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where r(t) = t(x, y), t ∈ [0, 1], is a straight line joining the origin and the point
(x, y). Then by straightforward computations,

∂f

∂x
(x, y) = a(x, y) +

∫ 1

0
ty

(
∂b

∂x
− ∂a

∂y

)
dt,

∂f

∂y
(x, y) = b(x, y) +

∫ 1

0
tx

(
∂a

∂y
− ∂b

∂x

)
dt.

The result follows immediately. The potential function f in (1.2) can be interpreted
as the work done by the force ω = adx + bdy from the origin to the point (x, y)
connected by the straight line r(t).

Now let us turn to the case when TX ̸= TMn. Since the complement of TX, by
definition, is the missing directions, extra vector fields are needed so as to generate
TMn. Assume X satisfies the bracket generating property: the horizontal vector
fields X and their Lie brackets span TMn. Then by Chow’s Theorem [6], we know
that given any two points A,B ∈ Mn, there is a piecewise C1 horizontal curve
γ : [0, 1] → Mn such that

γ(0) = A, γ(1) = B,

and

γ̇(s) =

m∑
k=1

ak(s)Xk.

Then we may define the “length” of γ as usual:

ℓ(γ) =

∫ 1

0

√
a21(s) + a22(s) + · · ·+ a2m(s) ds.

The shortest length dcc(A,B) is called the Carnot-Carathéodory distance between
A, B ∈ Mn which is given by

dcc(A,B) := inf ℓ(γ)

where the infimum is taken over all absolutely continuous horizontal curves joining
A and B. Hence, we may define a geometry on Mn which is so-called subRie-
mannian geometry. One notes that in place of r(t) in R2, the horizontal curve γ
and the Carnot-Carathéodory distance will play an essential role in deriving our
results in a subRiemannian setting. Characterizations of conservative vector fields
on Heisenberg groups and quaternion Heisenberg groups are considered by Chang,
et al. ([2, 3, 4, 5]) recently. We are going to recall results in turn, briefly sketch
their proofs if necessary, and add remarks to them.

The Heisenberg group Hn may be considered as R2n×R endowed with the group
law [1]

(x̃1, ỹ1, . . . , x̃n, ỹn, z̃) = (x1, y1, . . . , xn, yn, z) · (x′1, y′1, . . . , x′n, y′n, z′)

= (x1 + x′1, y1 + y′1, . . . , xn + x′n, yn + y′n, z + z′ + 2
n∑

j=1

αj(xjy
′
j − yjx

′
j)).

The Heisenberg vector fields on Hn are given by

(1.3) Xj = ∂xj − 2αjyj∂z, Yj = ∂yj + 2αjxj∂z, j = 1, . . . , n,
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where the coefficients αj are assumed not all zero so that ∂z can be generated by
Xj and Yj by their Lie bracket [Xj , Yj ] = XjYj − YjXj = 4αj∂z.

The quaternion Heisenberg group qHn−1 is a 4n − 1 real-dimensional nilpotent
Lie group with the group law

(p, w) · (q, v)

= (p+ q, w + v + (

4(n−1)∑
j,k=1

a1jkx
′
jxk)i+ (

4(n−1)∑
j,k=1

a2jkx
′
jxk)j+ (

4(n−1)∑
j,k=1

a3jkx
′
jxk)k),

where (p, w) = (p1, . . . , pn−1, w) and (q, v) = (q1, . . . , qn−1, v) are in R4n−4×R3, pj =

(x4j−3, x4j−2, x4j−1, x4j), qj = (x′4j−3, x
′
4j−2, x

′
4j−1, x

′
4j), and all aljk are real which

satisfying

aljk = −alkj .(1.4)

Consider n = 2 for simplicity, the vector fields on qH1 are given by

(1.5) Xj =
∂

∂xj
+

4∑
k=1

3∑
l=1

aljkxk
∂

∂yl
, j = 1, . . . , 4.

Missing directions are generated by their Lie brackets given by

[Xn, Xm] = XnXm −XmXn = −2
3∑

l=1

alnm
∂

∂yl
.(1.6)

Remark 1.1. The quaternion Heisenberg group qH1 can be reduced to an isotropic
quaternion Heisenberg group, which is identified to the boundary of the Siegel upper
half plane of high dimensional quaternion space, if we modify (1.4) to the following
assumption (see e.g., [5] and [8])

(1.7)


aljk = −alkj ,

a121 = a134 = a231 = a242 = a341 = a323 = a > 0,

aljk = 0, otherwise.

Since qH1 is a larger class than the isotropic quaternion Heisenberg group, this
article will focus on qH1, the (nonisotropic) quaternion Heisenberg group.

Now we are ready to recall characterizations of conservative vector fields on Hn

and qH1.

2. Integrability condition

We now consider the solvability condition, called the integrability condition, for
(1.1). That is, we wish to know characterizations for conservative vector fields. The
first result was discovered by Chang, et al. [2] on H1 which we recorded as follows.

Theorem 2.1 ([2]). Let X1 = ∂x − 2y∂z, X2 = ∂y + 2x∂z be the Heisenberg vector
fields. The system X1f = a,X2f = b has a solution if and only if

X2
1b = (X1X2 + [X1, X2])a,

X2
2a = (X2X1 + [X2, X1])b.
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Followed by Theorem 2.1, the same question was considered on Hn by Chang, et
al. [4]. The biggest difference between Hn for n ≥ 2 and H1 is the concept of curl,
which was used essentially in deriving the integrability condition.

Theorem 2.2. Let Xj , Yj , j = 1, . . . , n be the Heisenberg vector fields on Hn defined
in (1.3). For smooth functions a1, b1, . . . , an, bn, the system Xjf = aj , Yjf = bj , j =
1, . . . , n is solvable if and only if

(2.1)



Xlaj = Xjal, Xjbl = Ylaj , Ylbj = Yjbl,

[Xj0 , Yj0 ]aj = Xj(Xj0bj0 − Yj0aj0),

[Xj0 , Yj0 ]bj = Yj(Xj0bj0 − Yj0aj0),

Xjbj − Yjaj =

{
0, if αj = 0,
αj

αj0
(Xj0bj0 − Yj0aj0), if αj ̸= 0,

where 1 ≤ j ̸= l ≤ n and j0 is a positive integer no larger than n such that αj0 ̸= 0.

Proof. Since αj are not all zero, choose an index j0 such that αj0 ̸= 0. Let Tj =
[Xj , Yj ] for 1 ≤ j ≤ n, T = Tj0 , and c = Xj0bj0 − Yj0aj0 . Then {X1, Y1, . . . , Xn, Yn,
T} forms an orthonormal basis on Hn with respect to a Riemannian metric g.
Observe that

Xjf = aj , Yjf = bj , j = 1, 2, . . . , n

if and only if
Xjf = aj , Yjf = bj , T f = c, j = 1, 2, . . . , n.

Consider vector fields

grad f =
n∑

j=1

(
(Xjf)Xj + (Yjf)Yj

)
+ (Tf)T and U =

n∑
j=1

(ajXj + bjYj) + cT.

Then

Xjf = aj , Yjf = bj , j = 1, 2, . . . , n

⇐⇒Xjf = aj , Yjf = bj , T f = c, j = 1, 2, . . . , n

⇐⇒ grad f = U ⇐⇒ curlU = 0

⇐⇒A(Xj , Yj) = A(Xj , Xl) = A(Xj , Yl) = A(Yj , Yl)

= A(Xj , T ) = A(Yj , T ) = 0, 1 ≤ j ̸= l ≤ n,(2.2)

where curlU is a 2-covariant antisymmetric tensor A on a pair of vector fields (X,Y )
defined by

(2.3) A(X,Y ) = Y g(U,X)−Xg(U, Y ) + g(U, [X,Y ]).

The proof of grad f = U ⇔ curlU = 0 can be found in [7]. Applying (2.3) on
{X1, Y1, . . . , Xn, Yn, T} we have

A(Xj , Yj) = Yjaj −Xjbj + g

(
U,

αj

αj0

T

)
=

{
Yjaj −Xjbj , αj = 0,
Yjaj −Xjbj +

αj

αj0
c, αj ̸= 0,

A(Xj , Yl) = Ylaj −Xjbl, A(Xj , Xl) = Xlaj −Xjal, A(Yj , Yl) = Ylbj − Yjbl,

A(Xj , T ) = [Xj0 , Yj0 ]aj −Xj(Xj0bj0 − Yj0aj0),

A(Yj , T ) = [Xj0 , Yj0 ]bj − Yj(Xj0bj0 − Yj0aj0).
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Thus (2.2) is equivalent to

Xjbj − Yjaj =

{
0, αj = 0,
αj

αj0
c, αj ̸= 0, Xlaj = Xjal, Xjbl = Ylaj , Ylbj = Yjbl,

[Xj0 , Yj0 ]aj = Xj(Xj0bj0 − Yj0aj0), [Xj0 , Yj0 ]bj = Yj(Xj0bj0 − Yj0aj0).

�

Remark 2.3. The earlier version of Theorem 2.2 may be referred to [4], where
the authors assumed αj = 1 for j = 1, 2, . . . , n. In contrast to Theorem 2.2, we
called the corresponding theorem in [4] the integrability condition of isotropic case.
Theorem 2.2 is thus the integrability condition of nonisotropic case.

The following theorem is the integrability condition on qH1. The key point is to
deal with multiple missing directions of qH1, in contrast to one missing direction
of Hn.

Theorem 2.4. Let X1, X2, X3, X4 be the vector fields on qH1 which are defined
as in (1.5). Let {[Xi1 , Xj1 ], [Xi2 , Xj2 ], [Xi3 , Xj3 ]} be a basis of span{ ∂

∂y1
, ∂

∂y2
, ∂
∂y3

},
where Xil , Xjl are chosen from {X1, X2, X3, X4} with il < jl. Then for any smooth

functions a1, a2, a3, a4 and some scalars αij
l we have

Xiaj −Xjai =

3∑
l=1

αij
l (Xilajl −Xjlail), 1 ≤ i < j ≤ 4,(2.4)

[Xil , Xjl ]ak = Xk(Xilajl −Xjlail), 1 ≤ k ≤ 4, 1 ≤ l ≤ 3(2.5)

if and only if there exists a function f such that X1f = a1, X2f = a2, X3f = a3,
and X4f = a4.

Proof. For any smooth functions a1, a2, a3, a4, we have
X1f = a1,
X2f = a2,
X3f = a3,
X4f = a4,

⇐⇒


X1f = a1, X2f = a2,
X3f = a3, X4f = a4,
[X1, X2]f = c12, [X1, X3]f = c13, [X1, X4]f = c14,
[X2, X3]f = c23, [X2, X4]f = c24, [X3, X4]f = c34,

where cij = Xiaj−Xjai, 1 ≤ i < j ≤ 4. Each Lie bracket Tij := [Xi, Xj ], 1 ≤ i < j ≤
4 on the right of the last statement, as shown in (1.6), is spanned by { ∂

∂y1
, ∂
∂y2

, ∂
∂y3

},
and thus lies in a 3-dimensional subbundle. From which, the collection of Tij , 1 ≤
i < j ≤ 4 are linearly dependent in the subbundle. By the bracket generating
property, Tij , 1 ≤ i < j ≤ 4 form a generating set of this subbundle, i.e.,

span
{
T12, T13, T14, T23, T24, T34

}
= span

{ ∂

∂y1
,

∂

∂y2
,

∂

∂y3

}
.

Thus, there exists a linearly independent subset
{
Ti1j1 , Ti2j2 , Ti3j3

}
of

{
T12, T13, T14, T23, T24, T34

}
.

Therefore, with a Riemannian metric g defined on qH1, {X1, X2, X3, X4, Ti1j1 , Ti2j2 , Ti3j3}
forms an orthonormal basis for qH1. Let

U = a1X1 + a2X2 + a3X3 + a4X4 + ci1j1Ti1j1 + ci2j2Ti2j2 + ci3j3Ti3j3 .
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The equivalence of X1f = a1, X2f = a2, X3f = a3, X4f = a4 becomes
X1f = a1,
X2f = a2,
X3f = a3,
X4f = a4,

⇐⇒

 X1f = a1, X2f = a2,
X3f = a3, X4f = a4,
Ti1j1f = ci1j1 , Ti2j2f = ci2j2 , Ti3j3f = ci3j3 ,

⇐⇒ grad f = U ⇐⇒ curlU = 0

⇐⇒ A(Xi, Xj) = A(Xk, Tiljl) = A(Tiljl , Tisjs) = 0

for 1 ≤ i, j, k ≤ 4 and 1 ≤ l, s ≤ 3, where grad f is defined by

grad f = (X1f)X1 + (X2f)X2 + (X3f)X3 + (X4f)X4

+ (Ti1j1f)Ti1j1 + (Ti2j2f)Ti2j2 + (Ti3j3f)Ti3j3 ,

and curlU is a 2-covariant antisymmetric tensor A on a pair of vector fields (X,Y )
defined by

A(X,Y ) = Y g(U,X)−Xg(U, Y ) + g(U, [X,Y ]).

Now we calculate the contents of A(Xi, Xj), A(Xk, Tiljl), and A(Tiljl , Tisjs) as fol-
lows. Since

{
Ti1j1 , Ti2j2 , Ti3j3

}
is linearly independent, Tij can be expressed as

Tij =

3∑
l=1

αij
l Tiljl ,

which yields

A(Xi, Xj) = Xjai −Xiaj + g(U, Tij) = Xjai −Xiaj +

3∑
l=1

αij
l ciljl .

So A(Xi, Xj) = 0 implies (2.4). Next, since [Xj , [Xn, Xm]] = 0, we have

A(Xk, Tiljl) = [Xil , Xjl ]ak −Xk(Xilajl −Xjlail).

So A(Xk, Tiljl) = 0 implies (2.5). Now the fact [Tiljl , Tisjs ] = 0 implies

A(Tiljl , Tisjs) = [Xis , Xjs ](Xilajl −Xjlail)− [Xil , Xjl ](Xisajs −Xjsais).

Due to [Xj , [Xn, Xm]] = 0, the previous equality becomes

A(Tiljl , Tisjs) = −XjlA(Xil , Tisjs) +XilA(Xjl , Tisjs), 1 ≤ l, s ≤ 3.

Applying A(Xil , Tisjs) = A(Xjl , Tisjs) = 0 to obtain A(Tiljl , Tisjs) = 0. In summary,
X1f = a1, X2f = a2, X3f = a3, X4f = a4 is solvable if and only if (2.4) and (2.5)
hold. �

Theorem 2.4 is actually a revised version of the corresponding theorem in [5].
We newly discovered (2.4) as part of the integrability condition due to incomplete
computation of g(U, Tij) of the corresponding theorem in [5].
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3. Poincaré lemma

If the system (1.1) is solvable, the potential function f can be solved explicitly
in an integral form. The following theorem is the case in H1.

Theorem 3.1 ([3]). Let X1 = ∂x − 2y∂z, X2 = ∂y + 2x∂z be the Heisenberg vector
fields and p = (x, y, z) in H1. Given any smooth functions a and b, and set

c = X1b−X2a, a1 = a+ y
c

2
, b1 = b− x

c

2
, c1 =

c

4
.

Consider

f(p) =

∫ 1

0

[
a1(tp)x+ b1(tp)y + c1(tp)z

]
dt.

Then

(X1f)(p) = a(p) +

∫ 1

0

tz

4
(X2

1b− (X1X2 + [X1, X2])a)(tp)dt,

(X2f)(p) = b(p)−
∫ 1

0

tz

4
(X2

2a− (X2X1 + [X2, X1])b)(tp)dt.

If the conditions

X2
1b = (X1X2 + [X1, X2])a, X2

2a = (X2X1 + [X2, X1])b,

hold, then X1f = a,X2f = b with

f(p) =

∫ 1

0

[
a(tp)x+ b(tp)y

]
dt.

Based on the integrability condition for Hn in Theorem 2.2, the Poincaré’s lemma
for Hn is able to be deduced. The derivation of the potential function should also
be considered in nonisotropic case.

Theorem 3.2. Let Xj , Yj , j = 1, . . . , n be the Heisenberg vector fields on Hn defined
in (1.3). Given smooth functions a1, b1, . . . , an, bn with

Xjbj − Yjaj =

{
0, if αj = 0,
αj

αj0
(Xj0bj0 − Yj0aj0), if αj ̸= 0,

(3.1) c∗ =
Xj0bj0 − Yj0aj0

4αj0

, a∗j = aj + 2αjyjc
∗, b∗j = bj − 2αjxjc

∗,

for 1 ≤ j ≤ n. Consider

f(p) =

∫ 1

0

n∑
j=1

(
a∗j (tp)xj + b∗j (tp)yj

)
+ c∗(tp)zdt,
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where p = (x1, y1, . . . , xn, yn, z) in Hn. Then for l = 1, . . . , n,

Xlf(p) = al(p) +

∫ 1

0
t
{ n∑

j=1
j ̸=l

[xj(Xlaj −Xjal)(tp) + yj(Xlbj − Yjal)(tp)]

+
z

4αj0

(
Xl(Xj0bj0 − Yj0aj0)− [Xj0 , Yj0 ]al

)
(tp)

}
dt,

Ylf(p) = bl(p) +

∫ 1

0
t
{ n∑

j=1
j ̸=l

[xj(Ylaj −Xjbl)(tp) + yj(Ylbj − Yjbl)(tp)]

+
z

4αj0

(
Yl(Xj0bj0 − Yj0aj0)− [Xj0 , Yj0 ]bl

)
(tp)

}
dt.

If the conditions

[Xj0 , Yj0 ]aj = Xj(Xj0bj0 − Yj0aj0), [Xj0 , Yj0 ]bj = Yj(Xj0bj0 − Yj0aj0),

Xlaj = Xjal, Xjbl = Ylaj , Ylbj = Yjbl, 1 ≤ j ̸= l ≤ n

hold, then the system Xjf = aj , Yjf = bj , j = 1, . . . , n is solvable and

f(p) =

∫ 1

0
g
(
U(γ(t)), γ̇(t)

)
dt,

where γ is a horizontal curve joining the origin and p, U =
∑n

j=1(ajXj + bjYj),

and g(·, ·) is the subRiemannian metric.

Proof. By (1.3),



X1f = a1
Y1f = b1

...
Xnf = an
Ynf = bn

⇔



∂x1f = a1 + 2α1y1∂zf
∂y1f = b1 − 2α1x1∂zf

...
∂xnf = an + 2αnyn∂zf
∂ynf = bn − 2αnxn∂zf

⇔



∂x1f = a∗1
∂y1f = b∗1

...
∂xnf = a∗n
∂ynf = b∗n

⇔



∂x1f = a∗1
∂y1f = b∗1

...
∂xnf = a∗n
∂ynf = b∗n
∂zf = c∗,

where c∗, a∗j , b
∗
j are defined in (3.1). Consider

(3.2) f(p) =

∫
γ(t)

ω =

∫ 1

0

n∑
j=1

(
a∗j (tp)xj + b∗j (tp)yj

)
+ c∗(tp)zdt,

where ω =
∑n

j=1

(
a∗jdxj + b∗jdyj

)
+ c∗dz and

γ(t) = tp = (tx1, ty1, . . . , txn, tyn, tz)

= (x1(t), x2(t), . . . , xn(t), yn(t), z(t)), t ∈ [0, 1]



POINCARÉ LEMMA ON SOME SUBRIEMANNIAN MANIFOLDS 83

is a horizontal curve connecting the origin and p = (x1, y1, . . . , xn, yn, z) in Hn.
Applying partial derivatives ∂xl

, ∂yl , and ∂z on (3.2), and by (1.3),
X1f(p)
Y1f(p)

...
Xnf(p)
Ynf(p)

 = B



∂x1f(p)
∂y1f(p)

...
∂xnf(p)
∂ynf(p)
∂zf(p)


= B



a∗1(p)
b∗1(p)

...
a∗n(p)
b∗n(p)
c∗(p)


+

∫ 1

0
(tBMpT )(tp)dt

=


a1(p)
b1(p)

...
an(p)
bn(p)

+

∫ 1

0
(tBMpT )(tp)dt,(3.3)

where

B =


1 0 · · · 0 0 −2α1y1

1 · · · 0 0 2α1x1
. . .

...
1 0 −2αnyn

1 2αnxn


is a 2n× (2n+ 1) upper-triangular matrix, and M = (mij) is a (2n+ 1)× (2n+ 1)
skew-symmetric matrix with entries

mij :=



m(2l−1)(2s−1) = ∂xl
a∗s − ∂xsa

∗
l

m(2l)(2s−1) = ∂yla
∗
s − ∂xsb

∗
l

m(2l−1)(2s) = ∂xl
b∗s − ∂ysa

∗
l

m(2l)(2s) = ∂ylb
∗
s − ∂ysb

∗
l

 1 ≤ l ≤ s ≤ n

m(2l−1)(2n+1) = ∂xl
c∗ − ∂za

∗
l

m(2l)(2n+1) = ∂ylc
∗ − ∂zb

∗
l

}
1 ≤ l ≤ n.

The integrand tBMpT of (3.3) is a vector with 2n entries

(tBMpT )2l−1 = t
{ n∑

j=1
j ̸=l

[xj(Xlaj −Xjal) + yj(Xlbj − Yjal)]

+
z

4αj0

(
Xl(Xj0bj0 − Yj0aj0)− [Xj0 , Yj0 ]al

)}
,

and

(tBMpT )2l = t
{ n∑

j=1
j ̸=l

[xj(Ylaj −Xjbl) + yj(Ylbj − Yjbl)]

+
z

4αj0

(
Yl(Xj0bj0 − Yj0aj0)− [Xj0 , Yj0 ]bl

)}
,

for l = 1, . . . , n. Under the integrability condition (2.1), the entries of the integrand
tBMpT are all zero. Hence the system Xjf = aj , Yjf = bj , j = 1, . . . , n holds and
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its solution f can be deduced from (3.2) as∫
γ(t)

ω =

∫ 1

0

n∑
j=1

(
a∗j (γ(t))ẋj + b∗j (γ(t))ẏj

)
+ c∗(γ(t))żdt

=

∫ 1

0

n∑
j=1

(
aj(γ(t))ẋj + bj(γ(t))ẏj

)
+ [ż − 2

n∑
j=1

αj(xj ẏj − yj ẋj)]c
∗(γ(t))dt.(3.4)

Note that

γ̇ =
n∑

j=1

(ẋjXj + ẏjYj) + [ż − 2
n∑

j=1

αj(xj ẏj − yj ẋj)]∂z.(3.5)

Since γ is horizontal, γ̇ can be constructed only by Xj ’s and Yj ’s. Hence by (3.5),
ż = 2

∑n
j=1 αj(xj ẏj − yj ẋj) and so (3.4) turns into∫ 1

0

n∑
j=1

(
aj(γ(t))ẋj + bj(γ(t))ẏj

)
dt =

∫ 1

0
g
(
U(γ(t)), γ̇(t)

)
dt,

where U =
∑n

j=1(ajXj + bjYj) and g(·, ·) is the subRiemannian metric. �

The isotropic version for Poincaré’s lemma in Hn is particularly true. We simply
recorded this particular result from our earlier paper as follows.

Corollary 3.3 ([4]). Let Xj , Yj , j = 1, . . . , n be the Heisenberg vector fields on Hn

defined in (1.3) with αj = 1 for j = 1, . . . , n. Given smooth functions a1, b1, . . . , an, bn
with

X1b1 − Y1a1 = · · · = Xnbn − Ynan,

and let

c∗ =
Xjbj − Yjaj

4
, a∗j = aj + 2yjc

∗, b∗j = bj − 2xjc
∗, 1 ≤ j ≤ n.

Consider

f(p) =

∫ 1

0

n∑
j=1

(
a∗j (tp)xj + b∗j (tp)yj

)
+ c∗(tp)zdt,

where p = (x1, y1, . . . , xn, yn, z) in Hn. Then for l = 1, . . . , n,

Xlf(p) = al(p) +

∫ 1

0
t
{ n∑

j=1
j ̸=l

[xj(Xlaj −Xjal)(tp) + yj(Xlbj − Yjal)(tp)]

+
z

4

(
X2

l bl − (XlYl + [Xl, Yl])al

)
(tp)

}
dt,

Ylf(p) = bl(p) +

∫ 1

0
t
{ n∑

j=1
j ̸=l

[xj(Ylaj −Xjbl)(tp) + yj(Ylbj − Yjbl)(tp)]

+
z

4

(
(YlXl + [Yl, Xl])bl − Y 2

l al

)
(tp)

}
dt.



POINCARÉ LEMMA ON SOME SUBRIEMANNIAN MANIFOLDS 85

If the conditions

X2
j bj = ([Xj , Yj ] +XjYj)aj , Y 2

j aj = ([Yj , Xj ] + YjXj)bj ,

Xlaj = Xjal, Xjbl = Ylaj , Ylbj = Yjbl, 1 ≤ j ̸= l ≤ n

hold, then the system Xjf = aj , Yjf = bj , j = 1, . . . , n is solvable and

(3.6) f(p) =

∫ 1

0
g
(
U(γ(t)), γ̇(t)

)
dt,

where γ is a horizontal curve joining the origin and p, U =
∑n

j=1(ajXj + bjYj),

and g(·, ·) is the subRiemannian metric.

The potential function on qH1 explored by Wu [8] was recorded as follows.

Theorem 3.4 ([8]). Let X1, X2, X3, X4 be the vector fields on qH1 given in (1.5).
Let {[Xi1 , Xj1 ], [Xi2 , Xj2 ], [Xi3 , Xj3 ]} be a basis of span{ ∂

∂y1
, ∂
∂y2

, ∂
∂y3

}, where Xil , Xjl

are chosen from {X1, X2, X3, X4} with il < jl. Consider any smooth functions
a1, a2, a3, a4, c1

c2
c3

 = −1

2

 a1i1j1 a2i1j1 a3i1j1
a1i2j2 a2i2j2 a3i2j2
a1i3j3 a2i3j3 a3i3j3

−1 Xi1aj1 −Xj1ai1
Xi2aj2 −Xj2ai2
Xi3aj3 −Xj3ai3

 ,

a∗j = aj +
1

2

4∑
k=1

xk(Xjak −Xkaj), j = 1, 2, 3, 4,

and let

f(p) =

∫ 1

0

[ 4∑
j=1

a∗j (tp)xj +

3∑
l=1

cl(tp)yl

]
dt,

where p = (x1, x2, x3, x3, y1, y2, y3). Then for i = 1, 2, 3, 4,

(Xif)(p) = ai(p)−
∫ 1

0

t

2
(y1, y2, y3)

a1i1j1 a2i1j1 a3i1j1
a1i2j2 a2i2j2 a3i2j2
a1i3j3 a2i3j3 a3i3j3

−1

×

Xi

Xi1aj1 −Xj1ai1
Xi2aj2 −Xj2ai2
Xi3aj3 −Xj3ai3

−

[Xi1 , Xj1 ]
[Xi2 , Xj2 ]
[Xi3 , Xj3 ]

 ai

 dt.

If the integrability conditions (2.4) and (2.5) hold, then the system of equations
X1f = a1, X2f = a2, X3f = a3, X4f = a4 is solvable and

f(p) =

∫ 1

0
g(U(γ(t)), γ′(t))dt,

where U = a1X1 + a2X2 + a3X3 + a4X4, γ(t) is a horizontal curve connecting the
origin and p, and g(·, ·) is the subRiemannian metric.

As of Corollary 3.3, we may also state the Poincaré’s lemma for isotropic quater-
nion Heisenberg groups. However, the contents will be almost the same as Theorem
3.4. One only has to add an additional assumption (1.7) for vector fields (1.5)
comparing with Theorem 3.4. We thus omit it.
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Remark 3.5. The Heisenberg groups Hn and the quaternion Heisenberg groups
qH1 are, in fact, nilpotent Lie groups of step two since by (1.3),

[Xj , [Xk, Yk]] = [Yj , [Xk, Yk]] = 0, j, k = 1, 2, . . . , n,

and since by (1.5),

[Xj , [Xk, Xl]] = 0, j, k, l = 1, 2, 3, 4.

An article of the Poincaré lemma on nilpotent Lie groups of step two will appear
soon.
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