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respectively. Let us put

X =W 1,1([0, 1],Rn), U = Lp([0, 1],Rm), Z = X × U,

M = Lr([0, 1],Rk), Λ = Ls([0, 1],Rl)

and define K(λ) for λ ∈ Λ by setting

K(λ) = {z = (x, u) ∈ X × U |(1.2) and (3) are satisfied}.(1.4)

Then (1)-(3) can be reformulated in the form

(1.5) P (µ, λ)

{
J(z, µ) → inf,

z ∈ K(λ).

Throughout this paper we denote by S(µ, λ) the solution set of (1)-(3) or P (µ, λ)
corresponding to parameters pair (µ, λ). We denote by (µ̄, λ̄) the reference point
and call P (µ̄, λ̄) the unperturbed problem.

Our main concern is to study the solution stability of P (µ, λ), that is, we will
investigate the behavior of S(µ, λ) when (µ, λ) varies around (µ̄, λ̄). This problem
has been interesting to several authors in the last decade. For papers which have
a close connection to the present work, we refer the readers to [4, 8, 9, 11, 17–21]
and the references given therein. The solution stability of optimization problems as
well as of optimal control problems has some important applications in parameter
estimation problems (see for instance [11]) and in numerical methods of finding
optimal solutions. The solution stability guarantees that approximate solutions
converge to the original solution because the solution sets of perturbed problems
are not very far away from the solution set of an unperturbed problem (see for
instance [16]).

It is known that when J(·, ·, µ) is strongly convex for all µ and K(λ) is a convex
set, then the solution map of (1.5) is single-valued. In this case, under certain
conditions, Dontchev [9] showed that the solution map is continuous with respect to
parameters. Under regularity conditions and strong second-order conditions of the
unperturbed problem together with Lipschitzian assumptions, Ito and Kunisch [11]
showed that the solution map is single-valued and Lipshitz continuous in parameters.

Recently Malanowski [17–21] showed that if weak second-order optimality condi-
tions and standard constraints qualifications are satisfied at the reference point, then
the solution map is a Lipschitz continuous function of parameters. The obtained
results in [17–21] were proved by techniques of implicit function theorem. Note that
the obtained results in [17–21] are of problems subject to state constraints without
control constraints.

When conditions mentioned above are invalid, the solution map may not be
singleton. In this situation, we have to use tools of set-valued analysis in order to
treat the problem. Such a treatment has been developed recently by Kien et al. [13]
and [14]. In [13] and [14] the authors studied the lower semicontinuous property
of the solution map to problem (1)-(3) in the case where the state equation is
linear and the cost function is convex in both variables. In this case the problem
can be considered as a convex programming problem. By techniques of variational
inequalities, the authors showed that if the unperturbed problem is good enough,
then the solution map is lower semicontinuous at the reference point.
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In this paper we continue to develop the results in [13] and [14] by studying the
upper semicontinuity and continuity of the solution map S(µ, λ) of problem (1)-
(3) for the case where the state equation is nonlinear and the cost function is not
required to be convex in both variables. Under this circumstance, the problem is
not convex and so the techniques of convex programming problems are failed to
apply.

It is noted that in the case of finite-dimensional spaces, the upper semicontinuity
of the solution map to parametric mathematical programming problems is easy to
obtain. The reason is that the upper semicontinuity of S is near to the closedness of
its graph. It is well known that if S has a closed graph and uniformly compact, that
is, there exists a compact set D in the strong topology such that S(µ, λ) ⊂ D for all
(µ, λ) in a neighborhood of (µ̄, λ̄) then S is upper semicontinuous at (µ̄, λ̄) (see [3,
Corollary, p.112] and [12, Theorem 3.1]). Unfortunately, in the infinite-dimensional
setting of problem (1)-(3), although each set S(µ, λ) is a weakly compact set, the
family {S(µ, λ)} is not strongly uniformly compact. Hence, the closedness of graph
of S is far away from the upper semicontinuity of S.

In our paper, by using the direct method, the Pontryagin Maximum Principle
and exploiting structures of the problem, we show that under certain conditions,
the solution map is (s, w)-upper semicontinuous at reference point (see Definition
2.1 for (s, w)-upper semicontinuity). Besides, we also show that if the unperturbed
problem is good enough, then the solution map is (s, s)-continuous with respect to
parameters at the reference point. It is worth pointing out that our proofs are based
on the direct method and analyzing first order optimality conditions (Pontryagin’s
Principle) of the problem. We do not use second-order optimality conditions for the
results formulation and the proofs as usual.

The paper is organized as follows. In Section 2, we recall some notions of set-
valued analysis and state our main results. Section 3 is destined for some auxiliary
results. The proofs of the main results are given in Section 4.

2. Statement of the main results

Let us assume that F : E1 ⇒ E2 is a multifunction between topological spaces.
We denote by domF and gphF the effective domain and the graph of F , respectively,
where

domF := {z ∈ E1|F (z) ̸= ∅}
and

gphF := {(z, v) ∈ E1 × E2|v ∈ F (z)}.
A multifunction F is said to be lower semicontinuous at z0 ∈ E1 if for any open set
V0 in E2 satisfying F (z0) ∩ V0 ̸= ∅, there exists a neighborhood G0 of z0 such that
F (z) ∩ V0 ̸= ∅ for all z ∈ G0 (see [5, Definition 5.1.15, p. 173]). F is said to be
upper semicontinuous at z0 ∈ E1 if for any open set V in E2 satisfying F (z0) ⊂ V ,
there exists a neighborhood G of z0 such that F (z) ⊂ V for all z ∈ G. If F is lower
semicontinuous and upper semicontinuous at z0, we say F is continuous at z0.

Definition 2.1. (a) The solution map S :M ×Λ ⇒ C([0, 1],Rn)×Lp([0, 1],Rm) is
said to be (s, w)-upper semicontinuous at (µ̄, λ̄) if for any open set V1 in C([0, 1],Rn)
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and weakly open set V2 in Lp([0, 1],Rm) satisfying S(µ̄, λ̄) ⊂ V1 × V2, there exist a
neighborhood U1 of µ̄ and a neighborhood U2 of λ̄ such that

S(µ, λ) ⊂ V1 × V2, ∀(µ, λ) ∈ U1 × U2.

(b) S is said to be (s, w)-lower semicontinuous at (µ̄, λ̄) if for any open set V ′
1 in

C([0, 1],Rn) and weakly open set V ′
2 in Lp([0, 1],Rm) satisfying S(µ̄, λ̄)∩(V ′

1×V ′
2) ̸=

∅, there exist a neighborhood U ′
1 of µ̄ and a neighborhood U ′

2 of λ̄ such that

S(µ, λ) ∩ (V ′
1 × V ′

2) ̸= ∅, ∀(µ, λ) ∈ U ′
1 × U ′

2.

If S is both (s, w)-upper semicontinuous at (µ̄, λ̄) and (s, w)-lower semicontinuous
at (µ̄, λ̄), then S is called (s, w)-continuous at (µ̄, λ̄).

In Definition 2.1, if V2 and V ′
2 are strongly open subsets of Lp([0, 1],Rm), we

say that S is (s, s)-upper semicontinuous and (s, s)-lower semicontinuous at (µ̄, λ̄),
respectively. It is clear that if S is (s, s)- upper semicontinuous at (µ̄, λ̄), then
S is (s, w)-upper semicontinuous at (µ̄, λ̄). This implication is also true for lower
semicontinuity of S.

In the sequel, we need the following assumptions of f,A,B and T .

(H1) f(·, x, u, µ) is a Carathéodory function, that is, for a.e. t ∈ [0, 1], f(t, ·, ·, ·)
is continuous in (x, u, µ) and for each fixed (x, u, µ) ∈ Rn × Rm × Rr, the
function f(·, x, u, µ) is measurable on [0, 1].

(H2) Growth and dominated conditions: there exist constants αi ≥ 0 with i =
1, 2, 3 and a nonnegative function ϑ ∈ L1([0, 1],R) such that for a.e. t ∈
[0, 1], for all u ∈ U(t) and x ∈ Rm, one has

|f(t, x, u, µ)| ≤ ϑ(t) + α1|x|β1 + α2|u|β2 + α3|µ|β3 ,

where 0 ≤ β1, 1 ≤ β2 ≤ p, 1 ≤ β3 ≤ r and 0 ≤ β3 whenever r = ∞.
(H3) Coercive condition: there exist constants α′

1 > 0, α′
2 ∈ R and a function

θ(t) ∈ L1([0, 1],R) such that for a.e. t ∈ [0, 1], for all u ∈ U(t) and x ∈ Rm,
one has

f(t, x, u, µ) ≥ α′
1|u|p + α′

2|µ|β
′
2 + θ(t),

where 1 ≤ β′2 ≤ r and 0 ≤ β′3 whenever r = ∞.
(H4) Convexity: the function u 7→ f(t, x, u, µ) is convex for all (t, x, µ) ∈ [0, 1]×

Rn × Rr.
(H5) The entries of A(t, x) and B(t, x) are continuous and continuously differ-

entiable in x such that the partial derivative mappings Ax(·, ·) and Bx(·, ·)
are continuous. Also, the vector function T (t, λ) has continuous compo-
nents in (t, λ). Besides, there exist nonnegative functions ϕ ∈ L1([0, 1],R),
ψ ∈ Lq([0, 1],R) and χ ∈ Ls′([0, 1],R) such that

|A(t, x1)−A(t, x2)| ≤ ϕ(t)|x1 − x2|, a.e. t ∈ [0, 1], ∀x1, x2 ∈ Rn,(2.1)

|B(t, x1)−B(t, x2)| ≤ ψ(t)|x1 − x2|, a.e. t ∈ [0, 1], ∀x1, x2 ∈ Rn,(2.2)

|T (t, λ1)− T (t, λ2)| ≤ χ(t)|λ1 − λ2|, a.e. t ∈ [0, 1], ∀λ1, λ2 ∈ Rl.(2.3)

Here q and s′ are conjugate numbers of p and s, respectively. The norm of n×
mmatrixB(t, x) = [bij(t, x)] is defined by |B(t, x)|2 =

∑n
i=1

∑m
j=1 |bij(t, x)|2.
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(H6) The set {u ∈ Lp([0, 1],Rm) | u(t) ∈ U(t) a.e.} is nonempty.

We are now ready to state our main results.

Theorem 2.2. Suppose that assumptions (H1)-(H6) are fulfilled. Then the follow-
ing assertions are valid:
(i) S(µ, λ) ̸= ∅ for all (µ, λ) ∈M × Λ;
(ii) S(·, ·) is (s, w)-upper semicontinuous at (µ̄, λ̄).

From Theorem 2.1 one may ask whether the solution map S(·, ·) is (s, s)-upper
semicontinuous. The next theorem says that if the unperturbed problem is good
enough and the space of parameter µ is good enough, then the solution map is
(s, s)-upper semicontinuous and (s, s)-continuous at (µ̄, λ̄). For this we need the
following strengthened assumption.

(H7) Assume that r = ∞ and the function (x, u) 7→ L(t, x, u, µ) is Fréchet con-
tinuously differentiable for a.e. t ∈ [0, 1] and µ ∈ µ̄(t) + ϵBk(0, 1) for some
ϵ > 0, where Bk(0, 1) is the unit ball in Rk. Furthermore, the following
conditions are fulfilled:
(i) There exist a continuous function ki : [0, 1]×R3 → R, positive numbers

si with i = 1, 2, 0 ≤ η ≤ p and 0 ≤ θ ≤ p/q such that

(2.4) |fx(t, x, u, µ)− fx(t, x, u, µ̄(t))| ≤ k1(t, |x|, |µ|, |µ̄(t)|)|u|η|µ− µ̄(t)|s1

and

(2.5) |fu(t, x, u, µ)− fu(t, x, u, µ̄(t))| ≤ k2(t, |x|, |µ|, |µ̄(t)|)|u|θ|µ− µ̄(t)|s2

for a.e. t ∈ [0, 1], x ∈ Rn, u ∈ [a(t), b(t)] and µ ∈ µ̄(t) + ϵBk(0, 1).
(ii) There exists a nonnegative function k3(·) ∈ L1([0, 1],R) such that

|fx(t, x1, u1, µ̄(t))− fx(t, x2, u2, µ̄(t))| ≤ k3(t)|x1 − x2|(2.6)

for a.e. t ∈ [0, 1] and for all xi ∈ Rn, ui ∈ Rm with i = 1, 2.
(iii) There exists a positive number α such that for any (x̂, û) ∈ S(µ̄, λ̄) one

has

⟨fu(t, x, v, µ̄(t))− fu(t, x̂(t), û(t), µ̄(t)), v − û(t)⟩ ≥ α|v − û(t)|p(2.7)

for a.e. t ∈ [0, 1] and for all (x, v) ∈ Rn × U(t).

Under this extra assumption, we have

Theorem 2.3. Suppose that assumptions (H1)-(H7) are fulfilled. Then the mapping
S(·, ·) is (s, s)-upper semicontinuous at (µ̄, λ̄). Moreover, if S(µ̄, λ̄) is singleton, then
S(·, ·) is (s, s)-continuous at (µ̄, λ̄).

Notice that assumptions (H1), (H2) and (H4) in Theorem 2.1 make sure that
J(·, ·, µ) is weakly lower semicontinuous for each µ ∈ M . Meanwhile, assumption
(H5) guarantees that for each λ ∈ Λ and u ∈ U , the state equation has a unique
global solution x ∈W 1,1([0, 1],Rn). Condition (ii) in (H7) says that fx is a Lipschitz
function which only depends on x. Condition (iii) in (H7) requires that the func-
tion f(t, x, ·, µ̄(t)) is strongly convex in u. We now give some examples satisfying
assumptions (H1)-(H7).
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Example 2.4. Let n = m = k = l = 1 and p = r = s = 2. Then problem P (µ, λ)
with

f(t, x, u, µ) =
√

1 + x2 + u2 + µu,

A(t, x) = t+
√

1 + x2, B(t, x) = tx, T (t, λ) = λ,

U(t) = R+ = {r ∈ R | r ≥ 0}

satisfies all assumptions (H1)-(H6).

In fact, we have |f(t, x, u, µ)| ≤ 1 + |x| + 3
2u

2 + 1
2µ

2. Hence (H2) is valid. For
(H3) we have

f(t, x, u, µ) ≥ u2 − 1

2
(u2 + µ2) ≥ 1

2
u2 − 1

2
µ2.

In order to verify (H5) for A(t, x) we use the Lagrange Theorem. Then for all
x, y ∈ R we have

|A(t, x)−A(t, y)| = |
√

1 + x2 −
√
1 + y2| ≤ |ξ|√

1 + ξ2
|x− y| ≤ |x− y|,

where ξ = θx+ (1− θ)y with θ ∈ [0, 1].

Example 2.5. Let m = n = k = l = 1 and p = 2, s = 1, r = ∞. We consider the
problem

(2.8)


J(x, u, µ) =

∫ 1
0

(
(u(t)− µ(t))2 + 1

2x
2(t)− µ(t)u(t)x(t)

)
dt→ inf,

ẋ(t) = u(t) + λ(t),

x(0) = 0,

u(t) ∈ U(t) = [−1, 1].

Here we assume that µ̄(t) = 0, λ̄(t) = 0 for all t ∈ [0, 1]. It is clear that J is
not convex in both variable (x, u). Let us verify that assumptions (H1)-(H7). The
assumptions (H1) and (H4) are obvious. For (H2), we have

|f(t, x, u, µ)| ≤ u2 − 2µu+ µ2 +
1

2
x2 +

1

2
x2 +

1

2
µ2u2

≤ 2u2 + 3µ2 + x2 +
1

2
µ2, ∀u ∈ [−1, 1].

For (H3), we have

f(t, x, u, µ) ≥ u2 − 2µu+ µ2 +
1

2
x2 − 1

2
x2 − 1

2
µ2u2

≥ u2 − 2µu+ µ2 − 1

2
µ2

≥ u2 − 1

2
u2 − 2µ2 − 1

2
µ2

≥ 1

2
u2 − 5

2
µ2.

In order to check (H7) we notice that f(t, x, u, µ) = (u − µ)2 + 1
2x

2 − µxu, fx =
x, fu = 2(u−µ)−µx. Hence conditions (i) and (ii) in (H7) are valid. For condition
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(iii), we have

⟨fu(t, x, u, µ̄)− fu(t, x̄, ū, µ̄), u− ū⟩ = 2|u− ū|2.

Thus assumptions (H1)-(H7) are fulfilled. We now assume that (x̄(µ, µ), ū(µ, µ)) ∈
S(µ̄, λ̄). Then it must satisfy the Pontryagin Maximum Principle. According to
the Pontryagin Maximum Principle (see [10, Theorem 1, p. 134 and p. 139]), there
exists an absolute continuous function ϕ(t) such that the following conditions are
valid:
(i) the adjoint equation:

(2.9)

{
ϕ̇ = x̄,

ϕ(1) = 0.

(ii) the maximum principle:

ϕ(t)ū(t)− ū2(t)− 1

2
x̄2(t) = max

−1≤u≤1

(
ϕ(t)u− u2 − 1

2
x̄2(t)

)
.

From this we see that

ū(t) =


ϕ(t)
2 if − 1 ≤ ϕ(t)

2 ≤ 1,

−1 if ϕ(t)
2 < −1,

1 if ϕ(t)
2 > 1.

From the state equation, we have x̄(t) =
∫ t
0 ū(s)dt. This implies that

|x̄(t)| ≤
∫ 1

0
|ū(s)|ds ≤ 1.

On the other hand, from the adjoint equation, we have ϕ(t) =
∫ t
1 x̄(s)ds. It follows

that

|ϕ(t)| ≤
∫ 1

0
|x̄(s)|ds ≤ 1, ∀t ∈ [0, 1].

Therefore we have ū(t) = ϕ(t)
2 . Combining this with the adjoint equation yields

ϕ̇(t) =

∫ t

0
ū(s)ds =

1

2

∫ t

0
ϕ(s)ds.

It follows that {
ϕ̈(t) = 1

2ϕ(t),

ϕ̇(0) = 0, ϕ(1) = 0.

Hence ϕ(t) = c1 exp(
t√
2
) + c2 exp(− t√

2
) and so ϕ(t) = 0 for all t ∈ [0, 1]. Conse-

quently, ū(t) = 0, x̄(t) = 0 and S(µ̄, λ̄) = {(0, 0)}. By Theorem 2.2, S(µ, λ) is
continuous at (0, 0).
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3. Auxiliary results

The following lemma establishes a fact on the existence of a unique global solution
of (1.2).

Lemma 3.1. Suppose that assumption (H5) is fulfilled. Then for each u ∈
Lp([0, 1],Rm) and λ ∈ Ls([0, 1],Rl), Equation (1.2) has a unique solution x ∈
W 1,1([0, 1],Rn).

Proof. Consider the mapping

F (x)(t) = x0 +

∫ t

0

(
A(s, x(s)) +B(s, x(s))u(s) + T (s, λ(s))

)
ds.

We shall show that F j is a contraction mapping from C([0, 1],Rn) into itself for j
big enough. We put ω(t) = ϕ(t) + ψ(t)|u(t)|. Then ω ∈ L1([0, 1],R) and for all
x1, x2 ∈ C([0, 1],Rn), we have

|(F (x1)− F (x2))(t)|

=
∣∣∣ ∫ t

0

(
A(s, x1(s))−A(s, x2(s)) + [B(s, x1(s))−B(s, x2(s))]u(s)

)
ds
∣∣∣

≤
∫ t

0

(∣∣(A(s, x1(s))−A(s, x2(s))
∣∣∣+ ∣∣[B(s, x1(s))−B(s, x2(s))]u(s)

∣∣)ds
≤

∫ t

0

(
ϕ(s)|x1(s)− x2(s)|+ ψ(s)|x1(s)− x2(s)||u(s)|

)
ds

=

∫ t

0
ω(s1)|x1(s1)− x2(s1)|ds1.

Also, we have

|(F 2(x1)− F 2(x2))(t)| ≤
∫ t

0
ω(s1)|F (x1)(s1)− F (x2)(s1)|ds1

≤
∫ t

0
ω(s1)ds1

∫ s1

0
ω(s2)|x1(s2)− x2(s2)|ds2.

Continuing the process, we get

|(F j(x1)− F j(x2))(t)| ≤
∫ t

0
ω(s1)|F j−1x1(s1)− F j−1x2(s1)|ds1

≤
∫ t

0
ds1ω(s1)

∫ s1

0
ds2ω(s2)

· · ·
∫ sj−1

0
dsjω(sj)|x1(sj)− x2(sj)|

≤ ∥x1 − x2∥0
∫ t

0
ds1ω(s1)

∫ s1

0
ds2ω(s2) · · ·

∫ sj−1

0
dsjω(sj).

By induction, we can show that∫ t

0
ds1ω(s1)

∫ s1

0
ds2ω(s2) · · ·

∫ sj−1

0
dsjω(sj) =

1

j!

(∫ t

0
ω(s)ds

)j
.
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Consequently, we have

|(F j(x1)− F j(x2))(t)| ≤
1

j!

(∫ t

0
ω(s)ds

)j
∥x1 − x2∥0 ≤

1

j!

(∫ 1

0
ω(s)ds

)j
∥x1 − x2∥0.

Hence

|F j(x1)− F j(x2)|0 ≤
1

j!

(∫ 1

0
ω(s)ds

)j
∥x1 − x2∥0.

Since 1
j!

( ∫ 1
0 ω(s)ds

)j
< 1 when j is sufficiently large, we see that F j is a con-

traction mapping. By the Contraction Mapping Theorem, there exists a unique
x ∈ C([0, 1],Rn) such that F j(x) = x. By the Contraction Mapping Principle
in [10, Chapter 0, p.13] (see also [15, Lemma 5.4.3, p. 323]), x is also a fixed point
of F , that is,

x(t) = x0 +

∫ t

0

(
A(s, x(s)) +B(s, x(s))u(s) + T (s, λ(s))

)
ds.

By (H4), we have

|A(s, x(s)) +B(s, x(s))u(s) + T (s, λ(s))|
≤ ϕ(s)|x(s)|+ |A(s, 0)|+ (ψ(s)|x(s)|+ |B(s, 0)|)|u(s)|+ χ(s)|λ(s)|+ |T (s, 0)|.

It easy to see that the function on the right-hand side belongs to L1([0, 1],R). Hence

|A(·, x(·)) +B(·, x(·))u(·) + T (·, λ(·))| ∈ L1([0, 1],R).

It follows that x ∈W 1,1([0, 1],Rn) and{
ẋ(t) = A(t, x(t)) +B(t, x(t))u(t) + T (t, λ(t)), a.e. t ∈ [0, 1],

x(0) = x0.

The proof of the lemma is complete. �

The following lemma gives an important property of K(·).

Lemma 3.2. Suppose that assumption (H5) and (H6) are fulfilled. Then the set-
valued map K(·) which is defined by (1.4), has nonempty closed values and satisfies
the following property: For each (x, u) ∈ K(λ1), there exists (y, v) ∈ K(λ2) such
that

∥(x, u)− (y, v)∥ = ∥x− y∥1,1 + ∥u− v∥p ≤ k(u)∥λ1 − λ2∥s,(3.1)

where

k(u) = ∥χ(·)∥s′(∥ϕ∥1 + ∥u∥p∥ψ∥q) exp
(
∥ϕ∥1 + ∥u∥p∥ψ∥q

)
+ ∥χ(·)∥s′ .(3.2)

Proof. Take λ ∈ Λ and ũ ∈ Lp([0, 1],Rm) such that ũ(t) ∈ U(t) a.e. By Lemma
3.1, Equation (1.2) has a unique solution x corresponding to ũ and λ. This means
(x, ũ) ∈ K(λ). The closedness of K(λ) is straightforward. We now take λ1, λ2 ∈ Λ
and (x, u) ∈ K(λ1). Then one has

(3.3) ẋ(t) = A(t, x(t)) +B(t, x(t))u(t) + T (t, λ1(t)), a.e. t ∈ [0, 1].
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Taking v = u and using Lemma 3.1, we see that there exists y ∈ X such that

(3.4)

{
ẏ(t) = A(t, y(t)) +B(t, y(t))u(t) + T (t, λ2(t)), ∀t ∈ [0, 1],

y(0) = x0.

By subtracting (3.3) and (3.4) and putting w = x− y, we get w(0) = 0 and

(3.5) ẇ = A(t, x(t))−A(t, y(t))+ [B(t, x(t))−B(t, y(t))]u(t)+ T (t, λ1)−T (t, λ2).

From this and (H5), we have

|ẇ| ≤ ϕ(t)|w(t)|+ ψ(t)|w(t)||u(t)|+ χ(t)|λ1(t)− λ2(t)|
≤ |w(t)|

(
ϕ(t) + ψ(t)|u(t)|

)
+ χ(t)|λ1(t)− λ2(t)|

≤ |w(t)|ζ(t) + χ(t)|λ1(t)− λ2(t)|,(3.6)

where ζ(t) := ϕ(t) + ψ(t)|u(t)| which belongs to L1([0, 1],R).
Since w(t) =

∫ t
0 ẇ(s)ds, we obtain

|w(t)| ≤
∫ t

0

(
|w(s)|ζ(s) + χ(s)|λ1(s)− λ2(s)|

)
ds

≤
∫ t

0
|w(s)|ζ(s)ds+

∫ 1

0
χ(s)|λ1(s)− λ2(s)|ds

≤
∫ t

0
|w(s)|ζ(s)ds+ ∥χ(·)∥s′∥λ1 − λ2∥s.

By Gronwall’s Inequality (see [6, Lemma 18.1.i]), we obtain

|w(t)| ≤ ∥χ(·)∥s′∥λ1 − λ2∥s exp(
∫ 1

0
ζ(s)ds).

Combining this with (3.6), we have

|ẇ(t)| ≤ ∥χ(·)∥s′ exp
(∫ 1

0
ζ(s)ds

)
∥λ1 − λ2∥sζ(t) + |χ(t)||λ1(t)− λ2(t)|.

From this and Hölder’s Inequality, we have

∥ẇ∥1 ≤ ∥χ(·)∥s′ exp(
∫ 1

0
ζ(s)ds)∥ζ∥1∥λ1 − λ2∥s + ∥χ(·)∥s′∥λ1 − λ2∥s.

Since
∫ 1
0 ζ(s)ds ≤ ∥ϕ∥1 + ∥u∥p∥ψ∥q, we have

∥ẇ∥1 ≤
[
∥χ(·)∥s′(∥ϕ∥1 + ∥u∥p∥ψ∥q) exp

(
∥ϕ∥1 + ∥u∥p∥ψ∥q

)
+ ∥χ(·)∥s′

]
∥λ1 − λ2∥s.

Define

k(u) = ∥χ(·)∥s′(∥ϕ∥1 + ∥u∥p∥ψ∥q) exp
(
∥ϕ∥1 + ∥u∥p∥ψ∥q

)
+ ∥χ(·)∥s′ .

Then we have

∥(x, u)− (y, v)∥ = ∥x− y∥1,1 = ∥w∥1,1 = |w(0)|+ ∥ẇ∥1 ≤ k(u)∥λ1 − λ2∥s.

The proof of the lemma is complete. �
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Lemma 3.3. Suppose that assumptions (H5) and (H6) are valid, {λj} and
{(xj , uj)} are sequences in Λ and Z, respectively. Suppose that (xj , uj) ∈ K(λj),

λj → λ̄ strongly in Ls([0, 1],Rl), xj → x uniformly on [0, 1], ẋj ⇀ ẋ weakly in
L1([0, 1],Rn) and uj ⇀ u weakly in Lp([0, 1],Rm). Then one has (x, u) ∈ K(λ̄).

Proof. By assumption, we have

ẋj(t) = A(t, xj(t)) +B(t, xj(t))uj(t) + T (t, λj(t)).(3.7)

In order to complete the proof, we need to show that

A(·, xj(·)) +B(·, xj(·))uj(·) + T (·, λj(·))⇀ A(·, x) +B(·, x)u+ T (·, λ̄)(3.8)

in L1([0, 1],Rn) when j → ∞. In fact, by (H5), we have

|A(t, xj(t))−A(t, x(t))| ≤ ϕ(t)|xj(t)− x(t)|.

It follows that

∥A(·, xj)−A(·, x)∥1 ≤ ∥ϕ∥1∥xj − x∥0 → 0 as j → ∞.

Hence A(·, xj) → A(·, x) strongly in L1([0, 1],Rn). Similarly, we have T (·, λj) →
T (·, λ̄) strongly in L1([0, 1],Rn). It remains to prove that B(·, xj(·))uj(·) ⇀
B(·, x(·))u weakly in L1([0, 1],Rn). For this we write

(3.9)
B(t, xj(t))uj(t)−B(t, x(t))u(t) = [B(t, xj(t))−B(t, x(t))]uj(t)

+B(t, x(t))(uj(t)− u(t)).

By (H5), we have

|[B(t, xj(t))−B(t, x(t))]uj(t)| ≤ ψ(t)|xj(t)− x(t)||uj(t)|.

This implies that

∥(B(·, xj)−B(·, x))uj∥1 ≤ ∥ψ∥q∥uj∥p∥xj − x∥0 → 0 as j → ∞

because ∥uj∥p is bounded and ∥xj − x∥0 → 0. Hence (B(·, xj) − B(·, x))uj →
0 strongly in L1([0, 1],Rn) and so (B(·, xj)−B(·, x))uj ⇀ 0 weakly in L1([0, 1],Rn).
For second term, we take the scalar product with any ϑ ∈ L∞([0, 1],Rn) and get∫ 1

0
(B(t, x(t))(uj(t)− u(t)), ϑ(t))dt =

∫ 1

0
(uj(t)− u(t), B(t, x(t))Tϑ(t))dt,

where B(t, x(t))T is the transpose matrix of B(t, x(t)). By (H5) we have

|B(t, x(t))Tϑ(t))| ≤ |B(t, x(t))T ||ϑ(t)| = |B(t, x(t))||ϑ(t)|
≤ (ψ(t)|x(t)|+ |B(t, 0)|)|ϑ(t)|.

This implies that B(t, x(t))Tϑ(t) ∈ Lq([0, 1],Rm). Hence∫ 1

0
(B(t, x(t))(uj(t)− u(t)), ϑ(t))dt =

∫ 1

0
(uj(t)− u(t), B(t, x(t))Tϑ(t))dt→ 0

as j → ∞ because uj ⇀ u in Lp([0, 1],Rm). From (3.9), we get

B(·, xj(·))uj(·)−B(·, x(·))u ⇀ 0
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weakly in Lp([0, 1],Rn). In summary, assertion (3.8) is justified. By taking the limit
on two sides of (3.7), we get

ẋ(t) = A(t, x(t)) +B(t, x(t))u(t) + T (t, λ̄(t)).

Since xj → x uniformly, we get x(0) = x0. Since the set

{v ∈ Lp([0, 1],Rm) | v(t) ∈ U(t)}

is closed and convex, it is weakly closed. Hence u(t) ∈ U(t) for a.e. t ∈ [0, 1].
Consequently, (x, u) ∈ K(λ̄). The proof of the lemma is complete. �

4. Proof of the main results

4.1. Proof of Theorem 2.1. (i) Nonemptiness of S(µ, λ).
For each (µ, λ) ∈M × Λ, we define

V (µ, λ) = inf
(x,u)∈K(λ)

J(x, u, µ).(4.1)

By Lemma 3.1, K(λ) ̸= ∅. Taking any (x, u) ∈ K(λ), we have from (H2) that

|f(t, x(t), u(t), µ(t))| ≤ ϑ(t) + α1|x(t)|β1 + α2|u(t)|β2 + α3|µ(t)|β3(4.2)

with 1 ≤ β2 ≤ p and 1 ≤ β3 ≤ r. This implies that

V (µ, λ) ≤ J(x, u, µ) ≤ ∥ϑ∥1 + C1∥x∥α0 + C2∥u∥pp + C3∥µ∥rr < +∞

for some constants Ci > 0, i = 1, 2, 3. By definition, there exists a sequence
(xj , uj) ∈ K(λ) such that

V (µ, λ) = lim
j→∞

J(xj , uj , µ).(4.3)

Then there exists j0 > 0 such that

J(xj , uj , µ) < V (µ, λ) + 1 ∀j ≥ j0.

From (H3), we have

α′
1

∫ 1

0
|uj(s)|pds+ α′

2

∫ 1

0
|µ(s)|β′

2ds+

∫ 1

0
θ(t)dt ≤ J(xj , uj , µ) < V (µ, µ) + 1.

This implies that ∥uj∥p ≤ M for some positive constant M = M(µ, λ). Since
(xj , uj) ∈ K(λ), we have{

ẋj(t) = A(t, xj(t)) +B(t, xj(t))uj(t) + T (t, λ(t))

xj(0) = x0.
(4.4)

From this and (H5) we have

(4.5)

|ẋj(t)| ≤ ϕ(t)|xj(t)|+ |A(t, 0)|+ (ψ(t)|xj(t)|+ |B(t, 0)|)|uj(t)|
+ |χ(t)||λ(t)|+ |T (t, 0)|

= |xj(t)|(ϕ(t) + ψ(t)|uj(t)|) + |A(t, 0)|+ |B(t, 0)||uj(t)|
+ χ(t)|λ(t)|+ |T (t, 0)|.
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Since xj(t) = x0 +
∫ t
0 ẋj(s)ds, we get

|xj(t)| ≤ |x0|+
∫ t

0
(ϕ(s) + ψ(s)|uj(s)|)|xj(s)|ds

+

∫ t

0

(
|A(s, 0)|+ |B(s, 0)||uj(s)|+ χ(s)|λ(s)|+ |T (s, 0)|

)
ds

≤
∫ t

0
(ϕ(s) + ψ(s)|uj(s)|)|xj(s)|ds

+ |x0|+
∫ 1

0

(
|A(s, 0)|+ |B(s, 0)||uj(s)|+ χ(s)|λ(s)|+ |T (s, 0)|

)
ds.

Define

γ1(t) = ϕ(t) + ψ(t)|uj(t)|,
γ2(t) = |A(t, 0)|+ |B(t, 0)||uj(t)|+ χ(t)|λ(t)|+ |T (t, 0)|,

M1 = |x0|+
∫ 1

0

(
|A(s, 0)|+ |B(s, 0)||uj(s)|+ χ(s)|λ(s)|+ |T (s, 0)|

)
ds.

Then we have γ1, γ2 ∈ L1([0, 1],R) and

|xj(t)| ≤
∫ t

0
γ1(s)|xj(s)|ds+M1(4.6)

with

∥γ1∥1 ≤ ∥ϕ∥1 + ∥uj∥p∥ψ∥q ≤ ∥ϕ∥1 +M∥ψ∥q,
∥γ2∥1 ≤ ∥A(·, 0)∥1 +M∥B(·, 0)∥q + ∥χ∥s′∥λ∥s + ∥T (·, 0)∥1,
M1 ≤ |x0|+ ∥A(·, 0)∥1 +M∥B(·, 0)∥q + ∥χ∥s′∥λ∥s + ∥T (·, 0)∥1.

By Grownwall’s Inequality (see [6, Lemma 18.1.i]) we get from (4.6) that

|xj(t)| ≤M1 exp
(
∥γ1∥1

)
:=M2.(4.7)

Hence ∥xj∥0 is bounded. From this and (4.5), we obtain

|ẋj | ≤M2γ1(t) + γ2(t).(4.8)

Hence

∥ẋj∥1 ≤M2∥γ1∥1 + ∥γ2∥1.(4.9)

Besides, if E is a measurable set of [0, 1], then form (4.8), we have∫
E
|ẋj(t)|dt ≤M2

∫
E
γ1(t)dt+

∫
E
γ2(t)d

≤
∫
E
ϕ(t)dt+

(∫
E
|uj(t)|pdt

)1/p(∫
E
|ψ(t)|qdt

)1/q

+

∫
E

(
|A(t, 0)|+ χ(t)|λ(t)|+ |T (t, 0)|

)
dt

+
(∫

E
|uj |pdt

)1/p(∫
E
|B(t, 0)|qdt

)1/q
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≤
∫
E
ϕ(t)dt+M

(∫
E
|ψ(t)|qdt

)1/q
(4.10)

+

∫
E

(
|A(t, 0)|+ χ(t)|λ(t)|+ |T (t, 0)|

)
dt

+M
(∫

E
|B(t, 0)|qdt

)1/q
.

It is clear that the right-hand side of (4.10) approaches to 0 uniformly w.r.t. j
as |E| → 0. Hence {ẋj} is equiabsolutely integrable. From this and [6, Theorem
10.2.i, p. 317], {xj} is equiabsolutely continous. By Ascoli’s Theorem, {xj} is a
relatively compact set in C([0, 1],Rn). By passing to subsequence if necessary, we
can assume that xj → x̂ uniform in [0, 1]. On the other hand {ẋj} is bounded and
equiabsolutely integrable. The Dunford-Pettis theorem (see [6, Theorem 10.3.i])
implies that there exists a function ξ ∈ L1([0, 1],Rn) such that ẋi ⇀ ξ weakly in

L1. Since xj(t) = x0 +
∫ t
0 ẋj(s)ds, we obtain x̂ = x0 +

∫ t
0 ξ(s)ds and so ˙̂x(t) = ξ(t)

a.e. Since {uj} is bounded in Lp([0, 1],Rm), we may assume that uj ⇀ û for some
û ∈ Lp([0, 1],Rm). By Lemma 3.3, we obtain (x̂, û) ∈ K(λ̄).

By (H1), (H2) and (H4), J is weakly lower semicontinuous (see [6, Theorem
2.18.i, Theorem 10.8.i] and [7, Theorem 3.3, p. 84]). Hence, from (4.3) we have

V (µ, λ) = lim
j→∞

J(xj , uj , µ) ≥ J(x̂, û, µ).

This implies that (x̂, û) ∈ S(µ, λ).

(ii) Upper semicontinuity of S(·, ·).
Assume that V1 is an open set in C([0, 1],Rn) and V2 is a weakly open set in

Lp([0, 1],Rm) such that

S(µ̄, λ̄) ⊂ V1 × V2 := V.(4.11)

We want to show that there exists a neighborhood M0 × Λ0 of (µ̄, λ̄) such that

S(µ, λ) ⊂ V, ∀(µ, λ) ∈M0 × Λ0.(4.12)

By contradiction, we find out a sequence (µi, λi) → (µ̄, λ̄) strongly in Lr([0, 1],Rk)×
Ls([0, 1],Rl) and a sequence (xi, ui) ∈ S(µi, λi) such that (xi, ui) /∈ V . If we can
show that there exists a subsequence {(xij , uij )} of {(xi, ui)} such that xij → x̄

uniformly on [0, 1] and uij ⇀ ū weakly in Lp([0, 1],Rm) for some (x̄, ū) ∈ S(µ̄, λ̄),
then (xij , uij ) ∈ V for j large enough. This leads to a contradiction and the proof
is completed. Therefore, it remains to prove the following lemma.

Lemma 4.1. There exists (x̄, ū) ∈ S(µ̄, λ̄) and a subsequence {(xij , uij )} of {(xi, ui)}
such that xij → x̄ uniformly on [0, 1] and uij ⇀ ū weakly in Lp([0, 1],Rm) as j → ∞.

Proof. Since (xi, ui) ∈ S(µi, λi), we have (xi, ui) ∈ K(λi) and V (µi, λi) = J(xi, ui, µi).
Let us claim that the sequence {V (µi, λi)} is bounded. In fact, by (H6), we can
take u0 ∈ Lp([0, 1],Rn) such that u0(t) ∈ U(t) for a.e. t ∈ [0, 1]. By Lemma 3.1,
there exists yi ∈W 1,1([0, 1],Rn) such that{

ẏi(t) = A(t, yi(t)) +B(t, yi(t))u0(t) + T (t, λi(t))

yi(0) = x0.
(4.13)
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Hence (yi, u0) ∈ K(λi). Consequently,

J(xi, ui, µi) ≤ J(yi, u0, µi) ≤ ∥ϑ∥1 + C1∥yi∥α0 + C2∥u0∥pp + C3∥µi∥rr(4.14)

for some positive constants Ck with k = 1, 2, 3. Since µi → µ, ∥∥µi∥rr is bounded.
It remains to show that ∥yi∥0 is bounded. By (H5), we have

|ẏi(t)| ≤ ϕ(t)|yi(t)|+ |A(t, 0)|+ (ψ(t)|yi(t)|
+ |B(t, 0)|)|u0(t)|+ χ(t)|λi(t)|+ |T (t, 0)|

= |yi(t)|(ϕ(t) + ψ(t)|u0(t)|) + |A(t, 0)|
+ |B(t, 0)||u0(t)|+ χ(t)|λi(t)|+ |T (t, 0)|.

Since λi → λ̄ strongly in Ls([0, 1],Rl), by passing to subsequence if necessary,
there exists a function γ ∈ Ls([0, 1],R) such that |λi(t)| ≤ γ(t) for a.e. t ∈ [0, 1]
(see [7, Theorem 1.20]). It follows that

|ẏi(t)| ≤ |yi(t)|(ϕ(t) + ψ(t)|u0(t)|
+ |A(t, 0)|+ |B(t, 0)||u0(t)|+ χ(t)|γ(t)|.(4.15)

Since yi(t) = x0 +
∫ t
0 ẏi(s)ds, we get from (4.15) that

|yi(t)| ≤ |x0|+
∫ t

0
(ϕ(s) + ψ(s)|u0(s)|)|yi(s)|ds

+

∫ t

0

(
|A(s, 0)|+ |B(s, 0)||u0(s)|+ |χ(s)|γ(s)

)
ds

≤
∫ t

0
(ϕ(s) + ψ(s)|u0(s)|)|yi(s)|ds

+ |x0|+
∫ 1

0

(
|A(s, 0)|+ |B(s, 0)||u0(s)|+ χ(s)|γ(s)|+ |T (s, 0)|

)
ds.

Define

γ̂1(t) = ϕ(t) + ψ(t)|u0(t)|,
γ̂2(t) = |A(t, 0)|+ |B(t, 0)||u0(t)|+ χ(t)γ(t) + |T (t, 0)|,

M̂1 = |x0|+
∫ 1

0

(
|A(s, 0)|+ |B(s, 0)||u0(s)|+ χ(s)γ(s) + |T (s, 0)|

)
ds.

Then γ̂1, γ̂2 ∈ L1([0, 1],R) and we have

|yi(t)| ≤
∫ t

0
γ̂1(s)|yi(t)|ds+ M̂1.

By Grownwall’s Inequality (see [6, Lemma 18.1.i]) we get

|yi(t)| ≤ M̂1 exp
( ∫ 1

0
γ̂1(s)ds

)
:= M̂2.(4.16)

Hence {yi} is bounded in C([0, 1],Rn). From this and (4.14), we see that {J(xi, ui, µi)}
is bounded and so the claim is justified.
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We now have from (H3) that

α′
1

∫ 1

0
|ui(s)|pds+ α′

2

∫ 1

0
|µi(s)|β

′
2ds+

∫ 1

0
θ(t)dt ≤ J(xi, ui, µi).

Since {J(xi, ui, µi)} and ∥µi∥r are bounded, we can find a number M ′ > 0 such
that ∥ui∥p ≤ M ′ for all i ≥ 1. By similar arguments as in the proof of (i), we see
that the set {xi} is a compact set in C([0, 1],Rn). Hence we can find a subsequence
{(uij , xij )} such that uij ⇀ ū in Lp([0, 1],Rn) as j → ∞, xij → x̄ in C([0, 1],Rn)

and ẋij ⇀ ˙̄x in L1([0, 1],Rn) as j → ∞.

Let us show that (x̄, ū) ∈ S(µ̄, λ̄). Indeed, fix any (y, v) ∈ K(λ̄). By Lemma 3.2,
there exists a sequence (zij , vij ) ∈ K(λij ) such that

∥zij − y∥1,1 + ∥vij − v∥p ≤ k(v)∥λij − λ̄∥s,

where k(v) is defined by (3.2). It follows that zij → y in X and vij → v in U . Since
(xij , uij ) ∈ S(µij , λij ), we have

J(xij , uij , µij ) ≤ J(zij , vij , µij ) =

∫ 1

0
f(t, zij (t), vij (t), µij (t))dt.(4.17)

By (H1), (H2) and (H4), J is weakly lower semicontinuous (see [6, Theorem 10.8.i
and Theorem 10.9.vii] and [7, Theorem 3.3, p. 84]), that is,

J(x̄, ū, µ̄) ≤ lim inf
j→∞

J(xij , uij , µij ).(4.18)

By (H1), we have f(t, zij (t), vij (t), µij (t)) → f(t, y(t), v(t), µ̄(t)) a.e. t ∈ [0, 1]. Since
zij → y uniformly on [0, 1], there exists a constant M ′′ > 0 such that |zij (t)| ≤M ′′

for all t ∈ [0, 1] and j ≥ 1. Since vij → v and µij → µ̄ strongly, there exist vector

functions v0 ∈ Lp([0, 1],Rm) and µ0 ∈ Lr([0, 1],Rk) such that

|vij (t)| ≤ |v0(t)|, |µij (t)| ≤ |µ0(t)|

for all j and a.e. t ∈ [0, 1]. Therefore, from (H3) we have

|f(t, zij (t), vij (t), µij (t))| ≤ ϑ(t) + α1(M
′′)β1 + α2|v(t)|β2 + α3|µ0(t)|β3 .

The Dominated Convergence Theorem implies that

lim
j→∞

J(zij , vij , µij ) =

∫ 1

0
f(t, y(t), v(t), µ̄(t))dt = J(y, v, µ̄).(4.19)

Taking the limit on both sides of (4.17) and using (4.18) and (4.19), we get

J(x̄, ū, µ̄) ≤ J(y, v, µ̄).

Since (y, v) is arbitrary in K(λ̄), we get (x̄, ū) ∈ S(µ̄, λ̄) ⊂ V . The lemma is
proved. �
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4.2. Proof of Theorem 2.2. Let V ′
1 be an open set in C([0, 1],Rn) and V ′

2 be an
open set in Lp([0, 1],Rm) such that

S(µ̄, λ̄) ⊂ V ′
1 × V ′

2 := V ′.(4.20)

We want to show that there exists a neighborhood M0 × Λ0 of (µ̄, λ̄) such that

S(µ, λ) ⊂ V ′, ∀(µ, λ) ∈M0 × Λ0.(4.21)

By contradiction, we find out a sequence (µi, λi) → (µ̄, λ̄) strongly in L∞([0, 1],Rk)×
Ls([0, 1],Rl) and a sequence (xi, ui) ∈ S(µi, λi) such that (xi, ui) /∈ V ′. By Lemma
4.1, there exists (x̄, ū) ∈ S(µ̄, λ̄) and a subsequence {(xij , uij )} of {(xi, ui)} such that
xij → x̄ uniformly and uij ⇀ ū weakly in Lp([0, 1],Rm). If we can show that uij → ū
strongly then (xij , uij ) ∈ V ′ for j large enough. This leads to a contradiction and
so the theorem is proved. In the sequel, we shall denote by {(xj , uj)} and {(µj , λj)}
the subsequences {(xij , uij )} and {(µij , λij )}, respectively. It remains to prove the
following lemma.

Lemma 4.2. The sequence {uj} converges strongly to ū in Lp([0, 1],Rm).

Proof. Since (xj , uj) ∈ S(µj , λj) and (x̄, ū) ∈ S(µ̄, λ̄), they must satisfy the Pontrya-
gin principle. According to the Pontryagin Maximum Principle (see [10, Theorem
1, p. 134 and p. 139] and [2]), there exist absolutely continuous functions ϕj and ϕ̄
such that the following conditions are fulfilled:

(4.22)

ϕ̇j(t)
T = −ϕj(t)T

(
Ax(t, xj(t)) +Bx(t, xj(t))uj(t)

)
+ fx(t, xj(t), uj(t), µj(t)), ϕj(1)

= 0,

(4.23)

˙̄ϕ(t)T = −ϕ̄(t)T
(
Ax(t, x̄(t)) +Bx(t, x̄(t))ū(t)

)
+ fx(t, x̄(t), ū(t), µ̄(t)), ϕ̄(1)

= 0

and for a.e. t ∈ [0, 1],

f(t, xj(t), uj(t), µj(t))− ϕj(t)
T (A(t, xj(t)) +B(t, xj(t)uj(t))

= min
v∈U(t)

{f(t, xj(t), v, µj(t))− ϕj(t)
T (A(t, xj(t)) +B(t, xj(t))v)},(4.24)

f(t, x̄(t), ū(t), µj(t))− ϕ̄(t)T (A(t, x̄(t)) +B(t, x̄(t))ū(t))

= min
v∈U(t)

{f(t, x̄(t), v, µ̄(t))− ϕ̄(t)T (A(t, x̄(t)) +B(t, x̄(t))v)}.(4.25)

Let us claim that ϕj − ϕ̄ → 0 uniformly on [0, 1]. Indeed, from (4.22) and (4.23),
we have

ϕ̇j(t)
T − ˙̄ϕ(t)T = −(ϕj(t)

T − ϕ̄(t)T )Ax(t, xj)− ϕ̄(t)T (Ax(t, xj)−Ax(t, x̄))

− (ϕj(t)
T − ϕ̄(t)T )Bx(t, xj)uj − ϕ̄(t)T (Bx(t, xj)uj −Bx(t, x̄)ū)

+ fx(t, xj , uj , µj)− fx(t, xj , uj , µ̄) + fx(t, xj , uj , µ̄)− fx(t, x̄, ū, µ̄)

= −(ϕj(t)
T − ϕ̄(t)T )Ax(t, xj)− ϕ̄(t)T (Ax(t, xj)−Ax(t, x̄))
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− (ϕj(t)
T − ϕ̄(t)T )Bx(t, xj)uj − ϕ̄(t)T

(
Bx(t, xj)−Bx(t, x̄)

)
uj

− ϕ̄(t)TBx(t, x̄)(uj − ū) + fx(t, xj , uj , µj)− fx(t, xj , uj , µ̄)

+ fx(t, xj , uj , µ̄)− fx(t, x̄, ū, µ̄).

Define φj(s) = ϕj(1 − s) and φ̄(s) = ϕ̄(1 − s) with s ∈ [0, 1], we have d
dsφj(s) =

−ϕ̇j(1− s) and φ(0) = 0 = φ̄(0). Moreover, from the above we get

−
( d

ds
φj(s)

T − d

ds
φ̄(s)T

)
= −(φj(s)

T − φ̄(s)T )Ax(1− s, xj)

− φ̄(s)T (Ax(1− s, xj)−Ax(1− s, x̄))

− (φj(s)
T − φ̄(s)T )Bx(1− s, xj)uj

− φ̄(s)T
(
Bx(1− s, xj)−Bx(1− s, x̄)

)
uj

− φ̄(s)TBx(1− s, x̄)(uj − ū)

+ fx(1− s, xj , uj , µj)− fx(1− s, xj , uj , µ̄)

+ fx(1− s, xj , uj , µ̄)

− fx(1− s, x̄, ū, µ̄).

From this and

φj(s)
T − φ̄(s)T =

∫ s

0

( d

ds
φj(τ)

T − d

ds
φ̄T (τ)

)
dτ,

we get

|φj(s)− φ̄(s)| = |φj(s)
T − φ̄(s)T |

=
∣∣∣ ∫ s

0

( d

ds
φj(τ)

T − d

ds
φ̄T (τ)

)
dτ

∣∣∣
≤

∣∣∣ ∫ s

0
(φj(τ)

T − φ̄(τ)T )Ax(1− τ, xj)dτ
∣∣∣

+
∣∣∣ ∫ s

0
φ̄(τ)T (Ax(1− τ, xj)−Ax(1− τ, x̄))dτ

∣∣∣
+

∣∣∣ ∫ s

0
(φT

j (τ)− φ̄T (τ))Bx(1− τ, xj)ujdτ
∣∣∣

+
∣∣∣ ∫ s

0
φ̄(s)T

(
Bx(1− τ, xj)−Bx(1− τ, x̄)

)
ujdτ

∣∣∣
+

∣∣∣ ∫ s

0
φ̄(τ)TBx(1− τ, x̄)(uj − ū)dτ

∣∣∣
+

∣∣∣ ∫ s

0
fx(1− τ, xj , uj , µj)− fx(1− τ, xj , uj , µ̄)dτ

∣∣∣
+

∣∣∣ ∫ s

0
fx(1− τ, xj , uj , µ̄)− fx(1− τ, x̄, ū, µ̄)dτ

∣∣∣
≤

∫ s

0
|φj(τ)− φ̄(τ))|

(
|Ax(1− τ, xj)|+ |Bx(1− τ, xj)uj |

)
dτ
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(4.26)

+ ∥φ̄∥0
∫ 1

0
|Ax(1− τ, xj)−Ax(1− τ, x̄)|dτ

+ ∥φ̄∥0
∫ 1

0
|Bx(1− τ, xj)−Bx(1− τ, x̄)||uj |dτ

+ sup
s∈[0,1]

∣∣ ∫ s

0
φ̄(τ)TBx(1− τ, x̄)(uj − ū)dτ |

+

∫ 1

0
|fx(1− τ, xj , uj , µj)− fx(1− τ, xj , uj , µ̄)|dτ

+

∫ 1

0
|fx(1− τ, xj , uj , µ̄)− fx(1− τ, x̄, ū, µ̄)|dτ.

Note that

sup
s∈[0,1]

∣∣∣ ∫ s

0
φ̄(τ)TBx(1− τ, x̄)(uj − ū)dτ

∣∣∣ ≤ ∫ 1

0
|φ̄(τ)TBx(1− τ, x̄)||(uj − ū)|dτ

≤ ∥φ̄TBx(·, x̄)∥qq∥uj − ū∥pp
≤ ∥φ̄TBx(·, x̄)∥qqM

for some constant M > 0. Here we used the fact that {uj − ū} is bounded because
uj ⇀ ū.

Since uj ⇀ ū, xj → x̄ and µj → µ̄ uniformly, there exist positive numbers
γ1, γ2, γ3 such that

∥uj∥Lp ≤ γ1, ∥xj∥0 ≤ γ2, ∥µj∥∞ ≤ γ3, ∀j ≥ 1.

Since ki is continuous, we obtain

ki(t, |xj(t)|, |µj(t)|, |µ̄(t)|) ≤ ξi := max
(t1,t2,t3,t4)∈[0,1]×[0,γ2]×[0,γ3]×[0,∥µ̄∥∞]

ki(t1, t2, t3, t4)
(4.27)

with i = 1, 2. Combining this with (2.4) and (2.6), we have∫ 1

0
|fx(1− τ, xj , uj , µj)− fx(1− τ, xj , uj , µ̄)|dτ

+

∫ 1

0
|fx(1− τ, xj , uj , µ̄)− fx(1− τ, x̄, ū, µ̄)|dτ

≤
∫ 1

0
ξ1|uj |η|µj(1− τ)− µ̄(1− τ)|s1dτ

+

∫ 1

0
k3(1− τ)|xj(1− τ)− x̄(1− τ)|dτ

≤ C1ξ1∥uj∥ηLp∥µj − µ̄∥s1L∞ + ∥k3(·)∥L1∥xj − x̄∥0
≤ C1ξ1γ

η
1∥µj − µ̄∥s1L∞ + ∥k3(·)∥L1∥xj − x̄∥0

for some constant C1 > 0. From this and (4.26), we get

|φj(s)− φ̄(s)| ≤
∫ s

0
|φj(τ)− φ̄(τ))|

(
|Ax(1− τ, xj(τ))|+ |Bx(1− τ, xj)uj |

)
dτ
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+ ∥φ̄∥0
∫ 1

0
|Ax(1− τ, xj)−Ax(1− τ, x̄)|dτ

+ ∥φ̄∥0
∫ 1

0
|Bx(1− τ, xj)−Bx(1− τ, x̄)||uj |dτ

+ sup
s∈[0,1]

∣∣∣ ∫ s

0
φ̄(τ)TBx(1− τ, x̄)(uj − ū)dτ

∣∣∣
+ C1ξ1γ

η
1∥µj − µ̄∥s1L∞ + ∥k3(·)∥L1∥xj − x̄∥0.

By Gronwall’s inequality for integral form, we obtain

(4.28)

|φj(s)− φ̄(s)| ≤ exp
(∫ 1

0
(|Ax(1− τ, xj)|+ |Bx(1− τ, xj)uj |)dτ

)
{
∥φ̄∥0

∫ 1

0
|Ax(1− τ, xj)−Ax(1− τ, x̄)|dτ

+ ∥φ̄∥0
∫ 1

0
|Bx(1− τ, xj)−Bx(1− τ, x̄)||uj |dτ

+ sup
s∈[0,1]

∣∣ ∫ s

0
φ̄(τ)TBx(1− τ, x̄)(uj − ū)dτ |

+ C1ξ1γ
η
1∥µj − µ̄∥s1L∞ + ∥k3(·)∥L1∥xj − x̄∥0

}
.

Let us show that the right-hand side of (4.28) converges to 0 as j → ∞. Note that
since Ax(·, ·) and Bx(·, ·) are continuous and ∥xj∥0 ≤ γ2, we have

|Ax(t, xj(t))| ≤ sup
(t,x)∈[0,1]×γ2Bn

|Ax(t, x)| < +∞(4.29)

|Bx(t, xj(t))| ≤ sup
(t,x)∈[0,1]×γ2Bn

|Bx(t, x)| < +∞,(4.30)

where Bn is the unit ball in Rn. We have

(4.31)

∫ 1

0
(|Ax(1− τ, xj)|+ |Bx(1− τ, xj)uj |)dτ

≤
∫ 1

0
(|Ax(1− τ, xj)|dτ + ∥Bx(·, xj)∥q∥uj∥p

≤
∫ 1

0
(|Ax(1− τ, xj)|dτ + ∥Bx(·, xj)∥qγ1.

From (4.29), (4.30) and the Dominated Convergence Theorem, we see that the

right-hand side of (4.31) converges to
∫ 1
0 (|Ax(1− τ, x̄)|dτ + ∥Bx(·, x̄)∥qγ1 and so it

is bounded. Hence∫ 1

0
(|Ax(1− τ, xj)|+ |Bx(1− τ, xj)uj |)dτ ≤M1, ∀j ≥ 1
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for some constant M1 > 0. Also, by the Dominated Convergence Theorem again,
we have

∥φ̄∥0
∫ 1

0
|Ax(1− τ, xj)−Ax(1− τ, x̄)|dτ

+ ∥φ̄∥0
∫ 1

0
|Bx(1− τ, xj)−Bx(1− τ, x̄)||uj |dτ → 0

as j → ∞. The last term in (4.28) also converges to 0 because µj → µ̄ and xj → x̄
uniformly. We now show that

sup
s∈[0,1]

∣∣∣ ∫ s

0
φ̄(τ)TBx(1− τ, x̄)(uj − ū)dτ

∣∣∣ → 0 as j → ∞.(4.32)

By contradiction, there exists ϵ1 > 0 such that

sup
s∈[0,1]

∣∣∣ ∫ s

0
φ̄(τ)TBx(1− τ, x̄)(uj − ū)dτ

∣∣∣ > ϵ1, ∀j ≥ 1.

Hence for each j, there exist sj ∈ [0, 1] such that∣∣∣ ∫ sj

0
φ̄(τ)TBx(1− τ, x̄)(uj − ū)dτ

∣∣∣ > ϵ1, ∀j ≥ 1.

By passing to subsequence if necessary, we can assume that sj → s0 ∈ [0, 1]. From
the above, we have

(4.33)

ϵ1 <
∣∣∣ ∫ sj

0
φ̄(τ)TBx(1− τ, x̄)(uj − ū)dτ

∣∣∣
≤

∣∣∣ ∫ s0

0
φ̄(τ)TBx(1− τ, x̄)(uj − ū)dτ

∣∣∣
+

∣∣∣ ∫ sj

s0

φ̄(τ)TBx(1− τ, x̄)(uj − ū)dτ
∣∣∣

≤
∣∣∣ ∫ 1

0
1[0,s0](τ)φ̄(τ)

TBx(1− τ, x̄)(uj − ū)dτ
∣∣∣

+
( ∫ sj

s0

|φ̄(τ)TBx(1− τ, x̄)|qdτ
)1/q∥uj − ū∥pp,

where 1[0,s0] is the indicator function of interval [0, s0]. It is easy to see that

1[0,s0](·)φ̄(·)
TBx(1− ·, x̄) ∈ Lq([0, 1],Rm).

Since uj ⇀ ū weakly in Lp([0, 1],Rm), we get∣∣∣ ∫ 1

0
1[0,s0](τ)φ̄(τ)

TBx(1− τ, x̄)(uj − ū)dτ
∣∣∣ → 0 as j → ∞.

Since ∥uj − ū∥pp is bounded and |φ̄(τ)TBx(1− τ, x̄)| is continuous, we get(∫ sj

s0

|φ̄(τ)TBx(1− τ, x̄)|qdτ
)1/q

∥uj − ū∥pp → 0 as j → ∞.

By letting j → ∞ in (4.33), we obtain a contradiction. Hence (4.32) is valid.
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In summary, we have shown that the right-hand side of (4.28) converges to 0 as
j → ∞. Consequently, φj → φ̄ uniformly. Hence ϕj → ϕ̄ uniformly on [0, 1]. The
claim is justified.

From (4.24) and (4.25), we see that uj and ū satisfy the variational inequalities

⟨fu(t, xj(t), uj(t), µj(t))− ϕj(t)
TB(t, xj(t)), v − uj(t)⟩ ≥ 0 ∀v ∈ U(t)

and

⟨fu(t, x̄(t), ū(t), µ̄(t))− ϕ̄(t)TB(t, x̄(t)), v − ū(t)⟩ ≥ 0 ∀v ∈ U(t),

respectively. Hence

⟨fu(t, xj(t), uj(t), µj(t))− ϕj(t)
TB(t, xj(t)), ū(t)− uj(t)⟩ ≥ 0

and

⟨fu(t, x̄(t), ū(t), µ̄(t))− ϕ̄(t)TB(t, x̄(t)), uj(t)− ū(t)⟩ ≥ 0

for a.e. t ∈ [0, 1]. Using above inequalities and (2.7), we get

α|uj(t)− ū(t)|p ≤ ⟨fu(t, xj(t), uj(t), µ̄(t))− fu(t, x̄(t), ū(t), µ̄(t)), uj(t)− ū(t)⟩
≤ ⟨fu(t, xj(t), uj(t), µ̄(t))− fu(t, x̄(t), ū(t), µ̄(t)), uj(t)− ū(t)⟩
+ ⟨fu(t, xj(t), uj(t), µj(t))− ϕj(t)

TB(t, xj(t)), ū(t)− uj(t)⟩
+ ⟨fu(t, x̄(t), ū(t), µ̄(t))− ϕ̄(t)TB(t, x̄(t)), uj(t)− ū(t)⟩

= ⟨fu(t, xj(t), uj(t), µ̄(t))− fu(t, xj(t), uj(t), µj(t)), uj(t)− ū(t)⟩
+ ⟨ϕj(t)T (t)B(t, xj(t))− ϕ̄(t)TB(t, x̄(t)), uj(t)− ū(t)⟩

≤ |fu(t, xj(t), uj(t), µ̄(t))− fu(t, xj(t), uj(t)||uj(t)− ū(t)|
+ |ϕj(t)TB(t, xj(t))− ϕ̄(t)TB(t, x̄(t))||uj(t)− ū(t)|.

It follows that for a.e. t ∈ [0, 1],

α|uj(t)− ū(t)|p−1 ≤ |fu(t, xj(t), uj(t), µ̄(t))− fu(t, xj(t), uj(t)|
+ |ϕj(t)TB(t, xj(t))− ϕ̄(t)TB(t, x̄(t))|.

Combining this with (2.5) and (4.27), we get

α|uj(t)− ū(t)|p−1 ≤ ξ2|uj(t)|θ|µj − µ̄|s2 + |ϕj(t)TB(t, xj(t))− ϕ̄(t)TB(t, x̄(t))|.

Using the inequality (a+ b)q ≤ 2q−1(aq + bq) for a, b ≥ 0 and q ≥ 1 yields

αq|uj(t)− ū(t)|q(p−1) = αq|uj(t)− ū(t)|p

≤ 2q−1
(
ξq2∥uj(t)|

θq|µj(t)− µ̄(t)|s2q + |ϕj(t)TB(t, xj(t))− ϕ̄(t)TB(t, x̄(t))|q
)
.

Here we used the equality q(p − 1) = p. Integrating on [0, 1] and using the facts
θq ≤ p and ∥uj∥p ≤ γ1, we obtain

(4.34) αq∥uj − ū∥pLp ≤ 2q−1
(
C2∥µj − µ̄∥s2qL∞γ

θq
1

+

∫ 1

0
|ϕj(t)TB(t, xj(t))− ϕ̄(t)TB(t, x̄(t))|qdt

)
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for some absolutely constant C2 > 0. Since |ϕj(t)TB(t, xj(t))− ϕ̄(t)TB(t, x̄(t))| → 0
and (2.2), the Dominated Convergence Theorem implies that∫ 1

0
|ϕj(t)TB(t, xj(t))− ϕ̄(t)TB(t, x̄(t))|qdt→ 0 as j → ∞.

Combining this with the fact that µj → µ̄ in L∞([0, 1],Rl), we see that the right-
hand side of (4.34) converges to 0 as j → ∞. Hence uj → ū strongly in Lp([0, 1],Rm).
The lemma is proved.

Finally, if S(µ̄, λ̄) is singleton, then S(·, ·) is lower semicontinuous at (µ̄, λ̄). In
fact, let V1 be an open set in C([0, 1],Rn) and V2 be an open set in Lp([0, 1],Rm)
such that S(µ̄, λ̄) ∩ (V1 × V2) ̸= ∅. Since S(µ̄, λ̄) = {(x̄, ū)}, we have S(µ̄, λ̄) ⊂
(V1 × V2). By the upper semicontinuity of S(·, ·) at (µ̄, λ̄), there are neighborhoods
U1 of µ̄ and U2 of λ̄ such that S(µ, λ) ⊂ V1 × V2 for all (µ, λ) ∈ U1 × U2 and
so S(µ, λ) ∩ (V1 × V2) ̸= ∅ for all (µ, λ) ∈ U1 × U2. Hence S(·, ·) is (s, s)-lower
semicontinuous at (µ̄, λ̄). This implies that S(·, ·) is continuous at (µ̄, λ̄). The proof
of Theorem 2.2 is complete. �

References

[1] V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control, Consultants Bureau,
New York, 1987.

[2] A. Arutyunov and R. B. Vinter, A Simple finite approximations proof of the Pontryagin max-
imum principle under reduced differentiability hypotheses, Set-Valued Anal. 12 (2004), 5–24.

[3] C. Berge, Topological Spaces, Edinburgh and London, Oliver and Boyd, 1963.
[4] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer,

2000.
[5] J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis, Springer, New York, 2005.
[6] L. Cesari, Optimization Theory and Applications, Springer, New York,1983.
[7] B. Dacorogna, Introduction to the Calculus of Variations, Imperial College Press, London,

2004.
[8] A. Dontchev, W. W. Hager, K. Malanowski and V. M. Veliov, On quantitative stability in

optimization and optimal control, Set-Valued Anal. 8 (2000), 31–50.
[9] A. Dontchev, Optimal Control Systems: Perturbation, Approximation and Sensitivity Analysis,

Springer-Verlag, 1983.
[10] A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems, North-Holland Publishing

Company, 1979.
[11] K. Ito and K. Kunisch, Sensitivity analysis of solution to optimization problems in Hilbert

spaces with application to optimal control and estimation, J. Differential Equations, 99 (1992),
1–40.

[12] B. T. Kien, On the lower semicontinuity of optimal solution sets, Optimization 54 (2005),
123–130.

[13] B. T. Kien, N. T. Toan, M. M. Wong and J. C. Yao, Lower semicontinuity of the solution set
to a parametric optimal control problem, SIAM J. Control. Optim. 50 (2012), 2889–2906.

[14] B. T. Kien, V. H. Nhu and A. Rosch, Lower semicontinuity of the solution map to a parametric
elliptic optimal control problem with mixed pointwise constraints, Optimization 64 (2015),
1219–1238.

[15] E. Kreyszig, Introductory Funtional Analysis with Applications, John Willey and Sons, 1989.
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