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ON ELLIPTIC EQUATIONS WITH COMBINED
NONLINEARITIES

JENG-ENG LIN

ABSTRACT. We study certain elliptic equations with combined nonlinearities for
the asymptotic behavior of the solution as the spatial variable x approaches the
infinity. We have found that the smooth solution that decays sufficiently fast at
the infinity must be identically zero.

1. INTRODUCTION

The elliptic equation with combined nonlinearities
(1.1) Au=G(x,u) + F(x,u),x €

where (2 is a smooth domain in R"”, has application in the theory for studying the
activator-inhibitor systems modeling biological pattern formation [7, 8]. Problems
of this type as well as the associated evolution equations have been proposed in
the study of cellular automata and interacting particle systems with self-organized
criticality [3]. It also appears in the study of long range Van der Waals interactions
in thin films spreading on solid surfaces [6] and the study of the flow over an imper-
meable plate [2, 12]. This equation also appears in the study of the heat conduction
in materials with corroded boundary [15] as well as in the study of the curvature of
multiply warped products [4].

The mathematical study of the type of equation (1.1) has been an active field of
study. Please see [1, 5, 12, 13, 14, 16, 17] and the references in these papers.

In this paper, we would like to examine the asymptotic behavior of the smooth
solution as x approaches the infinity in the case of 2 = R for the elliptic equation
with combined nonlinearities.

(1.2) —Au+ glul? u + hluPtu =0

where 0 < g < p, g and h are continuous differentiable functions in R"”. We will show
that the solution which decays sufficiently fast at the infinity must be identically
zero. The method follows [10, 11] in using the Morawetz multiplier [9]. Similar
result also holds for the case of P-Laplacian equations with combined nonlinearities

(1.3) —V - (|vulP~2vu) + glu|tu + hlu’tu =0

wherep > 1,0 < a < b, u = u(x), x € R, and biharmonic equations with combined
nonlinearities,

(1.4) A%y + glu|? u + hlulPu =0,
where 0 < ¢ < p, g and h are in C3(R").
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As usual, x = (1, 22,...,2y,), Vu denotes the gradient of u, V - u denotes the
divergence of u, and r = |x|. We use the notation u, = ‘3—;‘ = ((¥) - Vu) and
0; = 0/0xj. F.(x,s) denotes OF(x,s)/0r = ((x/r) - VzF(x,s)).

C*(R™) is the space of functions whose partial derivatives of order up to and
including k are continuously differentiable. Finally, we define

H(Cq,p) = ((n = 1)/(2r)¢(glul ™ u + hlulP~ u)u
= [¢ + ((n = 1)/m)CJ[( /(g + D)glul ™ + (1/(p+ 1)) AulP*]
= ¢[(1/ (@ +1))gplul™ + (1/(p + 1) heul*]

2. ELLIPTIC EQUATIONS WITH COMBINED NONLINEARITIES

Multiplying Equation (1.2) by ¢(u, + ((n — 1)u/(2r))), where ¢ € C?>(R") and
((x) = ¢(x[) = ¢(r),

we get

(2.1) 0= (—Au+ glu|’ u + hlulP u)C(u 4+ ((n — Du/(2r) =V -Y + Z,

where
Y = (Vu)[C(uy + ((n = 1)/(2r))w)] + (VO ((n — 1)/ (4r))u?
+ (x/r)C[(1/2)uf® = ((n = 1)/ (4r2))u® + (1/(g + 1)) glul !
+ (1/(p + 1)hlufP*1]
and

Z = (1/2)¢|vul* + (Vu - vOuy — Goluy?
+((1/r)¢ = &) (vl = Ju?)
+[(n = 1)/2)[(1/r)G = (1/2)(AQ) + ((n = 3)/(2r%))¢]u?
+ H(¢,q,p)

Theorem 2.1. Let n > 3. Assume that u is a C? solution which satisfies

(A) Rlim (sup (|z%||DPu(z)])) = 0, for all multi-indices o and B such that
—00 |x|<R

la] <n—1 and |B] <1,

(B) lim R™" sup [(1/(q+ 1)glul™' + (1/(p + 1)Alul*| = 0, and

R—oo Ix|=R
(C) H(1,q,p) > 0.
Then v = 0.

Proof. Let ¢ = 1. Integrating both sides of (2.1) in R™ and using the conditions (A)
and (B), we get

/R /) (vul = fu ) + ((n = 1)(n = 3)/(4%)u + H(L, g, p)ldx = 0,
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Thus
0< /R [(1/r)(IVul® = Jup|* + ((n — 1) (n — 3)/(4r®))u?]dx

= _H(17Q7p)dx < 07
R»

since u satisfies the assumption (C).

Therefore [g.[(1/7)(|Vul?> = Jur|?) + ((n — 1)(n — 3)/(4r?))u*]dx = 0.
Since n > 3,u = 0. O
Remark 2.2. Assume that g and h are constants.

The condition (A) in the hypothesis will be satisfied if

lim R"! sup |u| = 0.
R—oo Ix|=R

Also any of the following conditions would satisfy the condition (C).

(a) g >0and h >0 with 1 < ¢ < p,
(b) g<Oand h >0 with0 < g <1<p,
(¢c) g<O0and h<Owith0<g<p<1l

Remark 2.3. In case either g or h is not a constant, then the following condition
would satisfy (C).

(n—1)(1-q)g+2rg, <0 and (n—1)(1—p)h+2rh, <O0.
Remark 2.4. In the case of n > 2, by taking appropriate function for (, we can
also get conditions for v = 0. The details will be in a forthcoming article.

3. P-LAPLACIAN EQUATIONS WITH COMBINED NONLINEARITIES

Multipying equation (1.3) by ((u, + ((n — 1)u/(2r))), where ¢ € C1(R™) and
((x) = ¢(|x]) = ¢(r), we get
0= (= (IVul"?vu) + glul*u+ hlul*'u)¢ (ur + ((n — L)u/(2r)))

(3:1) =v-Y+7,
where
Y = (vl (va) (uy + ((n — L)u/(2r)))
+(¢/p) (/)| Vul? + ((x/r)[(1/(a + 1)) glul*™
+(1/(b+ 1))hful"t]
and

Z = —((¢/r) = OIVulP2[(ur)* + ((n = 1)/(2r) yuru)
—[(¢'/p) = (¢/2pr)((n + )p = 2(n — 1))]|Vu?
+ H(¢,a,b).
Theorem 3.1. Let n > 2. Assume that u is a C? solution of (1.8) such that

(A) lim sup (|x®||DPu(x)|) = 0, for all multi-indices o and 3
R—o0 Ix|<R
such that || <mn and |B| <1, and
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(B) Jlim R sup [(1/(a+1)glul®* + (1/(b+ 1)hlul"t'] = 0.
x|=R

(C) Ifl <p<2n/(n+1) and H(r,a,b) <0, then u = 0.

(D) If p>2n/(n+1) and H(r,a,b) > 0, then u = 0.

Proof. Let ¢ = r. Integrating both sides of (3.1) in R™ and using the assumptions
(A) and (B), we get, after some calculation,

[len= s vp)/ep)Tupdx = [ Hirabix
R" R"
The conclusion of this theorem follows directly from the assumptions (C) and (D).
O

Remark 3.2. Assume g and h are constants. Then any of the following conditions
would imply v =0 :
(a) 1<p<2n/(n+1),g>0,h>0,0<a<b< (n+1)(n—1).
(b) 1<p<2n/(n+1),g>0,h<0,0<a<(n+1)/(n—1)<b.
)l<p<2n/(n+1),9<0,h<0,(n+1)/(n—1)<a<b.
(d) p>2n/(n+1),g>0,h>0,(n+1)/(n—1) <a<b.
e) p>2n/(n+1),9<0,h>0,0<a<(n+1)/(n—1)<b.
f) p>2n/(n+1),g<0,h<0,0<a<b<(n+1)/(n—1).

4. BIHARMONIC EQUATIONS WITH COMBINED NONLINEARITIES

Multiplying both sides of (1.4) by ((u, + ((n —1)u/(2r))), where {(x) = ((|x]) =
¢(r) is in CH(R"), we get

(4.1) 0=V-Y+2Z2

where Y depends on g,h,( and u as well as their partial derivatives up to and
including the third order

= (3¢'/2)(Au)* + A(ur)? + B(|Vul® = Ju,[*) + Cu? + (¢ — ¢ )P + H(C, q,p)

where

A=-7¢"/2— (n—1)(n = 3)(C — (¢/r))/(2r?),

B=-3¢"/24 (n—5)(" /r — (n® +2n - 19)(¢" — ¢/r)/(2r7),

C=((n-1)/2)[¢"/@r)+ (n—3)"/(?)

+(n=3)(n—7)¢"/(2r") = 3(n - 3)(n - 5)(¢" — ¢/r)/(2r*)].
and
P=(2/r) [Z(Sz'jU)2 -3 (Z(%’/T)Siju)g] >0,
@] 7 i

where

Siju = (a:i/r?’) Z[xk(xkaj — xj0k)ur] + 0; Z[(ﬂvk/rQ)(ka@z — ;0 )ul.
k k

Theorem 4.1. Assume n > 5. Assume that u is a C* solution of (1.4) such that
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A) lim (sup (|x®||DBu(x)])) = 0 for all multi-indices o and B such that
R
—00 ‘X|SR
la] <n—1 and |B| < 3,
(B) Hmp—o0(R" ™ supjyi—p [(1/(g + 1))glul®™ + (1/(p + 1)hlulT]) = 0
and
(C) H(1,q,p) > 0.

Then u = 0.

Proof. Let ¢ = 1. Integrating both sides of (4.1) in R™ and using the assumptions
(A) and (B), we get

0= /[(n — 1)(n = 3)(ur)?/(2r%) + (n* + 2n — 19)(|Vul* — Jur|?) /(2r°)
R’VL
+3(n —3)(n — 5)u*/(2r°) + P+ H(1,q,p)]dx.

Therefore
0< /[(n —1)(n = 3)(ur)?/(2r°) + (n* + 2n = 19)(|Vul® — |u,?)/(2r°)

+3(n — 3)(n — 5)u*/(2r°) + Pldx

/ —H(1,q,p)d

from the assumption (C).
Thus fn[(n —1)(n —3)(us)?/(2r3) + (n? + 2n — 19)(|Vu|?* — |u.?)/(2r3) + 3(n —

R
3)(n — 5)u?/(2r°%) + Pldx = 0.
Since n > 5, u = 0. O

Remark 4.2. Assume g and h are constants. Then any of the following conditions
would satisfy the assumption (C).

(a) g>0and h >0 with 1 < ¢ < p,
(b) g<Oand h >0 with0<g<1<p,
(¢c) g<Oand h<Owith0O<g<p<l,

Remark 4.3. In the case of n > 2, by taking appropriate function for ¢, we can
also get conditions for u = 0. The details will be in a forthcoming article.
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