then S is (s, w)-upper semicontinuous at $(\bar{\mu}, \bar{\lambda})$. This implication is also true for lower semicontinuity of S.

In the sequel, we need the following assumptions of f, A, B and T.
(H1) $f(\cdot, x, u, \mu)$ is a Carathéodory function, that is, for a.e. $t \in[0,1], f(t, \cdot, \cdot, \cdot)$ is continuous in (x, u, μ) and for each fixed $(x, u, \mu) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{r}$, the function $f(\cdot, x, u, \mu)$ is measurable on $[0,1]$.
(H2) Growth and dominated conditions: there exist constants $\alpha_{i} \geq 0$ with $i=$ $1,2,3$ and a nonnegative function $\vartheta \in L^{1}([0,1], \mathbb{R})$ such that for a.e. $t \in$ $[0,1]$, for all $u \in \mathcal{U}(t)$ and $x \in \mathbb{R}^{m}$, one has

$$
|f(t, x, u, \mu)| \leq \vartheta(t)+\alpha_{1}|x|^{\beta_{1}}+\alpha_{2}|u|^{\beta_{2}}+\alpha_{3}|\mu|^{\beta_{3}}
$$

where $0 \leq \beta_{1}, 1 \leq \beta_{2} \leq p, 1 \leq \beta_{3} \leq r$ and $0 \leq \beta_{3}$ whenever $r=\infty$.
(H3) Coercive condition: there exist constants $\alpha_{1}^{\prime}>0, \alpha_{2}^{\prime} \in \mathbb{R}$ and a function $\theta(t) \in L^{1}([0,1], \mathbb{R})$ such that for a.e. $t \in[0,1]$, for all $u \in \mathcal{U}(t)$ and $x \in \mathbb{R}^{m}$, one has

$$
f(t, x, u, \mu) \geq \alpha_{1}^{\prime}|u|^{p}+\alpha_{2}^{\prime}|\mu|^{\beta_{2}^{\prime}}+\theta(t)
$$

where $1 \leq \beta_{2}^{\prime} \leq r$ and $0 \leq \beta_{3}^{\prime}$ whenever $r=\infty$.
(H4) Convexity: the function $u \mapsto f(t, x, u, \mu)$ is convex for all $(t, x, \mu) \in[0,1] \times$ $\mathbb{R}^{n} \times \mathbb{R}^{r}$
(H5) The entries of $A(t, x)$ and $B(t, x)$ are continuous and continuously differentiable in x such that the partial derivative mappings $A_{x}(\cdot, \cdot)$ and $B_{x}(\cdot, \cdot)$ are continuous. Also, the vector function $T(t, \lambda)$ has continuous components in (t, λ). Besides, there exist nonnegative functions $\phi \in L^{1}([0,1], \mathbb{R})$, $\psi \in L^{q}([0,1], \mathbb{R})$ and $\chi \in L^{s^{\prime}}([0,1], \mathbb{R})$ such that

$$
\begin{align*}
& \left|A\left(t, x_{1}\right)-A\left(t, x_{2}\right)\right| \leq \phi(t)\left|x_{1}-x_{2}\right|, \text { a.e. } t \in[0,1], \forall x_{1}, x_{2} \in \mathbb{R}^{n} \tag{2.1}\\
& \left|B\left(t, x_{1}\right)-B\left(t, x_{2}\right)\right| \leq \psi(t)\left|x_{1}-x_{2}\right|, \text { a.e. } t \in[0,1], \forall x_{1}, x_{2} \in \mathbb{R}^{n} \tag{2.2}\\
& \left|T\left(t, \lambda_{1}\right)-T\left(t, \lambda_{2}\right)\right| \leq \chi(t)\left|\lambda_{1}-\lambda_{2}\right|, \text { a.e. } t \in[0,1], \forall \lambda_{1}, \lambda_{2} \in \mathbb{R}^{l} \tag{2.3}
\end{align*}
$$

Here q and s^{\prime} are conjugate numbers of p and s, respectively. The norm of $n \times$ m matrix $B(t, x)=\left[b_{i j}(t, x)\right]$ is defined by $|B(t, x)|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{m}\left|b_{i j}(t, x)\right|^{2}$.
(H6) The set $\left\{u \in L^{p}\left([0,1], \mathbb{R}^{m}\right) \mid u(t) \in \mathcal{U}(t)\right.$ a.e. $\}$ is nonempty.
We are now ready to state our main results.
Theorem 2.2. Suppose that assumptions (H1)-(H6) are fulfilled. Then the following assertions are valid:
(i) $S(\mu, \lambda) \neq \emptyset$ for all $(\mu, \lambda) \in M \times \Lambda$;
(ii) $S(\cdot, \cdot)$ is (s, w)-upper semicontinuous at $(\bar{\mu}, \bar{\lambda})$.

From Theorem 2.1 one may ask whether the solution map $S(\cdot, \cdot)$ is (s, s)-upper semicontinuous. The next theorem says that if the unperturbed problem is good enough and the space of parameter μ is good enough, then the solution map is (s, s)-upper semicontinuous and (s, s)-continuous at $(\bar{\mu}, \bar{\lambda})$. For this we need the following strengthened assumption.
(H7) Assume that $r=\infty$ and the function $(x, u) \mapsto L(t, x, u, \mu)$ is Fréchet continuously differentiable for a.e. $t \in[0,1]$ and $\mu \in \bar{\mu}(t)+\epsilon B_{k}(0,1)$ for some $\epsilon>0$, where $B_{k}(0,1)$ is the unit ball in \mathbb{R}^{k}. Furthermore, the following conditions are fulfilled:
(i) There exist a continuous function $k_{i}:[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$, positive numbers s_{i} with $i=1,2,0 \leq \eta \leq p$ and $0 \leq \theta \leq p / q$ such that

$$
\begin{equation*}
\left|f_{x}(t, x, u, \mu)-f_{x}(t, x, u, \bar{\mu}(t))\right| \leq k_{1}(t,|x|,|\mu|,|\bar{\mu}(t)|)|u|^{\eta}|\mu-\bar{\mu}(t)|^{s_{1}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
& \left|f_{u}(t, x, u, \mu)-f_{u}(t, x, u, \bar{\mu}(t))\right| \leq k_{2}(t,|x|,|\mu|,|\bar{\mu}(t)|)|u|^{\theta}|\mu-\bar{\mu}(t)|^{s_{2}} \tag{2.5}\\
& \quad \text { for a.e. } t \in[0,1], x \in \mathbb{R}^{n}, u \in[a(t), b(t)] \text { and } \mu \in \bar{\mu}(t)+\epsilon B_{k}(0,1)
\end{align*}
$$

(ii) There exists a nonnegative function $k_{3}(\cdot) \in L^{1}([0,1], \mathbb{R})$ such that

$$
\left|f_{x}\left(t, x_{1}, u_{1}, \bar{\mu}(t)\right)-f_{x}\left(t, x_{2}, u_{2}, \bar{\mu}(t)\right)\right| \leq k_{3}(t)\left|x_{1}-x_{2}\right|
$$

for a.e. $t \in[0,1]$ and for all $x_{i} \in \mathbb{R}^{n}, u_{i} \in \mathbb{R}^{m}$ with $i=1,2$.
(iii) There exists a positive number α such that for any $(\hat{x}, \hat{u}) \in S(\bar{\mu}, \bar{\lambda})$ one has

$$
\begin{align*}
& \left\langle f_{u}(t, x, v, \bar{\mu}(t))-f_{u}(t, \hat{x}(t), \hat{u}(t), \bar{\mu}(t)), v-\hat{u}(t)\right\rangle \geq \alpha|v-\hat{u}(t)|^{p} \tag{2.7}\\
& \quad \text { for a.e. } t \in[0,1] \text { and for all }(x, v) \in \mathbb{R}^{n} \times \mathcal{U}(t)
\end{align*}
$$

Under this extra assumption, we have
Theorem 2.3. Suppose that assumptions (H1)-(H7) are fulfilled. Then the mapping $S(\cdot, \cdot)$ is (s, s)-upper semicontinuous at $(\bar{\mu}, \bar{\lambda})$. Moreover, if $S(\bar{\mu}, \bar{\lambda})$ is singleton, then $S(\cdot, \cdot)$ is (s, s)-continuous at $(\bar{\mu}, \bar{\lambda})$.

Notice that assumptions (H1), (H2) and (H4) in Theorem 2.1 make sure that $J(\cdot, \cdot, \mu)$ is weakly lower semicontinuous for each $\mu \in M$. Meanwhile, assumption (H5) guarantees that for each $\lambda \in \Lambda$ and $u \in U$, the state equation has a unique global solution $x \in W^{1,1}\left([0,1], \mathbb{R}^{n}\right)$. Condition (ii) in (H7) says that f_{x} is a Lipschitz function which only depends on x. Condition (iii) in (H7) requires that the function $f(t, x, \cdot, \bar{\mu}(t))$ is strongly convex in u. We now give some examples satisfying assumptions (H1)-(H7).

Example 2.4. Let $n=m=k=l=1$ and $p=r=s=2$. Then problem $P(\mu, \lambda)$ with

$$
\begin{aligned}
& f(t, x, u, \mu)=\sqrt{1+x^{2}}+u^{2}+\mu u \\
& A(t, x)=t+\sqrt{1+x^{2}}, B(t, x)=t x, T(t, \lambda)=\lambda \\
& \mathcal{U}(t)=\mathbb{R}_{+}=\{r \in \mathbb{R} \mid r \geq 0\}
\end{aligned}
$$

satisfies all assumptions (H1)-(H6).
In fact, we have $|f(t, x, u, \mu)| \leq 1+|x|+\frac{3}{2} u^{2}+\frac{1}{2} \mu^{2}$. Hence (H2) is valid. For (H3) we have

$$
f(t, x, u, \mu) \geq u^{2}-\frac{1}{2}\left(u^{2}+\mu^{2}\right) \geq \frac{1}{2} u^{2}-\frac{1}{2} \mu^{2}
$$

In order to verify (H5) for $A(t, x)$ we use the Lagrange Theorem. Then for all $x, y \in \mathbb{R}$ we have

$$
|A(t, x)-A(t, y)|=\left|\sqrt{1+x^{2}}-\sqrt{1+y^{2}}\right| \leq \frac{|\xi|}{\sqrt{1+\xi^{2}}}|x-y| \leq|x-y|
$$

where $\xi=\theta x+(1-\theta) y$ with $\theta \in[0,1]$.
Example 2.5. Let $m=n=k=l=1$ and $p=2, s=1, r=\infty$. We consider the problem

$$
\left\{\begin{array}{l}
J(x, u, \mu)=\int_{0}^{1}\left((u(t)-\mu(t))^{2}+\frac{1}{2} x^{2}(t)-\mu(t) u(t) x(t)\right) d t \rightarrow \inf \tag{2.8}\\
\dot{x}(t)=u(t)+\lambda(t) \\
x(0)=0 \\
u(t) \in \mathcal{U}(t)=[-1,1]
\end{array}\right.
$$

Here we assume that $\bar{\mu}(t)=0, \bar{\lambda}(t)=0$ for all $t \in[0,1]$. It is clear that J is not convex in both variable (x, u). Let us verify that assumptions (H1)-(H7). The assumptions (H1) and (H4) are obvious. For (H2), we have

$$
\begin{aligned}
|f(t, x, u, \mu)| & \leq u^{2}-2 \mu u+\mu^{2}+\frac{1}{2} x^{2}+\frac{1}{2} x^{2}+\frac{1}{2} \mu^{2} u^{2} \\
& \leq 2 u^{2}+3 \mu^{2}+x^{2}+\frac{1}{2} \mu^{2}, \forall u \in[-1,1]
\end{aligned}
$$

For $(H 3)$, we have

$$
\begin{aligned}
f(t, x, u, \mu) & \geq u^{2}-2 \mu u+\mu^{2}+\frac{1}{2} x^{2}-\frac{1}{2} x^{2}-\frac{1}{2} \mu^{2} u^{2} \\
& \geq u^{2}-2 \mu u+\mu^{2}-\frac{1}{2} \mu^{2} \\
& \geq u^{2}-\frac{1}{2} u^{2}-2 \mu^{2}-\frac{1}{2} \mu^{2} \\
& \geq \frac{1}{2} u^{2}-\frac{5}{2} \mu^{2}
\end{aligned}
$$

In order to check (H7) we notice that $f(t, x, u, \mu)=(u-\mu)^{2}+\frac{1}{2} x^{2}-\mu x u, f_{x}=$ $x, f_{u}=2(u-\mu)-\mu x$. Hence conditions (i) and $(i i)$ in (H7) are valid. For condition
(iii), we have

$$
\left\langle f_{u}(t, x, u, \bar{\mu})-f_{u}(t, \bar{x}, \bar{u}, \bar{\mu}), u-\bar{u}\right\rangle=2|u-\bar{u}|^{2}
$$

Thus assumptions (H1)-(H7) are fulfilled. We now assume that $(\bar{x}(\mu, \mu), \bar{u}(\mu, \mu)) \in$ $S(\bar{\mu}, \bar{\lambda})$. Then it must satisfy the Pontryagin Maximum Principle. According to the Pontryagin Maximum Principle (see [10, Theorem 1, p. 134 and p. 139]), there exists an absolute continuous function $\phi(t)$ such that the following conditions are valid:
(i) the adjoint equation:

$$
\left\{\begin{array}{l}
\dot{\phi}=\bar{x} \tag{2.9}\\
\phi(1)=0
\end{array}\right.
$$

(ii) the maximum principle:

$$
\phi(t) \bar{u}(t)-\bar{u}^{2}(t)-\frac{1}{2} \bar{x}^{2}(t)=\max _{-1 \leq u \leq 1}\left(\phi(t) u-u^{2}-\frac{1}{2} \bar{x}^{2}(t)\right)
$$

From this we see that

$$
\bar{u}(t)= \begin{cases}\frac{\phi(t)}{2} & \text { if }-1 \leq \frac{\phi(t)}{2} \leq 1 \\ -1 & \text { if } \frac{\phi(t)}{2}<-1 \\ 1 & \text { if } \frac{\phi(t)}{2}>1\end{cases}
$$

From the state equation, we have $\bar{x}(t)=\int_{0}^{t} \bar{u}(s) d t$. This implies that

$$
|\bar{x}(t)| \leq \int_{0}^{1}|\bar{u}(s)| d s \leq 1
$$

On the other hand, from the adjoint equation, we have $\phi(t)=\int_{1}^{t} \bar{x}(s) d s$. It follows that

$$
|\phi(t)| \leq \int_{0}^{1}|\bar{x}(s)| d s \leq 1, \quad \forall t \in[0,1]
$$

Therefore we have $\bar{u}(t)=\frac{\phi(t)}{2}$. Combining this with the adjoint equation yields

$$
\dot{\phi}(t)=\int_{0}^{t} \bar{u}(s) d s=\frac{1}{2} \int_{0}^{t} \phi(s) d s
$$

It follows that

$$
\left\{\begin{array}{l}
\ddot{\phi}(t)=\frac{1}{2} \phi(t) \\
\dot{\phi}(0)=0, \phi(1)=0
\end{array}\right.
$$

Hence $\phi(t)=c_{1} \exp \left(\frac{t}{\sqrt{2}}\right)+c_{2} \exp \left(-\frac{t}{\sqrt{2}}\right)$ and so $\phi(t)=0$ for all $t \in[0,1]$. Consequently, $\bar{u}(t)=0, \bar{x}(t)=0$ and $S(\bar{\mu}, \bar{\lambda})=\{(0,0)\}$. By Theorem 2.2, $S(\mu, \lambda)$ is continuous at $(0,0)$.

3. AUXILIARY RESULTS

The following lemma establishes a fact on the existence of a unique global solution of (1.2).

Lemma 3.1. Suppose that assumption (H5) is fulfilled. Then for each $u \in$ $L^{p}\left([0,1], \mathbb{R}^{m}\right)$ and $\lambda \in L^{s}\left([0,1], \mathbb{R}^{l}\right)$, Equation (1.2) has a unique solution $x \in$ $W^{1,1}\left([0,1], \mathbb{R}^{n}\right)$.
Proof. Consider the mapping

$$
F(x)(t)=x_{0}+\int_{0}^{t}(A(s, x(s))+B(s, x(s)) u(s)+T(s, \lambda(s))) d s
$$

We shall show that F^{j} is a contraction mapping from $C\left([0,1], \mathbb{R}^{n}\right)$ into itself for j big enough. We put $\omega(t)=\phi(t)+\psi(t)|u(t)|$. Then $\omega \in L^{1}([0,1], \mathbb{R})$ and for all $x_{1}, x_{2} \in C\left([0,1], \mathbb{R}^{n}\right)$, we have

$$
\begin{aligned}
&\left|\left(F\left(x_{1}\right)-F\left(x_{2}\right)\right)(t)\right| \\
& \quad\left|\int_{0}^{t}\left(A\left(s, x_{1}(s)\right)-A\left(s, x_{2}(s)\right)+\left[B\left(s, x_{1}(s)\right)-B\left(s, x_{2}(s)\right)\right] u(s)\right) d s\right| \\
& \quad \leq \int_{0}^{t}\left(\mid\left(A\left(s, x_{1}(s)\right)-A\left(s, x_{2}(s)\right)\left|+\left|\left[B\left(s, x_{1}(s)\right)-B\left(s, x_{2}(s)\right)\right] u(s)\right|\right) d s\right.\right. \\
& \quad \leq \int_{0}^{t}\left(\phi(s)\left|x_{1}(s)-x_{2}(s)\right|+\psi(s)\left|x_{1}(s)-x_{2}(s)\right||u(s)|\right) d s \\
& \quad=\int_{0}^{t} \omega\left(s_{1}\right)\left|x_{1}\left(s_{1}\right)-x_{2}\left(s_{1}\right)\right| d s_{1}
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\left|\left(F^{2}\left(x_{1}\right)-F^{2}\left(x_{2}\right)\right)(t)\right| & \leq \int_{0}^{t} \omega\left(s_{1}\right)\left|F\left(x_{1}\right)\left(s_{1}\right)-F\left(x_{2}\right)\left(s_{1}\right)\right| d s_{1} \\
& \leq \int_{0}^{t} \omega\left(s_{1}\right) d s_{1} \int_{0}^{s_{1}} \omega\left(s_{2}\right)\left|x_{1}\left(s_{2}\right)-x_{2}\left(s_{2}\right)\right| d s_{2}
\end{aligned}
$$

Continuing the process, we get

$$
\begin{aligned}
\left|\left(F^{j}\left(x_{1}\right)-F^{j}\left(x_{2}\right)\right)(t)\right| \leq & \int_{0}^{t} \omega\left(s_{1}\right)\left|F^{j-1} x_{1}\left(s_{1}\right)-F^{j-1} x_{2}\left(s_{1}\right)\right| d s_{1} \\
\leq & \int_{0}^{t} d s_{1} \omega\left(s_{1}\right) \int_{0}^{s_{1}} d s_{2} \omega\left(s_{2}\right) \\
& \cdots \int_{0}^{s_{j-1}} d s_{j} \omega\left(s_{j}\right)\left|x_{1}\left(s_{j}\right)-x_{2}\left(s_{j}\right)\right| \\
\leq & \left\|x_{1}-x_{2}\right\|_{0} \int_{0}^{t} d s_{1} \omega\left(s_{1}\right) \int_{0}^{s_{1}} d s_{2} \omega\left(s_{2}\right) \cdots \int_{0}^{s_{j-1}} d s_{j} \omega\left(s_{j}\right)
\end{aligned}
$$

By induction, we can show that

$$
\int_{0}^{t} d s_{1} \omega\left(s_{1}\right) \int_{0}^{s_{1}} d s_{2} \omega\left(s_{2}\right) \cdots \int_{0}^{s_{j-1}} d s_{j} \omega\left(s_{j}\right)=\frac{1}{j!}\left(\int_{0}^{t} \omega(s) d s\right)^{j}
$$

Consequently, we have
$\left|\left(F^{j}\left(x_{1}\right)-F^{j}\left(x_{2}\right)\right)(t)\right| \leq \frac{1}{j!}\left(\int_{0}^{t} \omega(s) d s\right)^{j}\left\|x_{1}-x_{2}\right\|_{0} \leq \frac{1}{j!}\left(\int_{0}^{1} \omega(s) d s\right)^{j}\left\|x_{1}-x_{2}\right\|_{0}$.
Hence

$$
\left|F^{j}\left(x_{1}\right)-F^{j}\left(x_{2}\right)\right|_{0} \leq \frac{1}{j!}\left(\int_{0}^{1} \omega(s) d s\right)^{j}\left\|x_{1}-x_{2}\right\|_{0}
$$

Since $\frac{1}{j!}\left(\int_{0}^{1} \omega(s) d s\right)^{j}<1$ when j is sufficiently large, we see that F^{j} is a contraction mapping. By the Contraction Mapping Theorem, there exists a unique $x \in C\left([0,1], \mathbb{R}^{n}\right)$ such that $F^{j}(x)=x$. By the Contraction Mapping Principle in [10, Chapter 0, p.13] (see also [15, Lemma 5.4.3, p. 323]), x is also a fixed point of F, that is,

$$
x(t)=x_{0}+\int_{0}^{t}(A(s, x(s))+B(s, x(s)) u(s)+T(s, \lambda(s))) d s
$$

By (H4), we have

$$
\begin{aligned}
& |A(s, x(s))+B(s, x(s)) u(s)+T(s, \lambda(s))| \\
& \quad \leq \phi(s)|x(s)|+|A(s, 0)|+(\psi(s)|x(s)|+|B(s, 0)|)|u(s)|+\chi(s)|\lambda(s)|+|T(s, 0)|
\end{aligned}
$$

It easy to see that the function on the right-hand side belongs to $L^{1}([0,1], \mathbb{R})$. Hence

$$
|A(\cdot, x(\cdot))+B(\cdot, x(\cdot)) u(\cdot)+T(\cdot, \lambda(\cdot))| \in L^{1}([0,1], \mathbb{R})
$$

It follows that $x \in W^{1,1}\left([0,1], \mathbb{R}^{n}\right)$ and

$$
\left\{\begin{array}{l}
\dot{x}(t)=A(t, x(t))+B(t, x(t)) u(t)+T(t, \lambda(t)), \text { a.e. } t \in[0,1] \\
x(0)=x_{0}
\end{array}\right.
$$

The proof of the lemma is complete.

The following lemma gives an important property of $K(\cdot)$.
Lemma 3.2. Suppose that assumption (H5) and (H6) are fulfilled. Then the setvalued map $K(\cdot)$ which is defined by (1.4), has nonempty closed values and satisfies the following property: For each $(x, u) \in K\left(\lambda_{1}\right)$, there exists $(y, v) \in K\left(\lambda_{2}\right)$ such that

$$
\begin{equation*}
\|(x, u)-(y, v)\|=\|x-y\|_{1,1}+\|u-v\|_{p} \leq k(u)\left\|\lambda_{1}-\lambda_{2}\right\|_{s} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
k(u)=\|\chi(\cdot)\|_{s^{\prime}}\left(\|\phi\|_{1}+\|u\|_{p}\|\psi\|_{q}\right) \exp \left(\|\phi\|_{1}+\|u\|_{p}\|\psi\|_{q}\right)+\|\chi(\cdot)\|_{s^{\prime}} \tag{3.2}
\end{equation*}
$$

Proof. Take $\lambda \in \Lambda$ and $\tilde{u} \in L^{p}\left([0,1], \mathbb{R}^{m}\right)$ such that $\tilde{u}(t) \in \mathcal{U}(t)$ a.e. By Lemma 3.1, Equation (1.2) has a unique solution x corresponding to \tilde{u} and λ. This means $(x, \tilde{u}) \in K(\lambda)$. The closedness of $K(\lambda)$ is straightforward. We now take $\lambda_{1}, \lambda_{2} \in \Lambda$ and $(x, u) \in K\left(\lambda_{1}\right)$. Then one has

$$
\begin{equation*}
\dot{x}(t)=A(t, x(t))+B(t, x(t)) u(t)+T\left(t, \lambda_{1}(t)\right), \text { a.e. } t \in[0,1] . \tag{3.3}
\end{equation*}
$$

Taking $v=u$ and using Lemma 3.1, we see that there exists $y \in X$ such that

$$
\left\{\begin{array}{l}
\dot{y}(t)=A(t, y(t))+B(t, y(t)) u(t)+T\left(t, \lambda_{2}(t)\right), \forall t \in[0,1], \tag{3.4}\\
y(0)=x_{0} .
\end{array}\right.
$$

By subtracting (3.3) and (3.4) and putting $w=x-y$, we get $w(0)=0$ and
(3.5) $\dot{w}=A(t, x(t))-A(t, y(t))+[B(t, x(t))-B(t, y(t))] u(t)+T\left(t, \lambda_{1}\right)-T\left(t, \lambda_{2}\right)$.

From this and (H5), we have

$$
\begin{align*}
|\dot{w}| & \leq \phi(t)|w(t)|+\psi(t)|w(t)||u(t)|+\chi(t)\left|\lambda_{1}(t)-\lambda_{2}(t)\right| \\
& \leq|w(t)|(\phi(t)+\psi(t)|u(t)|)+\chi(t)\left|\lambda_{1}(t)-\lambda_{2}(t)\right| \\
& \leq|w(t)| \zeta(t)+\chi(t)\left|\lambda_{1}(t)-\lambda_{2}(t)\right|, \tag{3.6}
\end{align*}
$$

where $\zeta(t):=\phi(t)+\psi(t)|u(t)|$ which belongs to $L^{1}([0,1], \mathbb{R})$.
Since $w(t)=\int_{0}^{t} \dot{w}(s) d s$, we obtain

$$
\begin{aligned}
|w(t)| & \leq \int_{0}^{t}\left(|w(s)| \zeta(s)+\chi(s)\left|\lambda_{1}(s)-\lambda_{2}(s)\right|\right) d s \\
& \leq \int_{0}^{t}|w(s)| \zeta(s) d s+\int_{0}^{1} \chi(s)\left|\lambda_{1}(s)-\lambda_{2}(s)\right| d s \\
& \leq \int_{0}^{t}|w(s)| \zeta(s) d s+\|\chi(\cdot)\|_{s^{\prime}}\left\|\lambda_{1}-\lambda_{2}\right\|_{s} .
\end{aligned}
$$

By Gronwall's Inequality (see [6, Lemma 18.1.i]), we obtain

$$
|w(t)| \leq\|\chi(\cdot)\|_{s^{\prime}}\left\|\lambda_{1}-\lambda_{2}\right\|_{s} \exp \left(\int_{0}^{1} \zeta(s) d s\right)
$$

Combining this with (3.6), we have

$$
|\dot{w}(t)| \leq\|\chi(\cdot)\|_{s^{\prime}} \exp \left(\int_{0}^{1} \zeta(s) d s\right)\left\|\lambda_{1}-\lambda_{2}\right\|_{s} \zeta(t)+\left|\chi(t) \| \lambda_{1}(t)-\lambda_{2}(t)\right|
$$

From this and Hölder's Inequality, we have

$$
\|\dot{w}\|_{1} \leq\|\chi(\cdot)\|_{s^{\prime}} \exp \left(\int_{0}^{1} \zeta(s) d s\right)\|\zeta\|_{1}\left\|\lambda_{1}-\lambda_{2}\right\|_{s}+\|\chi(\cdot)\|_{s^{\prime}}\left\|\lambda_{1}-\lambda_{2}\right\|_{s} .
$$

Since $\int_{0}^{1} \zeta(s) d s \leq\|\phi\|_{1}+\|u\|_{p}\|\psi\|_{q}$, we have

$$
\|\dot{w}\|_{1} \leq\left[\|\chi(\cdot)\|_{s^{\prime}}\left(\|\phi\|_{1}+\|u\|_{p}\|\psi\|_{q}\right) \exp \left(\|\phi\|_{1}+\|u\|_{p}\|\psi\|_{q}\right)+\|\chi(\cdot)\|_{s^{\prime}}\right]\left\|\lambda_{1}-\lambda_{2}\right\|_{s} .
$$

Define

$$
k(u)=\|\chi(\cdot)\|_{s^{\prime}}\left(\|\phi\|_{1}+\|u\|_{p}\|\psi\|_{q}\right) \exp \left(\|\phi\|_{1}+\|u\|_{p}\|\psi\|_{q}\right)+\|\chi(\cdot)\|_{s^{\prime}} .
$$

Then we have

$$
\|(x, u)-(y, v)\|=\|x-y\|_{1,1}=\|w\|_{1,1}=|w(0)|+\|\dot{w}\|_{1} \leq k(u)\left\|\lambda_{1}-\lambda_{2}\right\|_{s} .
$$

The proof of the lemma is complete.

Lemma 3.3. Suppose that assumptions (H5) and (H6) are valid, $\left\{\lambda_{j}\right\}$ and $\left\{\left(x_{j}, u_{j}\right)\right\}$ are sequences in Λ and Z, respectively. Suppose that $\left(x_{j}, u_{j}\right) \in K\left(\lambda_{j}\right)$, $\lambda_{j} \rightarrow \bar{\lambda}$ strongly in $L^{s}\left([0,1], \mathbb{R}^{l}\right), x_{j} \rightarrow x$ uniformly on $[0,1], \dot{x}_{j} \rightharpoonup \dot{x}$ weakly in $L^{1}\left([0,1], \mathbb{R}^{n}\right)$ and $u_{j} \rightharpoonup u$ weakly in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$. Then one has $(x, u) \in K(\bar{\lambda})$.

Proof. By assumption, we have

$$
\begin{equation*}
\dot{x}_{j}(t)=A\left(t, x_{j}(t)\right)+B\left(t, x_{j}(t)\right) u_{j}(t)+T\left(t, \lambda_{j}(t)\right) . \tag{3.7}
\end{equation*}
$$

In order to complete the proof, we need to show that

$$
\begin{equation*}
A\left(\cdot, x_{j}(\cdot)\right)+B\left(\cdot, x_{j}(\cdot)\right) u_{j}(\cdot)+T\left(\cdot, \lambda_{j}(\cdot)\right) \rightharpoonup A(\cdot, x)+B(\cdot, x) u+T(\cdot, \bar{\lambda}) \tag{3.8}
\end{equation*}
$$

in $L^{1}\left([0,1], \mathbb{R}^{n}\right)$ when $j \rightarrow \infty$. In fact, by (H5), we have

$$
\left|A\left(t, x_{j}(t)\right)-A(t, x(t))\right| \leq \phi(t)\left|x_{j}(t)-x(t)\right| .
$$

It follows that

$$
\left\|A\left(\cdot, x_{j}\right)-A(\cdot, x)\right\|_{1} \leq\|\phi\|_{1}\left\|x_{j}-x\right\|_{0} \rightarrow 0 \text { as } j \rightarrow \infty .
$$

Hence $A\left(\cdot, x_{j}\right) \rightarrow A(\cdot, x)$ strongly in $L^{1}\left([0,1], \mathbb{R}^{n}\right)$. Similarly, we have $T\left(\cdot, \lambda_{j}\right) \rightarrow$ $T(\cdot, \bar{\lambda})$ strongly in $L^{1}\left([0,1], \mathbb{R}^{n}\right)$. It remains to prove that $B\left(\cdot, x_{j}(\cdot)\right) u_{j}(\cdot) \rightharpoonup$ $B(\cdot, x(\cdot)) u$ weakly in $L^{1}\left([0,1], \mathbb{R}^{n}\right)$. For this we write

$$
\begin{align*}
B\left(t, x_{j}(t)\right) u_{j}(t)-B(t, x(t)) u(t)= & {\left[B\left(t, x_{j}(t)\right)-B(t, x(t))\right] u_{j}(t) } \\
& +B(t, x(t))\left(u_{j}(t)-u(t)\right) \tag{3.9}
\end{align*}
$$

By (H5), we have

$$
\left|\left[B\left(t, x_{j}(t)\right)-B(t, x(t))\right] u_{j}(t)\right| \leq \psi(t)\left|x_{j}(t)-x(t)\right|\left|u_{j}(t)\right|
$$

This implies that

$$
\left\|\left(B\left(\cdot, x_{j}\right)-B(\cdot, x)\right) u_{j}\right\|_{1} \leq\|\psi\|_{q}\left\|u_{j}\right\|_{p}\left\|x_{j}-x\right\|_{0} \rightarrow 0 \text { as } j \rightarrow \infty
$$

because $\left\|u_{j}\right\|_{p}$ is bounded and $\left\|x_{j}-x\right\|_{0} \rightarrow 0$. Hence $\left(B\left(\cdot, x_{j}\right)-B(\cdot, x)\right) u_{j} \rightarrow$ 0 strongly in $L^{1}\left([0,1], \mathbb{R}^{n}\right)$ and so $\left(B\left(\cdot, x_{j}\right)-B(\cdot, x)\right) u_{j} \rightharpoonup 0$ weakly in $L^{1}\left([0,1], \mathbb{R}^{n}\right)$. For second term, we take the scalar product with any $\vartheta \in L^{\infty}\left([0,1], \mathbb{R}^{n}\right)$ and get

$$
\int_{0}^{1}\left(B(t, x(t))\left(u_{j}(t)-u(t)\right), \vartheta(t)\right) d t=\int_{0}^{1}\left(u_{j}(t)-u(t), B(t, x(t))^{T} \vartheta(t)\right) d t
$$

where $B(t, x(t))^{T}$ is the transpose matrix of $B(t, x(t))$. By (H5) we have

$$
\begin{aligned}
\left.\mid B(t, x(t))^{T} \vartheta(t)\right) \mid & \leq\left|B(t, x(t))^{T}\right||\vartheta(t)|=|B(t, x(t))||\vartheta(t)| \\
& \leq(\psi(t)|x(t)|+|B(t, 0)|)|\vartheta(t)|
\end{aligned}
$$

This implies that $B(t, x(t))^{T} \vartheta(t) \in L^{q}\left([0,1], \mathbb{R}^{m}\right)$. Hence

$$
\int_{0}^{1}\left(B(t, x(t))\left(u_{j}(t)-u(t)\right), \vartheta(t)\right) d t=\int_{0}^{1}\left(u_{j}(t)-u(t), B(t, x(t))^{T} \vartheta(t)\right) d t \rightarrow 0
$$

as $j \rightarrow \infty$ because $u_{j} \rightharpoonup u$ in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$. From (3.9), we get

$$
B\left(\cdot, x_{j}(\cdot)\right) u_{j}(\cdot)-B(\cdot, x(\cdot)) u \rightharpoonup 0
$$

weakly in $L^{p}\left([0,1], \mathbb{R}^{n}\right)$. In summary, assertion (3.8) is justified. By taking the limit on two sides of (3.7), we get

$$
\dot{x}(t)=A(t, x(t))+B(t, x(t)) u(t)+T(t, \bar{\lambda}(t))
$$

Since $x_{j} \rightarrow x$ uniformly, we get $x(0)=x_{0}$. Since the set

$$
\left\{v \in L^{p}\left([0,1], \mathbb{R}^{m}\right) \mid v(t) \in \mathcal{U}(t)\right\}
$$

is closed and convex, it is weakly closed. Hence $u(t) \in \mathcal{U}(t)$ for a.e. $t \in[0,1]$. Consequently, $(x, u) \in K(\bar{\lambda})$. The proof of the lemma is complete.

4. Proof of the main Results

4.1. Proof of Theorem 2.1. (i) Nonemptiness of $S(\mu, \lambda)$.

For each $(\mu, \lambda) \in M \times \Lambda$, we define

$$
\begin{equation*}
V(\mu, \lambda)=\inf _{(x, u) \in K(\lambda)} J(x, u, \mu) \tag{4.1}
\end{equation*}
$$

By Lemma 3.1, $K(\lambda) \neq \emptyset$. Taking any $(x, u) \in K(\lambda)$, we have from (H2) that

$$
\begin{equation*}
|f(t, x(t), u(t), \mu(t))| \leq \vartheta(t)+\alpha_{1}|x(t)|^{\beta_{1}}+\alpha_{2}|u(t)|^{\beta_{2}}+\alpha_{3}|\mu(t)|^{\beta_{3}} \tag{4.2}
\end{equation*}
$$

with $1 \leq \beta_{2} \leq p$ and $1 \leq \beta_{3} \leq r$. This implies that

$$
V(\mu, \lambda) \leq J(x, u, \mu) \leq\|\vartheta\|_{1}+C_{1}\|x\|_{0}^{\alpha}+C_{2}\|u\|_{p}^{p}+C_{3}\|\mu\|_{r}^{r}<+\infty
$$

for some constants $C_{i}>0, i=1,2,3$. By definition, there exists a sequence $\left(x_{j}, u_{j}\right) \in K(\lambda)$ such that

$$
\begin{equation*}
V(\mu, \lambda)=\lim _{j \rightarrow \infty} J\left(x_{j}, u_{j}, \mu\right) \tag{4.3}
\end{equation*}
$$

Then there exists $j_{0}>0$ such that

$$
J\left(x_{j}, u_{j}, \mu\right)<V(\mu, \lambda)+1 \forall j \geq j_{0}
$$

From $(H 3)$, we have

$$
\alpha_{1}^{\prime} \int_{0}^{1}\left|u_{j}(s)\right|^{p} d s+\alpha_{2}^{\prime} \int_{0}^{1}|\mu(s)|^{\beta_{2}^{\prime}} d s+\int_{0}^{1} \theta(t) d t \leq J\left(x_{j}, u_{j}, \mu\right)<V(\mu, \mu)+1
$$

This implies that $\left\|u_{j}\right\|_{p} \leq M$ for some positive constant $M=M(\mu, \lambda)$. Since $\left(x_{j}, u_{j}\right) \in K(\lambda)$, we have

$$
\left\{\begin{array}{l}
\dot{x}_{j}(t)=A\left(t, x_{j}(t)\right)+B\left(t, x_{j}(t)\right) u_{j}(t)+T(t, \lambda(t)) \tag{4.4}\\
x_{j}(0)=x_{0}
\end{array}\right.
$$

From this and $(H 5)$ we have

$$
\begin{align*}
\left|\dot{x}_{j}(t)\right| \leq & \phi(t)\left|x_{j}(t)\right|+|A(t, 0)|+\left(\psi(t)\left|x_{j}(t)\right|+|B(t, 0)|\right)\left|u_{j}(t)\right| \\
& +|\chi(t)| \lambda(t)|+|T(t, 0)| \\
= & \left|x_{j}(t)\right|\left(\phi(t)+\psi(t)\left|u_{j}(t)\right|\right)+|A(t, 0)|+|B(t, 0)|\left|u_{j}(t)\right| \tag{4.5}\\
& +\chi(t)|\lambda(t)|+|T(t, 0)| .
\end{align*}
$$

Since $x_{j}(t)=x_{0}+\int_{0}^{t} \dot{x}_{j}(s) d s$, we get

$$
\begin{aligned}
\left|x_{j}(t)\right| \leq & \left|x_{0}\right|+\int_{0}^{t}\left(\phi(s)+\psi(s)\left|u_{j}(s)\right|\right)\left|x_{j}(s)\right| d s \\
& +\int_{0}^{t}\left(|A(s, 0)|+|B(s, 0)|\left|u_{j}(s)\right|+\chi(s)|\lambda(s)|+|T(s, 0)|\right) d s \\
\leq & \int_{0}^{t}\left(\phi(s)+\psi(s)\left|u_{j}(s)\right|\right)\left|x_{j}(s)\right| d s \\
& +\left|x_{0}\right|+\int_{0}^{1}\left(|A(s, 0)|+|B(s, 0)|\left|u_{j}(s)\right|+\chi(s)|\lambda(s)|+|T(s, 0)|\right) d s
\end{aligned}
$$

Define

$$
\begin{aligned}
& \gamma_{1}(t)=\phi(t)+\psi(t)\left|u_{j}(t)\right| \\
& \gamma_{2}(t)=|A(t, 0)|+|B(t, 0)|\left|u_{j}(t)\right|+\chi(t)|\lambda(t)|+|T(t, 0)| \\
& M_{1}=\left|x_{0}\right|+\int_{0}^{1}\left(|A(s, 0)|+|B(s, 0)|\left|u_{j}(s)\right|+\chi(s)|\lambda(s)|+|T(s, 0)|\right) d s
\end{aligned}
$$

Then we have $\gamma_{1}, \gamma_{2} \in L^{1}([0,1], \mathbb{R})$ and

$$
\begin{equation*}
\left|x_{j}(t)\right| \leq \int_{0}^{t} \gamma_{1}(s)\left|x_{j}(s)\right| d s+M_{1} \tag{4.6}
\end{equation*}
$$

with

$$
\begin{aligned}
& \left\|\gamma_{1}\right\|_{1} \leq\|\phi\|_{1}+\left\|u_{j}\right\|_{p}\|\psi\|_{q} \leq\|\phi\|_{1}+M\|\psi\|_{q} \\
& \left\|\gamma_{2}\right\|_{1} \leq\|A(\cdot, 0)\|_{1}+M\|B(\cdot, 0)\|_{q}+\|\chi\|_{s^{\prime}}\|\lambda\|_{s}+\|T(\cdot, 0)\|_{1} \\
& M_{1} \leq\left|x_{0}\right|+\|A(\cdot, 0)\|_{1}+M\|B(\cdot, 0)\|_{q}+\|\chi\|_{s^{\prime}}\|\lambda\|_{s}+\|T(\cdot, 0)\|_{1}
\end{aligned}
$$

By Grownwall's Inequality (see [6, Lemma 18.1.i]) we get from (4.6) that

$$
\begin{equation*}
\left|x_{j}(t)\right| \leq M_{1} \exp \left(\left\|\gamma_{1}\right\|_{1}\right):=M_{2} \tag{4.7}
\end{equation*}
$$

Hence $\left\|x_{j}\right\|_{0}$ is bounded. From this and (4.5), we obtain

$$
\begin{equation*}
\left|\dot{x}_{j}\right| \leq M_{2} \gamma_{1}(t)+\gamma_{2}(t) \tag{4.8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|\dot{x}_{j}\right\|_{1} \leq M_{2}\left\|\gamma_{1}\right\|_{1}+\left\|\gamma_{2}\right\|_{1} \tag{4.9}
\end{equation*}
$$

Besides, if E is a measurable set of $[0,1]$, then form (4.8), we have

$$
\begin{aligned}
\int_{E}\left|\dot{x}_{j}(t)\right| d t \leq & M_{2} \int_{E} \gamma_{1}(t) d t+\int_{E} \gamma_{2}(t) d \\
\leq & \int_{E} \phi(t) d t+\left(\int_{E}\left|u_{j}(t)\right|^{p} d t\right)^{1 / p}\left(\int_{E}|\psi(t)|^{q} d t\right)^{1 / q} \\
& +\int_{E}(|A(t, 0)|+\chi(t)|\lambda(t)|+|T(t, 0)|) d t \\
& +\left(\int_{E}\left|u_{j}\right|^{p} d t\right)^{1 / p}\left(\int_{E}|B(t, 0)|^{q} d t\right)^{1 / q}
\end{aligned}
$$

$$
\begin{align*}
\leq & \int_{E} \phi(t) d t+M\left(\int_{E}|\psi(t)|^{q} d t\right)^{1 / q} \tag{4.10}\\
& +\int_{E}(|A(t, 0)|+\chi(t)|\lambda(t)|+|T(t, 0)|) d t \\
& +M\left(\int_{E}|B(t, 0)|^{q} d t\right)^{1 / q}
\end{align*}
$$

It is clear that the right-hand side of (4.10) approaches to 0 uniformly w.r.t. j as $|E| \rightarrow 0$. Hence $\left\{\dot{x}_{j}\right\}$ is equiabsolutely integrable. From this and $[6$, Theorem 10.2.i, p. 317], $\left\{x_{j}\right\}$ is equiabsolutely continous. By Ascoli's Theorem, $\left\{x_{j}\right\}$ is a relatively compact set in $C\left([0,1], \mathbb{R}^{n}\right)$. By passing to subsequence if necessary, we can assume that $x_{j} \rightarrow \hat{x}$ uniform in $[0,1]$. On the other hand $\left\{\dot{x}_{j}\right\}$ is bounded and equiabsolutely integrable. The Dunford-Pettis theorem (see [6, Theorem 10.3.i]) implies that there exists a function $\xi \in L^{1}\left([0,1], \mathbb{R}^{n}\right)$ such that $\dot{x}_{i} \rightharpoonup \xi$ weakly in L^{1}. Since $x_{j}(t)=x_{0}+\int_{0}^{t} \dot{x}_{j}(s) d s$, we obtain $\hat{x}=x_{0}+\int_{0}^{t} \xi(s) d s$ and so $\dot{\hat{x}}(t)=\xi(t)$ a.e. Since $\left\{u_{j}\right\}$ is bounded in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$, we may assume that $u_{j} \rightharpoonup \hat{u}$ for some $\hat{u} \in L^{p}\left([0,1], \mathbb{R}^{m}\right)$. By Lemma 3.3, we obtain $(\hat{x}, \hat{u}) \in K(\bar{\lambda})$.

By (H1), (H2) and (H4), J is weakly lower semicontinuous (see [6, Theorem 2.18.i, Theorem 10.8.i] and [7, Theorem 3.3, p. 84]). Hence, from (4.3) we have

$$
V(\mu, \lambda)=\lim _{j \rightarrow \infty} J\left(x_{j}, u_{j}, \mu\right) \geq J(\hat{x}, \hat{u}, \mu)
$$

This implies that $(\hat{x}, \hat{u}) \in S(\mu, \lambda)$.
(ii) Upper semicontinuity of $S(\cdot, \cdot)$.

Assume that V_{1} is an open set in $C\left([0,1], \mathbb{R}^{n}\right)$ and V_{2} is a weakly open set in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$ such that

$$
\begin{equation*}
S(\bar{\mu}, \bar{\lambda}) \subset V_{1} \times V_{2}:=V \tag{4.11}
\end{equation*}
$$

We want to show that there exists a neighborhood $M_{0} \times \Lambda_{0}$ of $(\bar{\mu}, \bar{\lambda})$ such that

$$
\begin{equation*}
S(\mu, \lambda) \subset V, \forall(\mu, \lambda) \in M_{0} \times \Lambda_{0} \tag{4.12}
\end{equation*}
$$

By contradiction, we find out a sequence $\left(\mu_{i}, \lambda_{i}\right) \rightarrow(\bar{\mu}, \bar{\lambda})$ strongly in $L^{r}\left([0,1], \mathbb{R}^{k}\right) \times$ $L^{s}\left([0,1], \mathbb{R}^{l}\right)$ and a sequence $\left(x_{i}, u_{i}\right) \in S\left(\mu_{i}, \lambda_{i}\right)$ such that $\left(x_{i}, u_{i}\right) \notin V$. If we can show that there exists a subsequence $\left\{\left(x_{i_{j}}, u_{i_{j}}\right)\right\}$ of $\left\{\left(x_{i}, u_{i}\right)\right\}$ such that $x_{i_{j}} \rightarrow \bar{x}$ uniformly on $[0,1]$ and $u_{i_{j}} \rightharpoonup \bar{u}$ weakly in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$ for some $(\bar{x}, \bar{u}) \in S(\bar{\mu}, \bar{\lambda})$, then $\left(x_{i_{j}}, u_{i_{j}}\right) \in V$ for j large enough. This leads to a contradiction and the proof is completed. Therefore, it remains to prove the following lemma.

Lemma 4.1. There exists $(\bar{x}, \bar{u}) \in S(\bar{\mu}, \bar{\lambda})$ and a subsequence $\left\{\left(x_{i_{j}}, u_{i_{j}}\right)\right\}$ of $\left\{\left(x_{i}, u_{i}\right)\right\}$ such that $x_{i_{j}} \rightarrow \bar{x}$ uniformly on $[0,1]$ and $u_{i_{j}} \rightharpoonup \bar{u}$ weakly in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$ as $j \rightarrow \infty$.

Proof. Since $\left(x_{i}, u_{i}\right) \in S\left(\mu_{i}, \lambda_{i}\right)$, we have $\left(x_{i}, u_{i}\right) \in K\left(\lambda_{i}\right)$ and $V\left(\mu_{i}, \lambda_{i}\right)=J\left(x_{i}, u_{i}, \mu_{i}\right)$. Let us claim that the sequence $\left\{V\left(\mu_{i}, \lambda_{i}\right)\right\}$ is bounded. In fact, by $(H 6)$, we can take $u_{0} \in L^{p}\left([0,1], \mathbb{R}^{n}\right)$ such that $u_{0}(t) \in \mathcal{U}(t)$ for a.e. $t \in[0,1]$. By Lemma 3.1, there exists $y_{i} \in W^{1,1}\left([0,1], \mathbb{R}^{n}\right)$ such that

$$
\left\{\begin{array}{l}
\dot{y}_{i}(t)=A\left(t, y_{i}(t)\right)+B\left(t, y_{i}(t)\right) u_{0}(t)+T\left(t, \lambda_{i}(t)\right) \tag{4.13}\\
y_{i}(0)=x_{0}
\end{array}\right.
$$

Hence $\left(y_{i}, u_{0}\right) \in K\left(\lambda_{i}\right)$. Consequently,

$$
\begin{equation*}
J\left(x_{i}, u_{i}, \mu_{i}\right) \leq J\left(y_{i}, u_{0}, \mu_{i}\right) \leq\|\vartheta\|_{1}+C_{1}\left\|y_{i}\right\|_{0}^{\alpha}+C_{2}\left\|u_{0}\right\|_{p}^{p}+C_{3}\left\|\mu_{i}\right\|_{r}^{r} \tag{4.14}
\end{equation*}
$$

for some positive constants C_{k} with $k=1,2,3$. Since $\mu_{i} \rightarrow \mu,\| \| \mu_{i} \|_{r}^{r}$ is bounded. It remains to show that $\left\|y_{i}\right\|_{0}$ is bounded. By (H5), we have

$$
\begin{aligned}
\left|\dot{y}_{i}(t)\right| \leq & \phi(t)\left|y_{i}(t)\right|+|A(t, 0)|+\left(\psi(t)\left|y_{i}(t)\right|\right. \\
& +|B(t, 0)|)\left|u_{0}(t)\right|+\chi(t)\left|\lambda_{i}(t)\right|+|T(t, 0)| \\
= & \left|y_{i}(t)\right|\left(\phi(t)+\psi(t)\left|u_{0}(t)\right|\right)+|A(t, 0)| \\
& +|B(t, 0)|\left|u_{0}(t)\right|+\chi(t)\left|\lambda_{i}(t)\right|+|T(t, 0)| .
\end{aligned}
$$

Since $\lambda_{i} \rightarrow \bar{\lambda}$ strongly in $L^{s}\left([0,1], \mathbb{R}^{l}\right)$, by passing to subsequence if necessary, there exists a function $\gamma \in L^{s}([0,1], \mathbb{R})$ such that $\left|\lambda_{i}(t)\right| \leq \gamma(t)$ for a.e. $t \in[0,1]$ (see [7, Theorem 1.20]). It follows that

$$
\begin{align*}
\left|\dot{y}_{i}(t)\right| & \leq\left|y_{i}(t)\right|\left(\phi(t)+\psi(t)\left|u_{0}(t)\right|\right. \\
& +|A(t, 0)|+|B(t, 0)|\left|u_{0}(t)\right|+\chi(t)|\gamma(t)| . \tag{4.15}
\end{align*}
$$

Since $y_{i}(t)=x_{0}+\int_{0}^{t} \dot{y}_{i}(s) d s$, we get from (4.15) that

$$
\begin{aligned}
\left|y_{i}(t)\right| \leq & \left|x_{0}\right|+\int_{0}^{t}\left(\phi(s)+\psi(s)\left|u_{0}(s)\right|\right)\left|y_{i}(s)\right| d s \\
& +\int_{0}^{t}\left(|A(s, 0)|+|B(s, 0)|\left|u_{0}(s)\right|+|\chi(s)| \gamma(s)\right) d s \\
\leq & \int_{0}^{t}\left(\phi(s)+\psi(s)\left|u_{0}(s)\right|\right)\left|y_{i}(s)\right| d s \\
& +\left|x_{0}\right|+\int_{0}^{1}\left(|A(s, 0)|+|B(s, 0)|\left|u_{0}(s)\right|+\chi(s)|\gamma(s)|+|T(s, 0)|\right) d s .
\end{aligned}
$$

Define

$$
\begin{aligned}
& \hat{\gamma}_{1}(t)=\phi(t)+\psi(t)\left|u_{0}(t)\right| \\
& \hat{\gamma}_{2}(t)=|A(t, 0)|+|B(t, 0)|\left|u_{0}(t)\right|+\chi(t) \gamma(t)+|T(t, 0)|, \\
& \widehat{M}_{1}=\left|x_{0}\right|+\int_{0}^{1}\left(|A(s, 0)|+|B(s, 0)|\left|u_{0}(s)\right|+\chi(s) \gamma(s)+|T(s, 0)|\right) d s .
\end{aligned}
$$

Then $\hat{\gamma}_{1}, \hat{\gamma}_{2} \in L^{1}([0,1], \mathbb{R})$ and we have

$$
\left|y_{i}(t)\right| \leq \int_{0}^{t} \hat{\gamma}_{1}(s)\left|y_{i}(t)\right| d s+\widehat{M}_{1} .
$$

By Grownwall's Inequality (see [6, Lemma 18.1.i]) we get

$$
\begin{equation*}
\left|y_{i}(t)\right| \leq \widehat{M}_{1} \exp \left(\int_{0}^{1} \hat{\gamma}_{1}(s) d s\right):=\widehat{M}_{2} \tag{4.16}
\end{equation*}
$$

Hence $\left\{y_{i}\right\}$ is bounded in $C\left([0,1], \mathbb{R}^{n}\right)$. From this and (4.14), we see that $\left\{J\left(x_{i}, u_{i}, \mu_{i}\right)\right\}$ is bounded and so the claim is justified.

We now have from (H3) that

$$
\alpha_{1}^{\prime} \int_{0}^{1}\left|u_{i}(s)\right|^{p} d s+\alpha_{2}^{\prime} \int_{0}^{1}\left|\mu_{i}(s)\right|^{\beta_{2}^{\prime}} d s+\int_{0}^{1} \theta(t) d t \leq J\left(x_{i}, u_{i}, \mu_{i}\right) .
$$

Since $\left\{J\left(x_{i}, u_{i}, \mu_{i}\right)\right\}$ and $\left\|\mu_{i}\right\|_{r}$ are bounded, we can find a number $M^{\prime}>0$ such that $\left\|u_{i}\right\|_{p} \leq M^{\prime}$ for all $i \geq 1$. By similar arguments as in the proof of (i), we see that the set $\left\{x_{i}\right\}$ is a compact set in $C\left([0,1], \mathbb{R}^{n}\right)$. Hence we can find a subsequence $\left\{\left(u_{i_{j}}, x_{i_{j}}\right)\right\}$ such that $u_{i_{j}} \rightharpoonup \bar{u}$ in $L^{p}\left([0,1], \mathbb{R}^{n}\right)$ as $j \rightarrow \infty, x_{i_{j}} \rightarrow \bar{x}$ in $C\left([0,1], \mathbb{R}^{n}\right)$ and $\dot{x}_{i_{j}} \rightharpoonup \dot{\bar{x}}$ in $L^{1}\left([0,1], \mathbb{R}^{n}\right)$ as $j \rightarrow \infty$.
Let us show that $(\bar{x}, \bar{u}) \in S(\bar{\mu}, \bar{\lambda})$. Indeed, fix any $(y, v) \in K(\bar{\lambda})$. By Lemma 3.2, there exists a sequence $\left(z_{i_{j}}, v_{i_{j}}\right) \in K\left(\lambda_{i_{j}}\right)$ such that

$$
\left\|z_{i_{j}}-y\right\|_{1,1}+\left\|v_{i_{j}}-v\right\|_{p} \leq k(v)\left\|\lambda_{i_{j}}-\bar{\lambda}\right\|_{s},
$$

where $k(v)$ is defined by (3.2). It follows that $z_{i_{j}} \rightarrow y$ in X and $v_{i_{j}} \rightarrow v$ in U. Since $\left(x_{i_{j}}, u_{i_{j}}\right) \in S\left(\mu_{i_{j}}, \lambda_{i_{j}}\right)$, we have

$$
\begin{equation*}
J\left(x_{i_{j}}, u_{i_{j}}, \mu_{i_{j}}\right) \leq J\left(z_{i_{j}}, v_{i_{j}}, \mu_{i_{j}}\right)=\int_{0}^{1} f\left(t, z_{i_{j}}(t), v_{i_{j}}(t), \mu_{i_{j}}(t)\right) d t . \tag{4.17}
\end{equation*}
$$

By (H1), (H2) and (H4), J is weakly lower semicontinuous (see [6, Theorem 10.8.i and Theorem 10.9.vii] and [7, Theorem 3.3, p. 84]), that is,

$$
\begin{equation*}
J(\bar{x}, \bar{u}, \bar{\mu}) \leq \liminf _{j \rightarrow \infty} J\left(x_{i_{j}}, u_{i_{j}}, \mu_{i_{j}}\right) . \tag{4.18}
\end{equation*}
$$

By (H1), we have $f\left(t, z_{i_{j}}(t), v_{i_{j}}(t), \mu_{i_{j}}(t)\right) \rightarrow f(t, y(t), v(t), \bar{\mu}(t))$ a.e. $t \in[0,1]$. Since $z_{i_{j}} \rightarrow y$ uniformly on $[0,1]$, there exists a constant $M^{\prime \prime}>0$ such that $\left|z_{i_{j}}(t)\right| \leq M^{\prime \prime}$ for all $t \in[0,1]$ and $j \geq 1$. Since $v_{i_{j}} \rightarrow v$ and $\mu_{i_{j}} \rightarrow \bar{\mu}$ strongly, there exist vector functions $v_{0} \in L^{p}\left([0,1], \mathbb{R}^{m}\right)$ and $\mu_{0} \in L^{r}\left([0,1], \mathbb{R}^{k}\right)$ such that

$$
\left|v_{i_{j}}(t)\right| \leq\left|v_{0}(t)\right|,\left|\mu_{i_{j}}(t)\right| \leq\left|\mu_{0}(t)\right|
$$

for all j and a.e. $t \in[0,1]$. Therefore, from (H3) we have

$$
\left|f\left(t, z_{i_{j}}(t), v_{i_{j}}(t), \mu_{i_{j}}(t)\right)\right| \leq \vartheta(t)+\alpha_{1}\left(M^{\prime \prime}\right)^{\beta_{1}}+\alpha_{2}|v(t)|^{\beta_{2}}+\alpha_{3}\left|\mu_{0}(t)\right|^{\beta_{3}} .
$$

The Dominated Convergence Theorem implies that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} J\left(z_{i_{j}}, v_{i_{j}}, \mu_{i_{j}}\right)=\int_{0}^{1} f(t, y(t), v(t), \bar{\mu}(t)) d t=J(y, v, \bar{\mu}) . \tag{4.19}
\end{equation*}
$$

Taking the limit on both sides of (4.17) and using (4.18) and (4.19), we get

$$
J(\bar{x}, \bar{u}, \bar{\mu}) \leq J(y, v, \bar{\mu}) .
$$

Since (y, v) is arbitrary in $K(\bar{\lambda})$, we get $(\bar{x}, \bar{u}) \in S(\bar{\mu}, \bar{\lambda}) \subset V$. The lemma is proved.
4.2. Proof of Theorem 2.2. Let V_{1}^{\prime} be an open set in $C\left([0,1], \mathbb{R}^{n}\right)$ and V_{2}^{\prime} be an open set in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$ such that

$$
\begin{equation*}
S(\bar{\mu}, \bar{\lambda}) \subset V_{1}^{\prime} \times V_{2}^{\prime}:=V^{\prime} \tag{4.20}
\end{equation*}
$$

We want to show that there exists a neighborhood $M_{0} \times \Lambda_{0}$ of $(\bar{\mu}, \bar{\lambda})$ such that

$$
\begin{equation*}
S(\mu, \lambda) \subset V^{\prime}, \forall(\mu, \lambda) \in M_{0} \times \Lambda_{0} \tag{4.21}
\end{equation*}
$$

By contradiction, we find out a sequence $\left(\mu_{i}, \lambda_{i}\right) \rightarrow(\bar{\mu}, \bar{\lambda})$ strongly in $L^{\infty}\left([0,1], \mathbb{R}^{k}\right) \times$ $L^{s}\left([0,1], \mathbb{R}^{l}\right)$ and a sequence $\left(x_{i}, u_{i}\right) \in S\left(\mu_{i}, \lambda_{i}\right)$ such that $\left(x_{i}, u_{i}\right) \notin V^{\prime}$. By Lemma 4.1, there exists $(\bar{x}, \bar{u}) \in S(\bar{\mu}, \bar{\lambda})$ and a subsequence $\left\{\left(x_{i_{j}}, u_{i_{j}}\right)\right\}$ of $\left\{\left(x_{i}, u_{i}\right)\right\}$ such that $x_{i_{j}} \rightarrow \bar{x}$ uniformly and $u_{i_{j}} \rightharpoonup \bar{u}$ weakly in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$. If we can show that $u_{i_{j}} \rightarrow \bar{u}$ strongly then $\left(x_{i_{j}}, u_{i_{j}}\right) \in V^{\prime}$ for j large enough. This leads to a contradiction and so the theorem is proved. In the sequel, we shall denote by $\left\{\left(x_{j}, u_{j}\right)\right\}$ and $\left\{\left(\mu_{j}, \lambda_{j}\right)\right\}$ the subsequences $\left\{\left(x_{i_{j}}, u_{i_{j}}\right)\right\}$ and $\left\{\left(\mu_{i_{j}}, \lambda_{i_{j}}\right)\right\}$, respectively. It remains to prove the following lemma.

Lemma 4.2. The sequence $\left\{u_{j}\right\}$ converges strongly to \bar{u} in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$.
Proof. Since $\left(x_{j}, u_{j}\right) \in S\left(\mu_{j}, \lambda_{j}\right)$ and $(\bar{x}, \bar{u}) \in S(\bar{\mu}, \bar{\lambda})$, they must satisfy the Pontryagin principle. According to the Pontryagin Maximum Principle (see [10, Theorem 1, p. 134 and p. 139] and [2]), there exist absolutely continuous functions ϕ_{j} and $\bar{\phi}$ such that the following conditions are fulfilled:

$$
\begin{align*}
\dot{\phi}_{j}(t)^{T}= & -\phi_{j}(t)^{T}\left(A_{x}\left(t, x_{j}(t)\right)+B_{x}\left(t, x_{j}(t)\right) u_{j}(t)\right) \\
& +f_{x}\left(t, x_{j}(t), u_{j}(t), \mu_{j}(t)\right), \phi_{j}(1) \tag{4.22}\\
= & 0 \\
\dot{\bar{\phi}}(t)^{T}= & -\bar{\phi}(t)^{T}\left(A_{x}(t, \bar{x}(t))+B_{x}(t, \bar{x}(t)) \bar{u}(t)\right) \\
& +f_{x}(t, \bar{x}(t), \bar{u}(t), \bar{\mu}(t)), \bar{\phi}(1) \tag{4.23}\\
= & 0
\end{align*}
$$

and for a.e. $t \in[0,1]$,

$$
\begin{align*}
& f\left(t, x_{j}(t), u_{j}(t), \mu_{j}(t)\right)-\phi_{j}(t)^{T}\left(A\left(t, x_{j}(t)\right)+B\left(t, x_{j}(t) u_{j}(t)\right)\right. \\
& =\min _{v \in \mathcal{U}(t)}\left\{f\left(t, x_{j}(t), v, \mu_{j}(t)\right)-\phi_{j}(t)^{T}\left(A\left(t, x_{j}(t)\right)+B\left(t, x_{j}(t)\right) v\right)\right\} \tag{4.24}\\
& \quad f\left(t, \bar{x}(t), \bar{u}(t), \mu_{j}(t)\right)-\bar{\phi}(t)^{T}(A(t, \bar{x}(t))+B(t, \bar{x}(t)) \bar{u}(t)) \\
& \quad=\min _{v \in \mathcal{U}(t)}\left\{f(t, \bar{x}(t), v, \bar{\mu}(t))-\bar{\phi}(t)^{T}(A(t, \bar{x}(t))+B(t, \bar{x}(t)) v)\right\} \tag{4.25}
\end{align*}
$$

Let us claim that $\phi_{j}-\bar{\phi} \rightarrow 0$ uniformly on $[0,1]$. Indeed, from (4.22) and (4.23), we have

$$
\begin{aligned}
\dot{\phi}_{j}(t)^{T}-\dot{\bar{\phi}}(t)^{T}= & -\left(\phi_{j}(t)^{T}-\bar{\phi}(t)^{T}\right) A_{x}\left(t, x_{j}\right)-\bar{\phi}(t)^{T}\left(A_{x}\left(t, x_{j}\right)-A_{x}(t, \bar{x})\right) \\
& -\left(\phi_{j}(t)^{T}-\bar{\phi}(t)^{T}\right) B_{x}\left(t, x_{j}\right) u_{j}-\bar{\phi}(t)^{T}\left(B_{x}\left(t, x_{j}\right) u_{j}-B_{x}(t, \bar{x}) \bar{u}\right) \\
& +f_{x}\left(t, x_{j}, u_{j}, \mu_{j}\right)-f_{x}\left(t, x_{j}, u_{j}, \bar{\mu}\right)+f_{x}\left(t, x_{j}, u_{j}, \bar{\mu}\right)-f_{x}(t, \bar{x}, \bar{u}, \bar{\mu}) \\
= & -\left(\phi_{j}(t)^{T}-\bar{\phi}(t)^{T}\right) A_{x}\left(t, x_{j}\right)-\bar{\phi}(t)^{T}\left(A_{x}\left(t, x_{j}\right)-A_{x}(t, \bar{x})\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\phi_{j}(t)^{T}-\bar{\phi}(t)^{T}\right) B_{x}\left(t, x_{j}\right) u_{j}-\bar{\phi}(t)^{T}\left(B_{x}\left(t, x_{j}\right)-B_{x}(t, \bar{x})\right) u_{j} \\
& -\bar{\phi}(t)^{T} B_{x}(t, \bar{x})\left(u_{j}-\bar{u}\right)+f_{x}\left(t, x_{j}, u_{j}, \mu_{j}\right)-f_{x}\left(t, x_{j}, u_{j}, \bar{\mu}\right) \\
& +f_{x}\left(t, x_{j}, u_{j}, \bar{\mu}\right)-f_{x}(t, \bar{x}, \bar{u}, \bar{\mu})
\end{aligned}
$$

Define $\varphi_{j}(s)=\phi_{j}(1-s)$ and $\bar{\varphi}(s)=\bar{\phi}(1-s)$ with $s \in[0,1]$, we have $\frac{d}{d s} \varphi_{j}(s)=$ $-\dot{\phi}_{j}(1-s)$ and $\varphi(0)=0=\bar{\varphi}(0)$. Moreover, from the above we get

$$
\begin{aligned}
-\left(\frac{d}{d s} \varphi_{j}(s)^{T}-\frac{d}{d s} \bar{\varphi}(s)^{T}\right)= & -\left(\varphi_{j}(s)^{T}-\bar{\varphi}(s)^{T}\right) A_{x}\left(1-s, x_{j}\right) \\
& -\bar{\varphi}(s)^{T}\left(A_{x}\left(1-s, x_{j}\right)-A_{x}(1-s, \bar{x})\right) \\
& -\left(\varphi_{j}(s)^{T}-\bar{\varphi}(s)^{T}\right) B_{x}\left(1-s, x_{j}\right) u_{j} \\
& -\bar{\varphi}(s)^{T}\left(B_{x}\left(1-s, x_{j}\right)-B_{x}(1-s, \bar{x})\right) u_{j} \\
& -\bar{\varphi}(s)^{T} B_{x}(1-s, \bar{x})\left(u_{j}-\bar{u}\right) \\
& +f_{x}\left(1-s, x_{j}, u_{j}, \mu_{j}\right)-f_{x}\left(1-s, x_{j}, u_{j}, \bar{\mu}\right) \\
& +f_{x}\left(1-s, x_{j}, u_{j}, \bar{\mu}\right) \\
& -f_{x}(1-s, \bar{x}, \bar{u}, \bar{\mu})
\end{aligned}
$$

From this and

$$
\varphi_{j}(s)^{T}-\bar{\varphi}(s)^{T}=\int_{0}^{s}\left(\frac{d}{d s} \varphi_{j}(\tau)^{T}-\frac{d}{d s} \bar{\varphi}^{T}(\tau)\right) d \tau
$$

we get

$$
\begin{aligned}
\left|\varphi_{j}(s)-\bar{\varphi}(s)\right|= & \left|\varphi_{j}(s)^{T}-\bar{\varphi}(s)^{T}\right| \\
= & \left|\int_{0}^{s}\left(\frac{d}{d s} \varphi_{j}(\tau)^{T}-\frac{d}{d s} \bar{\varphi}^{T}(\tau)\right) d \tau\right| \\
\leq & \left|\int_{0}^{s}\left(\varphi_{j}(\tau)^{T}-\bar{\varphi}(\tau)^{T}\right) A_{x}\left(1-\tau, x_{j}\right) d \tau\right| \\
& +\left|\int_{0}^{s} \bar{\varphi}(\tau)^{T}\left(A_{x}\left(1-\tau, x_{j}\right)-A_{x}(1-\tau, \bar{x})\right) d \tau\right| \\
& +\left|\int_{0}^{s}\left(\varphi_{j}^{T}(\tau)-\bar{\varphi}^{T}(\tau)\right) B_{x}\left(1-\tau, x_{j}\right) u_{j} d \tau\right| \\
& +\left|\int_{0}^{s} \bar{\varphi}(s)^{T}\left(B_{x}\left(1-\tau, x_{j}\right)-B_{x}(1-\tau, \bar{x})\right) u_{j} d \tau\right| \\
& +\left|\int_{0}^{s} \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right| \\
& +\left|\int_{0}^{s} f_{x}\left(1-\tau, x_{j}, u_{j}, \mu_{j}\right)-f_{x}\left(1-\tau, x_{j}, u_{j}, \bar{\mu}\right) d \tau\right| \\
& +\left|\int_{0}^{s} f_{x}\left(1-\tau, x_{j}, u_{j}, \bar{\mu}\right)-f_{x}(1-\tau, \bar{x}, \bar{u}, \bar{\mu}) d \tau\right| \\
\leq & \left.\int_{0}^{s} \mid \varphi_{j}(\tau)-\bar{\varphi}(\tau)\right) \mid\left(\left|A_{x}\left(1-\tau, x_{j}\right)\right|+\left|B_{x}\left(1-\tau, x_{j}\right) u_{j}\right|\right) d \tau
\end{aligned}
$$

$$
\begin{align*}
& +\|\bar{\varphi}\|_{0} \int_{0}^{1}\left|A_{x}\left(1-\tau, x_{j}\right)-A_{x}(1-\tau, \bar{x})\right| d \tau \\
& +\|\bar{\varphi}\|_{0} \int_{0}^{1}\left|B_{x}\left(1-\tau, x_{j}\right)-B_{x}(1-\tau, \bar{x})\right|\left|u_{j}\right| d \tau \\
& +\sup _{s \in[0,1]}\left|\int_{0}^{s} \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right| \tag{4.26}\\
& +\int_{0}^{1}\left|f_{x}\left(1-\tau, x_{j}, u_{j}, \mu_{j}\right)-f_{x}\left(1-\tau, x_{j}, u_{j}, \bar{\mu}\right)\right| d \tau \\
& +\int_{0}^{1}\left|f_{x}\left(1-\tau, x_{j}, u_{j}, \bar{\mu}\right)-f_{x}(1-\tau, \bar{x}, \bar{u}, \bar{\mu})\right| d \tau
\end{align*}
$$

Note that

$$
\begin{aligned}
\sup _{s \in[0,1]}\left|\int_{0}^{s} \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right| & \leq \int_{0}^{1}\left|\bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x}) \|\left(u_{j}-\bar{u}\right)\right| d \tau \\
& \leq\left\|\bar{\varphi}^{T} B_{x}(\cdot, \bar{x})\right\|_{q}^{q}\left\|u_{j}-\bar{u}\right\|_{p}^{p} \\
& \leq\left\|\bar{\varphi}^{T} B_{x}(\cdot, \bar{x})\right\|_{q}^{q} M
\end{aligned}
$$

for some constant $M>0$. Here we used the fact that $\left\{u_{j}-\bar{u}\right\}$ is bounded because $u_{j} \rightharpoonup \bar{u}$.

Since $u_{j} \rightharpoonup \bar{u}, x_{j} \rightarrow \bar{x}$ and $\mu_{j} \rightarrow \bar{\mu}$ uniformly, there exist positive numbers $\gamma_{1}, \gamma_{2}, \gamma_{3}$ such that

$$
\left\|u_{j}\right\|_{L^{p}} \leq \gamma_{1},\left\|x_{j}\right\|_{0} \leq \gamma_{2}, \quad\left\|\mu_{j}\right\|_{\infty} \leq \gamma_{3}, \quad \forall j \geq 1
$$

Since k_{i} is continuous, we obtain

$$
\begin{equation*}
k_{i}\left(t,\left|x_{j}(t)\right|,\left|\mu_{j}(t)\right|,|\bar{\mu}(t)|\right) \leq \xi_{i}:=\max _{\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \in[0,1] \times\left[0, \gamma_{2}\right] \times\left[0, \gamma_{3}\right] \times\left[0,\|\bar{\mu}\|_{\infty}\right]} k_{i}\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \tag{4.27}
\end{equation*}
$$

with $i=1,2$. Combining this with (2.4) and (2.6), we have

$$
\begin{aligned}
& \int_{0}^{1}\left|f_{x}\left(1-\tau, x_{j}, u_{j}, \mu_{j}\right)-f_{x}\left(1-\tau, x_{j}, u_{j}, \bar{\mu}\right)\right| d \tau \\
& \quad+\int_{0}^{1}\left|f_{x}\left(1-\tau, x_{j}, u_{j}, \bar{\mu}\right)-f_{x}(1-\tau, \bar{x}, \bar{u}, \bar{\mu})\right| d \tau \\
& \leq \int_{0}^{1} \xi_{1}\left|u_{j}\right|^{\eta}\left|\mu_{j}(1-\tau)-\bar{\mu}(1-\tau)\right|^{s_{1}} d \tau \\
& \quad+\int_{0}^{1} k_{3}(1-\tau)\left|x_{j}(1-\tau)-\bar{x}(1-\tau)\right| d \tau \\
& \leq C_{1} \xi_{1}\left\|u_{j}\right\|_{L^{p}}^{\eta}\left\|\mu_{j}-\bar{\mu}\right\|_{L^{\infty}}^{s_{1}}+\left\|k_{3}(\cdot)\right\|_{L^{1}}\left\|x_{j}-\bar{x}\right\|_{0} \\
& \leq C_{1} \xi_{1} \gamma_{1}^{\eta}\left\|\mu_{j}-\bar{\mu}\right\|_{L^{\infty}}^{s_{1}}+\left\|k_{3}(\cdot)\right\|_{L^{1}}\left\|x_{j}-\bar{x}\right\|_{0}
\end{aligned}
$$

for some constant $C_{1}>0$. From this and (4.26), we get

$$
\left.\left|\varphi_{j}(s)-\bar{\varphi}(s)\right| \leq \int_{0}^{s} \mid \varphi_{j}(\tau)-\bar{\varphi}(\tau)\right) \mid\left(\left|A_{x}\left(1-\tau, x_{j}(\tau)\right)\right|+\left|B_{x}\left(1-\tau, x_{j}\right) u_{j}\right|\right) d \tau
$$

$$
\begin{aligned}
& +\|\bar{\varphi}\|_{0} \int_{0}^{1}\left|A_{x}\left(1-\tau, x_{j}\right)-A_{x}(1-\tau, \bar{x})\right| d \tau \\
& +\|\bar{\varphi}\|_{0} \int_{0}^{1}\left|B_{x}\left(1-\tau, x_{j}\right)-B_{x}(1-\tau, \bar{x}) \| u_{j}\right| d \tau \\
& +\sup _{s \in[0,1]}\left|\int_{0}^{s} \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right| \\
& +C_{1} \xi_{1} \gamma_{1}^{\eta}\left\|\mu_{j}-\bar{\mu}\right\|_{L^{\infty}}^{s_{1}}+\left\|k_{3}(\cdot)\right\|_{L^{1}}\left\|x_{j}-\bar{x}\right\|_{0}
\end{aligned}
$$

By Gronwall's inequality for integral form, we obtain

$$
\begin{align*}
&\left|\varphi_{j}(s)-\bar{\varphi}(s)\right| \leq \exp \left(\int_{0}^{1}\left(\left|A_{x}\left(1-\tau, x_{j}\right)\right|+\left|B_{x}\left(1-\tau, x_{j}\right) u_{j}\right|\right) d \tau\right) \\
&\left\{\|\bar{\varphi}\|_{0} \int_{0}^{1}\left|A_{x}\left(1-\tau, x_{j}\right)-A_{x}(1-\tau, \bar{x})\right| d \tau\right. \\
&+\|\bar{\varphi}\|_{0} \int_{0}^{1}\left|B_{x}\left(1-\tau, x_{j}\right)-B_{x}(1-\tau, \bar{x}) \| u_{j}\right| d \tau \tag{4.28}\\
&+\sup _{s \in[0,1]}\left|\int_{0}^{s} \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right| \\
&\left.+C_{1} \xi_{1} \gamma_{1}^{\eta}\left\|\mu_{j}-\bar{\mu}\right\|_{L^{\infty}}^{s_{1}}+\left\|k_{3}(\cdot)\right\|_{L^{1}}\left\|x_{j}-\bar{x}\right\|_{0}\right\}
\end{align*}
$$

Let us show that the right-hand side of (4.28) converges to 0 as $j \rightarrow \infty$. Note that since $A_{x}(\cdot, \cdot)$ and $B_{x}(\cdot, \cdot)$ are continuous and $\left\|x_{j}\right\|_{0} \leq \gamma_{2}$, we have

$$
\begin{align*}
&\left|A_{x}\left(t, x_{j}(t)\right)\right| \leq \sup _{(t, x) \in[0,1] \times \gamma_{2} B_{n}}\left|A_{x}(t, x)\right|<+\infty \tag{4.29}\\
&\left|B_{x}\left(t, x_{j}(t)\right)\right| \leq \sup _{(t, x) \in[0,1] \times \gamma_{2} B_{n}}\left|B_{x}(t, x)\right|<+\infty \tag{4.30}
\end{align*}
$$

where B_{n} is the unit ball in \mathbb{R}^{n}. We have

$$
\begin{align*}
& \int_{0}^{1}\left(\left|A_{x}\left(1-\tau, x_{j}\right)\right|+\left|B_{x}\left(1-\tau, x_{j}\right) u_{j}\right|\right) d \tau \\
& \leq \int_{0}^{1}\left(\left|A_{x}\left(1-\tau, x_{j}\right)\right| d \tau+\left\|B_{x}\left(\cdot, x_{j}\right)\right\|_{q}\left\|u_{j}\right\|_{p}\right. \tag{4.31}\\
& \leq \int_{0}^{1}\left(\left|A_{x}\left(1-\tau, x_{j}\right)\right| d \tau+\left\|B_{x}\left(\cdot, x_{j}\right)\right\|_{q} \gamma_{1}\right.
\end{align*}
$$

From (4.29), (4.30) and the Dominated Convergence Theorem, we see that the right-hand side of (4.31) converges to $\int_{0}^{1}\left(\left|A_{x}(1-\tau, \bar{x})\right| d \tau+\left\|B_{x}(\cdot, \bar{x})\right\|_{q} \gamma_{1}\right.$ and so it is bounded. Hence

$$
\int_{0}^{1}\left(\left|A_{x}\left(1-\tau, x_{j}\right)\right|+\left|B_{x}\left(1-\tau, x_{j}\right) u_{j}\right|\right) d \tau \leq M_{1}, \forall j \geq 1
$$

for some constant $M_{1}>0$. Also, by the Dominated Convergence Theorem again, we have

$$
\begin{aligned}
&\|\bar{\varphi}\|_{0} \int_{0}^{1}\left|A_{x}\left(1-\tau, x_{j}\right)-A_{x}(1-\tau, \bar{x})\right| d \tau \\
&+\|\bar{\varphi}\|_{0} \int_{0}^{1}\left|B_{x}\left(1-\tau, x_{j}\right)-B_{x}(1-\tau, \bar{x})\right|\left|u_{j}\right| d \tau \rightarrow 0
\end{aligned}
$$

as $j \rightarrow \infty$. The last term in (4.28) also converges to 0 because $\mu_{j} \rightarrow \bar{\mu}$ and $x_{j} \rightarrow \bar{x}$ uniformly. We now show that

$$
\begin{equation*}
\sup _{s \in[0,1]}\left|\int_{0}^{s} \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right| \rightarrow 0 \text { as } j \rightarrow \infty \tag{4.32}
\end{equation*}
$$

By contradiction, there exists $\epsilon_{1}>0$ such that

$$
\sup _{s \in[0,1]}\left|\int_{0}^{s} \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right|>\epsilon_{1}, \forall j \geq 1
$$

Hence for each j, there exist $s_{j} \in[0,1]$ such that

$$
\left|\int_{0}^{s_{j}} \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right|>\epsilon_{1}, \forall j \geq 1
$$

By passing to subsequence if necessary, we can assume that $s_{j} \rightarrow s_{0} \in[0,1]$. From the above, we have

$$
\begin{align*}
\epsilon_{1}< & \left|\int_{0}^{s_{j}} \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right| \\
\leq & \left|\int_{0}^{s_{0}} \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right| \\
& +\left|\int_{s_{0}}^{s_{j}} \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right| \tag{4.33}\\
\leq & \left|\int_{0}^{1} 1_{\left[0, s_{0}\right]}(\tau) \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right| \\
& +\left(\int_{s_{0}}^{s_{j}}\left|\bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\right|^{q} d \tau\right)^{1 / q}\left\|u_{j}-\bar{u}\right\|_{p}^{p}
\end{align*}
$$

where $1_{\left[0, s_{0}\right]}$ is the indicator function of interval $\left[0, s_{0}\right]$. It is easy to see that

$$
1_{\left[0, s_{0}\right]}(\cdot) \bar{\varphi}(\cdot)^{T} B_{x}(1-\cdot, \bar{x}) \in L^{q}\left([0,1], \mathbb{R}^{m}\right)
$$

Since $u_{j} \rightharpoonup \bar{u}$ weakly in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$, we get

$$
\left|\int_{0}^{1} 1_{\left[0, s_{0}\right]}(\tau) \bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\left(u_{j}-\bar{u}\right) d \tau\right| \rightarrow 0 \text { as } j \rightarrow \infty
$$

Since $\left\|u_{j}-\bar{u}\right\|_{p}^{p}$ is bounded and $\left|\bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\right|$ is continuous, we get

$$
\left(\int_{s_{0}}^{s_{j}}\left|\bar{\varphi}(\tau)^{T} B_{x}(1-\tau, \bar{x})\right|^{q} d \tau\right)^{1 / q}\left\|u_{j}-\bar{u}\right\|_{p}^{p} \rightarrow 0 \text { as } j \rightarrow \infty
$$

By letting $j \rightarrow \infty$ in (4.33), we obtain a contradiction. Hence (4.32) is valid.

In summary, we have shown that the right-hand side of (4.28) converges to 0 as $j \rightarrow \infty$. Consequently, $\varphi_{j} \rightarrow \bar{\varphi}$ uniformly. Hence $\phi_{j} \rightarrow \bar{\phi}$ uniformly on $[0,1]$. The claim is justified.

From (4.24) and (4.25), we see that u_{j} and \bar{u} satisfy the variational inequalities

$$
\left\langle f_{u}\left(t, x_{j}(t), u_{j}(t), \mu_{j}(t)\right)-\phi_{j}(t)^{T} B\left(t, x_{j}(t)\right), v-u_{j}(t)\right\rangle \geq 0 \forall v \in \mathcal{U}(t)
$$

and

$$
\left\langle f_{u}(t, \bar{x}(t), \bar{u}(t), \bar{\mu}(t))-\bar{\phi}(t)^{T} B(t, \bar{x}(t)), v-\bar{u}(t)\right\rangle \geq 0 \forall v \in \mathcal{U}(t)
$$

respectively. Hence

$$
\left\langle f_{u}\left(t, x_{j}(t), u_{j}(t), \mu_{j}(t)\right)-\phi_{j}(t)^{T} B\left(t, x_{j}(t)\right), \bar{u}(t)-u_{j}(t)\right\rangle \geq 0
$$

and

$$
\left\langle f_{u}(t, \bar{x}(t), \bar{u}(t), \bar{\mu}(t))-\bar{\phi}(t)^{T} B(t, \bar{x}(t)), u_{j}(t)-\bar{u}(t)\right\rangle \geq 0
$$

for a.e. $t \in[0,1]$. Using above inequalities and (2.7), we get

$$
\begin{aligned}
\alpha\left|u_{j}(t)-\bar{u}(t)\right|^{p} \leq & \left\langle f_{u}\left(t, x_{j}(t), u_{j}(t), \bar{\mu}(t)\right)-f_{u}(t, \bar{x}(t), \bar{u}(t), \bar{\mu}(t)), u_{j}(t)-\bar{u}(t)\right\rangle \\
\leq & \left\langle f_{u}\left(t, x_{j}(t), u_{j}(t), \bar{\mu}(t)\right)-f_{u}(t, \bar{x}(t), \bar{u}(t), \bar{\mu}(t)), u_{j}(t)-\bar{u}(t)\right\rangle \\
& +\left\langle f_{u}\left(t, x_{j}(t), u_{j}(t), \mu_{j}(t)\right)-\phi_{j}(t)^{T} B\left(t, x_{j}(t)\right), \bar{u}(t)-u_{j}(t)\right\rangle \\
& +\left\langle f_{u}(t, \bar{x}(t), \bar{u}(t), \bar{\mu}(t))-\bar{\phi}(t)^{T} B(t, \bar{x}(t)), u_{j}(t)-\bar{u}(t)\right\rangle \\
= & \left\langle f_{u}\left(t, x_{j}(t), u_{j}(t), \bar{\mu}(t)\right)-f_{u}\left(t, x_{j}(t), u_{j}(t), \mu_{j}(t)\right), u_{j}(t)-\bar{u}(t)\right\rangle \\
& +\left\langle\phi_{j}(t)^{T}(t) B\left(t, x_{j}(t)\right)-\bar{\phi}(t)^{T} B(t, \bar{x}(t)), u_{j}(t)-\bar{u}(t)\right\rangle \\
\leq & \mid f_{u}\left(t, x_{j}(t), u_{j}(t), \bar{\mu}(t)\right)-f_{u}\left(t, x_{j}(t), u_{j}(t)| | u_{j}(t)-\bar{u}(t) \mid\right. \\
& +\left|\phi_{j}(t)^{T} B\left(t, x_{j}(t)\right)-\bar{\phi}(t)^{T} B(t, \bar{x}(t)) \| u_{j}(t)-\bar{u}(t)\right| .
\end{aligned}
$$

It follows that for a.e. $t \in[0,1]$,

$$
\begin{aligned}
\alpha\left|u_{j}(t)-\bar{u}(t)\right|^{p-1} \leq & \mid f_{u}\left(t, x_{j}(t), u_{j}(t), \bar{\mu}(t)\right)-f_{u}\left(t, x_{j}(t), u_{j}(t) \mid\right. \\
& +\left|\phi_{j}(t)^{T} B\left(t, x_{j}(t)\right)-\bar{\phi}(t)^{T} B(t, \bar{x}(t))\right|
\end{aligned}
$$

Combining this with (2.5) and (4.27), we get

$$
\alpha\left|u_{j}(t)-\bar{u}(t)\right|^{p-1} \leq \xi_{2}\left|u_{j}(t)\right|^{\theta}\left|\mu_{j}-\bar{\mu}\right|^{s_{2}}+\left|\phi_{j}(t)^{T} B\left(t, x_{j}(t)\right)-\bar{\phi}(t)^{T} B(t, \bar{x}(t))\right|
$$

Using the inequality $(a+b)^{q} \leq 2^{q-1}\left(a^{q}+b^{q}\right)$ for $a, b \geq 0$ and $q \geq 1$ yields

$$
\begin{aligned}
& \alpha^{q}\left|u_{j}(t)-\bar{u}(t)\right|^{q(p-1)}=\alpha^{q}\left|u_{j}(t)-\bar{u}(t)\right|^{p} \\
& \leq 2^{q-1}\left(\xi_{2}^{q} \|\left. u_{j}(t)\right|^{\theta q}\left|\mu_{j}(t)-\bar{\mu}(t)\right|^{s_{2} q}+\left|\phi_{j}(t)^{T} B\left(t, x_{j}(t)\right)-\bar{\phi}(t)^{T} B(t, \bar{x}(t))\right|^{q}\right)
\end{aligned}
$$

Here we used the equality $q(p-1)=p$. Integrating on $[0,1]$ and using the facts $\theta q \leq p$ and $\left\|u_{j}\right\|_{p} \leq \gamma_{1}$, we obtain

$$
\begin{align*}
\alpha^{q}\left\|u_{j}-\bar{u}\right\|_{L^{p}}^{p} \leq 2^{q-1}\left(C_{2} \|\right. & \mu_{j}-\bar{\mu} \|_{L^{\infty}}^{s_{2} q} \gamma_{1}^{\theta q} \tag{4.34}\\
& \left.+\int_{0}^{1}\left|\phi_{j}(t)^{T} B\left(t, x_{j}(t)\right)-\bar{\phi}(t)^{T} B(t, \bar{x}(t))\right|^{q} d t\right)
\end{align*}
$$

for some absolutely constant $C_{2}>0$. Since $\left|\phi_{j}(t)^{T} B\left(t, x_{j}(t)\right)-\bar{\phi}(t)^{T} B(t, \bar{x}(t))\right| \rightarrow 0$ and (2.2), the Dominated Convergence Theorem implies that

$$
\int_{0}^{1}\left|\phi_{j}(t)^{T} B\left(t, x_{j}(t)\right)-\bar{\phi}(t)^{T} B(t, \bar{x}(t))\right|^{q} d t \rightarrow 0 \text { as } j \rightarrow \infty
$$

Combining this with the fact that $\mu_{j} \rightarrow \bar{\mu}$ in $L^{\infty}\left([0,1], \mathbb{R}^{l}\right)$, we see that the righthand side of (4.34) converges to 0 as $j \rightarrow \infty$. Hence $u_{j} \rightarrow \bar{u}$ strongly in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$. The lemma is proved.

Finally, if $S(\bar{\mu}, \bar{\lambda})$ is singleton, then $S(\cdot, \cdot)$ is lower semicontinuous at $(\bar{\mu}, \bar{\lambda})$. In fact, let V_{1} be an open set in $C\left([0,1], \mathbb{R}^{n}\right)$ and V_{2} be an open set in $L^{p}\left([0,1], \mathbb{R}^{m}\right)$ such that $S(\bar{\mu}, \bar{\lambda}) \cap\left(V_{1} \times V_{2}\right) \neq \emptyset$. Since $S(\bar{\mu}, \bar{\lambda})=\{(\bar{x}, \bar{u})\}$, we have $S(\bar{\mu}, \bar{\lambda}) \subset$ $\left(V_{1} \times V_{2}\right)$. By the upper semicontinuity of $S(\cdot, \cdot)$ at $(\bar{\mu}, \bar{\lambda})$, there are neighborhoods U_{1} of $\bar{\mu}$ and U_{2} of $\bar{\lambda}$ such that $S(\mu, \lambda) \subset V_{1} \times V_{2}$ for all $(\mu, \lambda) \in U_{1} \times U_{2}$ and so $S(\mu, \lambda) \cap\left(V_{1} \times V_{2}\right) \neq \emptyset$ for all $(\mu, \lambda) \in U_{1} \times U_{2}$. Hence $S(\cdot, \cdot)$ is (s, s)-lower semicontinuous at $(\bar{\mu}, \bar{\lambda})$. This implies that $S(\cdot, \cdot)$ is continuous at $(\bar{\mu}, \bar{\lambda})$. The proof of Theorem 2.2 is complete.

References

[1] V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control, Consultants Bureau, New York, 1987.
[2] A. Arutyunov and R. B. Vinter, A Simple finite approximations proof of the Pontryagin maximum principle under reduced differentiability hypotheses, Set-Valued Anal. 12 (2004), 5-24.
[3] C. Berge, Topological Spaces, Edinburgh and London, Oliver and Boyd, 1963.
[4] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, 2000.
[5] J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis, Springer, New York, 2005.
[6] L. Cesari, Optimization Theory and Applications, Springer, New York,1983.
[7] B. Dacorogna, Introduction to the Calculus of Variations, Imperial College Press, London, 2004.
[8] A. Dontchev, W. W. Hager, K. Malanowski and V. M. Veliov, On quantitative stability in optimization and optimal control, Set-Valued Anal. 8 (2000), 31-50.
[9] A. Dontchev, Optimal Control Systems: Perturbation, Approximation and Sensitivity Analysis, Springer-Verlag, 1983.
[10] A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems, North-Holland Publishing Company, 1979.
[11] K. Ito and K. Kunisch, Sensitivity analysis of solution to optimization problems in Hilbert spaces with application to optimal control and estimation, J. Differential Equations, 99 (1992), 1-40.
[12] B. T. Kien, On the lower semicontinuity of optimal solution sets, Optimization 54 (2005), 123-130.
[13] B. T. Kien, N. T. Toan, M. M. Wong and J. C. Yao, Lower semicontinuity of the solution set to a parametric optimal control problem, SIAM J. Control. Optim. 50 (2012), 2889-2906.
[14] B. T. Kien, V. H. Nhu and A. Rosch, Lower semicontinuity of the solution map to a parametric elliptic optimal control problem with mixed pointwise constraints, Optimization 64 (2015), 1219-1238.
[15] E. Kreyszig, Introductory Funtional Analysis with Applications, John Willey and Sons, 1989.
[16] I. Kuzmanovic and N. Truhar, Optimization of the solution of the parameter-dependent Sylvester equation and applications, J. Comp. Appl. Math. 237 (2013), 136-144.
[17] K. Malanowski, Sufficient optimality conditions in stability analysis for state-constrained optimal control, Appl. Math. Optim. 55 (2007), 255-271.
[18] K. Malanowski, Stability and sensitivity analysis for linear-quadratic optimal control subject to state constraints, Optimization 56 (2007), 463-478.
[19] K. Malanowski, Sensitivity analysis for optimal control problems subject to higher order state constraints, Ann. Oper. Res. 101 (2001), 43-73.
[20] K. Malanowski, Stability analysis for nonlinear optimal control problems subject to state constraints, SIAM J. Optim. 18 (2007), 926-945.
[21] K. Malanowski, Second-order conditions in stability analysis for state constrained optimal control, J. Glob. Optim. 40 (2008), 161-168.

Manuscript received January 302018
revised March 282018

B. T. Kien

Department of Control Theory and Optimization, Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam

E-mail address: btkien@math.ac.vn
J.-C. Yao

Center for General Education, China Medical University, Taichung 404, Taiwan E-mail address: yaojc@mail.cmu.edu.tw

[^0]: 2010 Mathematics Subject Classification. 49K40, 49K30, 49K15.
 Key words and phrases. Parametric optimal control, solution existence, solution stability, lower semicontinuity, upper semicontinuity, continuity.
 *The work of B. T. Kien was partially supported by the joint research project from RFBR and VAST.QTRU03.02/18-19.
 ${ }^{\dagger}$ The work of J. C. Yao was partially supported by the Grant MOST 106-2923-E-039-001-MY3.

