ON ELLIPTIC EQUATIONS WITH COMBINED NONLINEARITIES

JENG-ENG LIN

Abstract

We study certain elliptic equations with combined nonlinearities for the asymptotic behavior of the solution as the spatial variable \mathbf{x} approaches the infinity. We have found that the smooth solution that decays sufficiently fast at the infinity must be identically zero.

1. Introduction

The elliptic equation with combined nonlinearities

$$
\begin{equation*}
\Delta u=G(\mathbf{x}, u)+F(\mathbf{x}, u), \mathbf{x} \in \Omega \tag{1.1}
\end{equation*}
$$

where Ω is a smooth domain in \mathbf{R}^{n}, has application in the theory for studying the activator-inhibitor systems modeling biological pattern formation [7, 8]. Problems of this type as well as the associated evolution equations have been proposed in the study of cellular automata and interacting particle systems with self-organized criticality [3]. It also appears in the study of long range Van der Waals interactions in thin films spreading on solid surfaces [6] and the study of the flow over an impermeable plate $[2,12]$. This equation also appears in the study of the heat conduction in materials with corroded boundary [15] as well as in the study of the curvature of multiply warped products [4].

The mathematical study of the type of equation (1.1) has been an active field of study. Please see $[1,5,12,13,14,16,17]$ and the references in these papers.

In this paper, we would like to examine the asymptotic behavior of the smooth solution as \mathbf{x} approaches the infinity in the case of $\Omega=\mathbf{R}^{n}$ for the elliptic equation with combined nonlinearities.

$$
\begin{equation*}
-\Delta u+g|u|^{q-1} u+h|u|^{p-1} u=0 \tag{1.2}
\end{equation*}
$$

where $0<q<p, g$ and h are continuous differentiable functions in \mathbf{R}^{n}. We will show that the solution which decays sufficiently fast at the infinity must be identically zero. The method follows [10, 11] in using the Morawetz multiplier [9]. Similar result also holds for the case of P-Laplacian equations with combined nonlinearities

$$
\begin{equation*}
-\nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)+g|u|^{a-1} u+h|u|^{b-1} u=0 \tag{1.3}
\end{equation*}
$$

where $p>1,0<a<b, u=u(\mathbf{x}), \mathbf{x} \in \mathbf{R}^{\mathbf{n}}$, and biharmonic equations with combined nonlinearities,

$$
\begin{equation*}
\Delta^{2} u+g|u|^{q-1} u+h|u|^{p-1} u=0, \tag{1.4}
\end{equation*}
$$

where $0<q<p, g$ and h are in $C^{3}\left(\mathbf{R}^{n}\right)$.

[^0]As usual, $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \nabla u$ denotes the gradient of $u, \nabla \cdot u$ denotes the divergence of u, and $r=|\mathbf{x}|$. We use the notation $u_{r}=\frac{\partial u}{\partial r}=\left(\left(\frac{\mathbf{x}}{r}\right) \cdot \nabla u\right)$ and $\partial_{j}=\partial / \partial x_{j} . F_{r}(\mathbf{x}, s)$ denotes $\partial F(\mathbf{x}, s) / \partial r=\left((\mathbf{x} / r) \cdot \nabla_{x} F(\mathbf{x}, s)\right)$.
$C^{k}\left(\mathbf{R}^{n}\right)$ is the space of functions whose partial derivatives of order up to and including k are continuously differentiable. Finally, we define

$$
\begin{aligned}
H(\zeta, q, p)= & ((n-1) /(2 r)) \zeta\left(g|u|^{q-1} u+h|u|^{p-1} u\right) u \\
& -\left[\zeta_{r}+((n-1) / r) \zeta\right]\left[(1 /(q+1)) g|u|^{q+1}+(1 /(p+1)) h|u|^{p+1}\right] \\
& -\zeta\left[(1 /(q+1)) g_{r}|u|^{q+1}+(1 /(p+1)) h_{r}|u|^{p+1}\right]
\end{aligned}
$$

2. ELLIPTIC EQUATIONS WITH COMBINED NONLINEARITIES

Multiplying Equation (1.2) by $\zeta\left(u_{r}+((n-1) u /(2 r))\right)$, where $\zeta \in C^{2}\left(\mathbf{R}^{n}\right)$ and $\zeta(\mathbf{x})=\zeta(|\mathbf{x}|)=\zeta(r)$,
we get

$$
\begin{equation*}
0=\left(-\Delta u+g|u|^{q-1} u+h|u|^{p-1} u\right) \zeta\left(u_{r}+((n-1) u /(2 r))\right)=\nabla \cdot Y+Z \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
Y= & (\nabla u)\left[-\zeta\left(u_{r}+((n-1) /(2 r)) u\right)\right]+(\nabla \zeta)((n-1) /(4 r)) u^{2} \\
& +(\mathbf{x} / r) \zeta\left[(1 / 2)|u|^{2}-\left((n-1) /\left(4 r^{2}\right)\right) u^{2}+(1 /(q+1)) g|u|^{q+1}\right. \\
& \left.+(1 /(p+1)) h|u|^{p+1}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
Z= & (1 / 2) \zeta_{r}|\nabla u|^{2}+(\nabla u \cdot \nabla \zeta) u_{r}-\zeta_{r}\left|u_{r}\right|^{2} \\
& +\left((1 / r) \zeta-\zeta_{r}\right)\left(|\nabla u|^{2}-\left|u_{r}\right|^{2}\right) \\
& +[(n-1) /(2 r)]\left[(1 / r) \zeta_{r}-(1 / 2)(\Delta \zeta)+\left((n-3) /\left(2 r^{2}\right)\right) \zeta\right] u^{2} \\
& +H(\zeta, q, p)
\end{aligned}
$$

Theorem 2.1. Let $n>3$. Assume that u is a C^{2} solution which satisfies
(A) $\lim _{R \rightarrow \infty}\left(\sup _{|\mathbf{x}| \leq R}\left(\left|x^{\boldsymbol{\alpha}}\right|\left|D^{\boldsymbol{\beta}} u(x)\right|\right)\right)=0$, for all multi-indices $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ such that

$$
|\boldsymbol{\alpha}| \leq n-1 \quad \text { and } \quad|\boldsymbol{\beta}| \leq 1
$$

(B) $\left.\lim _{R \rightarrow \infty} R^{n-1} \sup _{|\mathbf{x}|=R}|(1 /(q+1)) g| u\right|^{q+1}+(1 /(p+1)) h|u|^{p+1} \mid=0$, and
(C) $H(1, q, p) \geq 0$.

Then $u \equiv 0$.
Proof. Let $\zeta=1$. Integrating both sides of (2.1) in \mathbf{R}^{n} and using the conditions (A) and (B), we get

$$
\int_{\mathbf{R}^{n}}\left[(1 / r)\left(|\nabla u|^{2}-\left|u_{r}\right|^{2}\right)+\left((n-1)(n-3) /\left(4 r^{3}\right)\right) u^{2}+H(1, q, p)\right] d \mathbf{x}=0
$$

Thus

$$
\begin{aligned}
0 & \leq \int_{\mathbf{R}^{n}}\left[(1 / r)\left(|\nabla u|^{2}-\left|u_{r}\right|^{2}+\left((n-1)(n-3) /\left(4 r^{3}\right)\right) u^{2}\right] d \mathbf{x}\right. \\
& =\int_{\mathbf{R}^{n}}-H(1, q, p) d \mathbf{x} \leq 0
\end{aligned}
$$

since u satisfies the assumption (C).
Therefore $\int_{\mathbf{R}^{n}}\left[(1 / r)\left(|\nabla u|^{2}-\left|u_{r}\right|^{2}\right)+\left((n-1)(n-3) /\left(4 r^{2}\right)\right) u^{2}\right] d \mathbf{x}=0$.
Since $n>3, u \equiv 0$.
Remark 2.2. Assume that g and h are constants.
The condition (A) in the hypothesis will be satisfied if

$$
\lim _{R \rightarrow \infty} R^{n-1} \sup _{|\mathbf{x}|=R}|u|=0
$$

Also any of the following conditions would satisfy the condition (C).
(a) $g>0$ and $h>0$ with $1<q<p$,
(b) $g<0$ and $h>0$ with $0<q<1<p$,
(c) $g<0$ and $h<0$ with $0<q<p<1$.

Remark 2.3. In case either g or h is not a constant, then the following condition would satisfy (C).

$$
(n-1)(1-q) g+2 r g_{r} \leq 0 \quad \text { and } \quad(n-1)(1-p) h+2 r h_{r} \leq 0
$$

Remark 2.4. In the case of $n \geq 2$, by taking appropriate function for ζ, we can also get conditions for $u \equiv 0$. The details will be in a forthcoming article.

3. P-LAPLACIAN EQUATIONS WITH COMBINED NONLINEARITIES

Multipying equation (1.3) by $\zeta\left(u_{r}+((n-1) u /(2 r))\right)$, where $\zeta \in C^{1}\left(\mathbf{R}^{n}\right)$ and $\zeta(\mathbf{x})=\zeta(|\mathbf{x}|)=\zeta(r)$, we get

$$
\begin{align*}
0 & =\left(-\nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)+g|u|^{a-1} u+h|u|^{b-1} u\right) \zeta\left(u_{r}+((n-1) u /(2 r))\right) \tag{3.1}\\
& =\nabla \cdot Y+Z
\end{align*}
$$

where

$$
\begin{aligned}
Y= & -\zeta|\nabla u|^{p-2}(\nabla u)\left(u_{r}+((n-1) u /(2 r))\right) \\
& +(\zeta / p)(\mathbf{x} / r)|\nabla u|^{p}+\zeta(\mathbf{x} / r)\left[(1 /(a+1)) g|u|^{a+1}\right. \\
& \left.+(1 /(b+1)) h|u|^{b+1}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
Z= & -\left((\zeta / r)-\zeta^{\prime}\right)|\nabla u|^{p-2}\left[\left(u_{r}\right)^{2}+((n-1) /(2 r)) u_{r} u\right] \\
& -\left[\left(\zeta^{\prime} / p\right)-(\zeta /(2 p r))((n+1) p-2(n-1))\right]|\nabla u|^{p} \\
+ & H(\zeta, a, b)
\end{aligned}
$$

Theorem 3.1. Let $n \geq 2$. Assume that u is a C^{2} solution of (1.3) such that
(A) $\lim _{R \rightarrow \infty} \sup _{|\mathbf{x}| \leq R}\left(\left|\mathbf{x}^{\boldsymbol{\alpha}}\right|\left|D^{\boldsymbol{\beta}} u(\mathbf{x})\right|\right)=0$, for all multi-indices $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$
such that $|\boldsymbol{\alpha}| \leq n$ and $|\boldsymbol{\beta}| \leq 1$, and
(B) $\left.\lim _{R \rightarrow \infty} R^{n-1} \sup _{|\mathbf{x}|=R}|(1 /(a+1)) g| u\right|^{a+1}+(1 /(b+1)) h|u|^{b+1} \mid=0$.
(C) If $1<p<2 n /(n+1)$ and $H(r, a, b) \leq 0$, then $u \equiv 0$.
(D) If $p>2 n /(n+1)$ and $H(r, a, b) \geq 0$, then $u \equiv 0$.

Proof. Let $\zeta=r$. Integrating both sides of (3.1) in \mathbf{R}^{n} and using the assumptions (A) and (B), we get, after some calculation,

$$
\int_{\mathbf{R}^{n}}[(2 n-(n+1) p) /(2 p)]|\nabla u|^{p} d \mathbf{x}=\int_{\mathbf{R}^{n}} H(r, a, b) d \mathbf{x}
$$

The conclusion of this theorem follows directly from the assumptions (C) and (D).

Remark 3.2. Assume g and h are constants. Then any of the following conditions would imply $u \equiv 0$:
(a) $1<p<2 n /(n+1), g>0, h>0,0<a<b<(n+1)(n-1)$.
(b) $1<p<2 n /(n+1), g>0, h<0,0<a<(n+1) /(n-1)<b$.
(c) $1<p<2 n /(n+1), g<0, h<0,(n+1) /(n-1)<a<b$.
(d) $p>2 n /(n+1), g>0, h>0,(n+1) /(n-1)<a<b$.
(e) $p>2 n /(n+1), g<0, h>0,0<a<(n+1) /(n-1)<b$.
(f) $p>2 n /(n+1), g<0, h<0,0<a<b<(n+1) /(n-1)$.

4. Biharmonic equations with combined nonlinearities

Multiplying both sides of (1.4) by $\zeta\left(u_{r}+((n-1) u /(2 r))\right)$, where $\zeta(\mathbf{x})=\zeta(|\mathbf{x}|)=$ $\zeta(r)$ is in $C^{4}\left(\mathbf{R}^{n}\right)$, we get

$$
\begin{equation*}
0=\nabla \cdot Y+Z \tag{4.1}
\end{equation*}
$$

where Y depends on g, h, ζ and u as well as their partial derivatives up to and including the third order

$$
Z=\left(3 \zeta^{\prime} / 2\right)(\Delta u)^{2}+A\left(u_{r}\right)^{2}+B\left(|\nabla u|^{2}-\left|u_{r}\right|^{2}\right)+C u^{2}+\left(\zeta-r \zeta^{\prime}\right) P+H(\zeta, q, p)
$$

where

$$
\begin{aligned}
A= & -7 \zeta^{\prime \prime \prime} / 2-(n-1)(n-3)\left(\zeta^{\prime}-(\zeta / r)\right) /\left(2 r^{2}\right) \\
B= & -3 \zeta^{\prime \prime \prime} / 2+(n-5) \zeta^{\prime \prime} / r-\left(n^{2}+2 n-19\right)\left(\zeta^{\prime}-\zeta / r\right) /\left(2 r^{2}\right) \\
C= & ((n-1) / 2)\left[\zeta^{\prime \prime \prime \prime} /(2 r)+(n-3) \zeta^{\prime \prime \prime} /\left(r^{2}\right)\right. \\
& \left.+(n-3)(n-7) \zeta^{\prime \prime} /\left(2 r^{3}\right)-3(n-3)(n-5)\left(\zeta^{\prime}-\zeta / r\right) /\left(2 r^{4}\right)\right]
\end{aligned}
$$

and

$$
P=(2 / r)\left[\sum_{i, j}\left(S_{i j} u\right)^{2}-\sum_{i}\left(\sum_{j}\left(x_{j} / r\right) S_{i j} u\right)^{2}\right] \geq 0
$$

where

$$
S_{i j} u=\left(x_{i} / r^{3}\right) \sum_{k}\left[x_{k}\left(x_{k} \partial_{j}-x_{j} \partial_{k}\right) u_{r}\right]+\partial_{i} \sum_{k}\left[\left(x_{k} / r^{2}\right)\left(x_{k} \partial_{i}-x_{i} \partial_{k}\right) u\right]
$$

Theorem 4.1. Assume $n \geq 5$. Assume that u is a C^{4} solution of (1.4) such that
(A) $\lim _{R \rightarrow \infty}\left(\sup _{|\mathbf{x}| \leq R}\left(\left|\mathbf{x}^{\boldsymbol{\alpha}}\right|\left|D^{\boldsymbol{\beta}} u(\mathbf{x})\right|\right)\right)=0$ for all multi-indices $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ such that $|\boldsymbol{\alpha}| \leq n-1$ and $|\boldsymbol{\beta}| \leq 3$,
(B) $\lim _{R \rightarrow \infty}\left(\left.R^{n-1} \sup _{|\mathbf{x}|=R}|(1 /(q+1)) g| u\right|^{q+1}+(1 /(p+1)) h|u|^{p+1} \mid\right)=0$, and
(C) $H(1, q, p) \geq 0$.

Then $u \equiv 0$.
Proof. Let $\zeta=1$. Integrating both sides of (4.1) in \mathbf{R}^{n} and using the assumptions (A) and (B), we get

$$
\begin{aligned}
0= & \int_{\mathbf{R}^{n}}\left[(n-1)(n-3)\left(u_{r}\right)^{2} /\left(2 r^{3}\right)+\left(n^{2}+2 n-19\right)\left(|\nabla u|^{2}-\left|u_{r}\right|^{2}\right) /\left(2 r^{3}\right)\right. \\
& \left.+3(n-3)(n-5) u^{2} /\left(2 r^{5}\right)+P+H(1, q, p)\right] d \mathbf{x} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
0 \leq & \int_{\mathbf{R}^{n}}\left[(n-1)(n-3)\left(u_{r}\right)^{2} /\left(2 r^{3}\right)+\left(n^{2}+2 n-19\right)\left(|\nabla u|^{2}-\left|u_{r}\right|^{2}\right) /\left(2 r^{3}\right)\right. \\
& \left.+3(n-3)(n-5) u^{2} /\left(2 r^{5}\right)+P\right] d \mathbf{x} \\
= & \int_{\mathbf{R}^{n}}-H(1, q, p) d \mathbf{x} \\
\leq & 0
\end{aligned}
$$

from the assumption (C).
Thus $\int_{R^{n}}\left[(n-1)(n-3)\left(u_{r}\right)^{2} /\left(2 r^{3}\right)+\left(n^{2}+2 n-19\right)\left(|\nabla u|^{2}-\left|u_{r}\right|^{2}\right) /\left(2 r^{3}\right)+3(n-\right.$ 3) $\left.(n-5) u^{2} /\left(2 r^{5}\right)+P\right] d \mathbf{x}=0$.

Since $n \geq 5, u \equiv 0$.
Remark 4.2. Assume g and h are constants. Then any of the following conditions would satisfy the assumption (C).
(a) $g>0$ and $h>0$ with $1<q<p$,
(b) $g<0$ and $h>0$ with $0<q<1<p$,
(c) $g<0$ and $h<0$ with $0<q<p<1$,

Remark 4.3. In the case of $n \geq 2$, by taking appropriate function for ζ, we can also get conditions for $u \equiv 0$. The details will be in a forthcoming article.

5. Acknowledgment

A partial result of this paper was presented in the NCTS International Workshop on Harmonic Analysis and Geometric Analysis, Taipei, Taiwan. May 23-25, 2017. The author wishes to thank the meeting organizer Dr. Der-Chen Chang for the generous support and the hospitality during the workshop.

References

[1] A. Ambrosetti, H. Brezis and C. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543.
[2] A. Callegari and A. Nachman, Some singular nonlinear differential equations arising in boundary layer theory, J. Math. Anal. Appl. 64 (1978), 96-105.
[3] J. T. Chayes, S. J. Osher and J. V. Ralston, On singular diffusion equations with applications to self-organized criticality, Comm. Pure Appl. Math. 46 (1971), 1363-1377.
[4] F. Dobarro and B. Ünal, Curvature of multiply warped products, J. Geometry Physics 55 (2005), 75-106.
[5] M. Furtado, J. P. P. da Silva, and B. Souza, Elliptic Equations with Weight and Combined Nonlinearities, Adv. Nonlinear Stud. 16 (2016), 509-517.
[6] P. G. de Gennes, Wetting statics and synamics, Rev. Modern Phys. 57 (1985), 827-763.
[7] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik 12 (1972), 30-39.
[8] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), 399-415.
[9] C. S. Morawetz, Time decay for nonlinear Klein-Gordon equation, Proc. Roy. Soc. A 306 (1968), 291-296.
[10] J. Lin, Nonexistence of nontrivial solutions with decay order for some nonlinear elliptic equations, J. Nonlinear Convex Anal. 18 (2017), 883-892.
[11] J. Lin, Nonexistence of nontrivial solutions with decay order for a biharmonic P-Laplacian equation and system, Appl. Math. 8 (2017) 920-928.
[12] A. Nachman and A. Callegari, A nonlinear singular boundary value problem in the theory of pseudo plastic fluids, SIAM J. Appl. Math. 38 (1980), 275-281.
[13] V. Rädulescu, Singular phenomena in nonlinear elliptic problems, in Handbook of Differential Equations, vol. 4, 2007, pp. 485-593.
[14] V. Rädulescu and D. Repovś, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal. 75 (2012), 1524-1530.
[15] R. Shahurov, On strong solutions of a Robin problem modeling heat conduction in materials with corroded boundary, Nonlinear Anal. RWA 13 (2012), 441-451.
[16] T. Wu, Multiple positive solutions for a class of concave-convex elliptic problems in R^{n} involving sign-changing weight, J. Funct. Anal. 258 (2010), 99-131.
[17] M. Yang and A. Li,Multiple solutions to Elliptic Equations on R^{N} with Combined Nonlinearities, Abst. Appl. Anal. Vol. 2014 (2014) Article ID 284953.

JEng-Eng Lin

Department of Mathematics and Statistics, Georgetown University, Washington, DC 20057 USA
E-mail address: JengEng.Lin@georgetown.edu

[^0]: 2010 Mathematics Subject Classification. 35J60, 35J61, 35J62.
 Key words and phrases. Elliptic equations, combined nonlinearities, P-Laplacian.

