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As usual, x = (x1, x2, . . . , xn),▽u denotes the gradient of u, ▽ · u denotes the
divergence of u, and r = |x|. We use the notation ur = ∂u

∂r = ((xr ) · ▽u) and
∂j = ∂/∂xj . Fr(x, s) denotes ∂F (x, s)/∂r = ((x/r) · ▽xF (x, s)).

Ck(Rn) is the space of functions whose partial derivatives of order up to and
including k are continuously differentiable. Finally, we define

H(ζ, q, p) = ((n− 1)/(2r))ζ(g|u|q−1u+ h|u|p−1u)u

− [ζr + ((n− 1)/r)ζ][(1/(q + 1))g|u|q+1 + (1/(p+ 1))h|u|p+1]

− ζ[(1/(q + 1))gr|u|q+1 + (1/(p+ 1))hr|u|p+1]

2. Elliptic equations with combined nonlinearities

Multiplying Equation (1.2) by ζ(ur + ((n − 1)u/(2r))), where ζ ∈ C2(Rn) and
ζ(x) = ζ(|x|) = ζ(r),

we get

(2.1) 0 = (−∆u+ g|u|q−1u+ h|u|p−1u)ζ(ur + ((n− 1)u/(2r))) = ▽ · Y + Z,

where

Y = (▽u)[−ζ(ur + ((n− 1)/(2r))u)] + (▽ζ)((n− 1)/(4r))u2

+ (x/r)ζ[(1/2)|u|2 − ((n− 1)/(4r2))u2 + (1/(q + 1))g|u|q+1

+ (1/(p+ 1))h|u|p+1]

and

Z = (1/2)ζr|▽u|2 + (▽u · ▽ζ)ur − ζr|ur|2

+ ((1/r)ζ − ζr)(|▽u|2 − |ur|2)
+ [(n− 1)/(2r)][(1/r)ζr − (1/2)(∆ζ) + ((n− 3)/(2r2))ζ]u2

+H(ζ, q, p)

Theorem 2.1. Let n > 3. Assume that u is a C2 solution which satisfies

(A) lim
R→∞

( sup
|x|≤R

(|xα||Dβu(x)|)) = 0, for all multi-indices α and β such that

|α| ≤ n− 1 and |β| ≤ 1,

(B) lim
R→∞

Rn−1 sup
|x|=R

|(1/(q + 1))g|u|q+1 + (1/(p+ 1))h|u|p+1| = 0, and

(C) H(1, q, p) ≥ 0.
Then u ≡ 0.

Proof. Let ζ = 1. Integrating both sides of (2.1) in Rn and using the conditions (A)
and (B), we get∫

Rn

[(1/r)(|▽u|2 − |ur|2) + ((n− 1)(n− 3)/(4r3))u2 +H(1, q, p)]dx = 0.
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Thus

0 ≤
∫
Rn

[(1/r)(|▽u|2 − |ur|2 + ((n− 1)(n− 3)/(4r3))u2]dx

=

∫
Rn

−H(1, q, p)dx ≤ 0,

since u satisfies the assumption (C).
Therefore

∫
Rn [(1/r)(|▽u|2 − |ur|2) + ((n− 1)(n− 3)/(4r2))u2]dx = 0.

Since n > 3, u ≡ 0. �
Remark 2.2. Assume that g and h are constants.

The condition (A) in the hypothesis will be satisfied if

lim
R→∞

Rn−1 sup
|x|=R

|u| = 0.

Also any of the following conditions would satisfy the condition (C).

(a) g > 0 and h > 0 with 1 < q < p,
(b) g < 0 and h > 0 with 0 < q < 1 < p,
(c) g < 0 and h < 0 with 0 < q < p < 1.

Remark 2.3. In case either g or h is not a constant, then the following condition
would satisfy (C).

(n− 1)(1− q)g + 2rgr ≤ 0 and (n− 1)(1− p)h+ 2rhr ≤ 0.

Remark 2.4. In the case of n ≥ 2, by taking appropriate function for ζ, we can
also get conditions for u ≡ 0. The details will be in a forthcoming article.

3. P-Laplacian equations with combined nonlinearities

Multipying equation (1.3) by ζ(ur + ((n − 1)u/(2r))), where ζ ∈ C1(Rn) and
ζ(x) = ζ(|x|) = ζ(r), we get

(3.1)
0 = (−▽ · (|▽u|p−2▽u) + g|u|a−1u+ h|u|b−1u)ζ(ur + ((n− 1)u/(2r)))

= ▽ · Y + Z,

where

Y = −ζ|▽u|p−2(▽u)(ur + ((n− 1)u/(2r)))

+ (ζ/p)(x/r)|∇u|p + ζ(x/r)[(1/(a+ 1))g|u|a+1

+ (1/(b+ 1))h|u|b+1]

and

Z = −((ζ/r)− ζ
′
)|∇u|p−2[(ur)

2 + ((n− 1)/(2r))uru]

− [(ζ
′
/p)− (ζ/(2pr))((n+ 1)p− 2(n− 1))]|∇u|p

+H(ζ, a, b).

Theorem 3.1. Let n ≥ 2. Assume that u is a C2 solution of (1.3) such that

(A) lim
R→∞

sup
|x|≤R

(|xα||Dβu(x)|) = 0, for all multi-indices α and β

such that |α| ≤ n and |β| ≤ 1, and
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(B) lim
R→∞

Rn−1 sup
|x|=R

|(1/(a+ 1))g|u|a+1 + (1/(b+ 1))h|u|b+1| = 0.

(C) If 1 < p < 2n/(n+ 1) and H(r, a, b) ≤ 0, then u ≡ 0.
(D) If p > 2n/(n+ 1) and H(r, a, b) ≥ 0, then u ≡ 0.

Proof. Let ζ = r. Integrating both sides of (3.1) in Rn and using the assumptions
(A) and (B), we get, after some calculation,∫

Rn

[(2n− (n+ 1)p)/(2p)]|∇u|pdx =

∫
Rn

H(r, a, b)dx.

The conclusion of this theorem follows directly from the assumptions (C) and (D).
�

Remark 3.2. Assume g and h are constants. Then any of the following conditions
would imply u ≡ 0 :

(a) 1 < p < 2n/(n+ 1), g > 0, h > 0, 0 < a < b < (n+ 1)(n− 1).
(b) 1 < p < 2n/(n+ 1), g > 0, h < 0, 0 < a < (n+ 1)/(n− 1) < b.
(c) 1 < p < 2n/(n+ 1), g < 0, h < 0, (n+ 1)/(n− 1) < a < b.
(d) p > 2n/(n+ 1), g > 0, h > 0, (n+ 1)/(n− 1) < a < b.
(e) p > 2n/(n+ 1), g < 0, h > 0, 0 < a < (n+ 1)/(n− 1) < b.
(f) p > 2n/(n+ 1), g < 0, h < 0, 0 < a < b < (n+ 1)/(n− 1).

4. Biharmonic equations with combined nonlinearities

Multiplying both sides of (1.4) by ζ(ur +((n− 1)u/(2r))), where ζ(x) = ζ(|x|) =
ζ(r) is in C4(Rn), we get

(4.1) 0 = ∇ · Y + Z

where Y depends on g, h, ζ and u as well as their partial derivatives up to and
including the third order

Z = (3ζ
′
/2)(∆u)2 +A(ur)

2 +B(|∇u|2 − |ur|2) + Cu2 + (ζ − rζ
′
)P +H(ζ, q, p)

where

A = −7ζ
′′′
/2− (n− 1)(n− 3)(ζ

′ − (ζ/r))/(2r2),

B = −3ζ
′′′
/2 + (n− 5)ζ

′′
/r − (n2 + 2n− 19)(ζ

′ − ζ/r)/(2r2),

C = ((n− 1)/2)[ζ
′′′′
/(2r) + (n− 3)ζ

′′′
/(r2)

+ (n− 3)(n− 7)ζ
′′
/(2r3)− 3(n− 3)(n− 5)(ζ

′ − ζ/r)/(2r4)].

and

P = (2/r)
[∑

i,j

(Siju)
2 −

∑
i

(∑
j

(xj/r)Siju
)2]

≥ 0,

where

Siju = (xi/r
3)
∑
k

[xk(xk∂j − xj∂k)ur] + ∂i
∑
k

[(xk/r
2)(xk∂i − xi∂k)u].

Theorem 4.1. Assume n ≥ 5. Assume that u is a C4 solution of (1.4) such that
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(A) lim
R→∞

( sup
|x|≤R

(|xα||Dβu(x)|)) = 0 for all multi-indices α and β such that

|α| ≤ n− 1 and |β| ≤ 3,
(B) limR→∞(Rn−1 sup|x|=R |(1/(q + 1))g|u|q+1 + (1/(p+ 1))h|u|p+1|) = 0,

and
(C) H(1, q, p) ≥ 0.

Then u ≡ 0.

Proof. Let ζ = 1. Integrating both sides of (4.1) in Rn and using the assumptions
(A) and (B), we get

0 =

∫
Rn

[(n− 1)(n− 3)(ur)
2/(2r3) + (n2 + 2n− 19)(|▽u|2 − |ur|2)/(2r3)

+ 3(n− 3)(n− 5)u2/(2r5) + P +H(1, q, p)]dx.

Therefore

0 ≤
∫
Rn

[(n− 1)(n− 3)(ur)
2/(2r3) + (n2 + 2n− 19)(|▽u|2 − |ur|2)/(2r3)

+ 3(n− 3)(n− 5)u2/(2r5) + P ]dx

=

∫
Rn

−H(1, q, p)dx

≤ 0

from the assumption (C).
Thus

∫
Rn

[(n− 1)(n− 3)(ur)
2/(2r3) + (n2 + 2n− 19)(|▽u|2 − |ur|2)/(2r3) + 3(n−

3)(n− 5)u2/(2r5) + P ]dx = 0.
Since n ≥ 5, u ≡ 0. �

Remark 4.2. Assume g and h are constants. Then any of the following conditions
would satisfy the assumption (C).

(a) g > 0 and h > 0 with 1 < q < p,
(b) g < 0 and h > 0 with 0 < q < 1 < p,
(c) g < 0 and h < 0 with 0 < q < p < 1,

Remark 4.3. In the case of n ≥ 2, by taking appropriate function for ζ, we can
also get conditions for u ≡ 0. The details will be in a forthcoming article.
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