POINCARÉ LEMMA ON SOME SUBRIEMANNIAN MANIFOLDS

DER-CHEN CHANG*, HSI-CHUN WU ${ }^{\dagger}$, AND NANPING YANG

Abstract

The article widely recalls recent developements on characterizations of conservative vector fields on two very important examples in subRiemannian manifolds: the Heisenberg group and the quaternion Heisenberg group. We also generalize these results to nonisotropic quaternion Heisenberg groups. The potential functions related to conservative vector fields are able to be solved explicitly in integral forms.

1. Introduction

Conservative vector fields that appear in vector calculus are ones in which integrating along two paths connecting the same two points are equal. From mathematical or physical point of view, it is worthwhile to consider conservative vector fields on subRiemannian manifolds.

Let $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ be m linearly independent vector fields defined on an n-dimensional manifold \mathcal{M}_{n} with $m \leq n$. The subspace $T_{\mathbf{X}}$ spanned by X_{1}, \ldots, X_{m} is called the horizontal subspace, and its complement is referred to as the missing directions. When $T_{\mathbf{X}}=T \mathcal{M}_{n}$, then $m=n$ and hence \mathcal{M}_{n} is a Riemannian manifold. Let $V=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a vector-valued function defined on \mathcal{M}_{n} where $a_{j}, j=$ $1, \ldots, n$ are smooth functions. One wishes to find necessary and sufficient conditions on a_{j} 's so that V is conservative, i.e., there exists a function f, called the potential function, that satisfies the following system

$$
\begin{equation*}
X_{1} f=a_{1}, \quad X_{2} f=a_{2}, \quad \cdots \quad X_{n} f=a_{n} \tag{1.1}
\end{equation*}
$$

For example, let $V=(a, b)$ be a vector-valued function defined on \mathbb{R}^{2} where a and b are two smooth functions. Assume that $X_{1}=\frac{\partial}{\partial x}$ and $X_{2}=\frac{\partial}{\partial y}$. Then V is conservative if and only if $\frac{\partial a}{\partial y}=\frac{\partial b}{\partial x}$. In fact, denote $\omega=a d x+b d y$ and

$$
\begin{equation*}
f(x, y)=\int_{r(t)} \omega=\int_{0}^{1} \omega\left(r^{\prime}(t)\right) d t=\int_{0}^{1} a(t x, t y) x+b(t x, t y) y d t, \tag{1.2}
\end{equation*}
$$

[^0]where $r(t)=t(x, y), t \in[0,1]$, is a straight line joining the origin and the point (x, y). Then by straightforward computations,
\[

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(x, y)=a(x, y)+\int_{0}^{1} t y\left(\frac{\partial b}{\partial x}-\frac{\partial a}{\partial y}\right) d t \\
& \frac{\partial f}{\partial y}(x, y)=b(x, y)+\int_{0}^{1} t x\left(\frac{\partial a}{\partial y}-\frac{\partial b}{\partial x}\right) d t
\end{aligned}
$$
\]

The result follows immediately. The potential function f in (1.2) can be interpreted as the work done by the force $\omega=a d x+b d y$ from the origin to the point (x, y) connected by the straight line $r(t)$.

Now let us turn to the case when $T_{\mathbf{X}} \neq T \mathcal{M}_{n}$. Since the complement of $T_{\mathbf{X}}$, by definition, is the missing directions, extra vector fields are needed so as to generate $T \mathcal{M}_{n}$. Assume \mathbf{X} satisfies the bracket generating property: the horizontal vector fields \mathbf{X} and their Lie brackets span $T \mathcal{M}_{n}$. Then by Chow's Theorem [6], we know that given any two points $A, B \in \mathcal{M}_{n}$, there is a piecewise C^{1} horizontal curve $\gamma:[0,1] \rightarrow \mathcal{M}_{n}$ such that

$$
\gamma(0)=A, \quad \gamma(1)=B
$$

and

$$
\dot{\gamma}(s)=\sum_{k=1}^{m} a_{k}(s) X_{k} .
$$

Then we may define the "length" of γ as usual:

$$
\ell(\gamma)=\int_{0}^{1} \sqrt{a_{1}^{2}(s)+a_{2}^{2}(s)+\cdots+a_{m}^{2}(s)} d s
$$

The shortest length $d_{c c}(A, B)$ is called the Carnot-Carathéodory distance between $A, B \in \mathcal{M}_{n}$ which is given by

$$
d_{c c}(A, B):=\inf \ell(\gamma)
$$

where the infimum is taken over all absolutely continuous horizontal curves joining A and B. Hence, we may define a geometry on \mathcal{M}_{n} which is so-called subRiemannian geometry. One notes that in place of $r(t)$ in \mathbb{R}^{2}, the horizontal curve γ and the Carnot-Carathéodory distance will play an essential role in deriving our results in a subRiemannian setting. Characterizations of conservative vector fields on Heisenberg groups and quaternion Heisenberg groups are considered by Chang, et al. ([2, 3, 4, 5]) recently. We are going to recall results in turn, briefly sketch their proofs if necessary, and add remarks to them.

The Heisenberg group \mathcal{H}^{n} may be considered as $\mathbb{R}^{2 n} \times \mathbb{R}$ endowed with the group law [1]

$$
\begin{aligned}
& \left(\tilde{x}_{1}, \tilde{y}_{1}, \ldots, \tilde{x}_{n}, \tilde{y}_{n}, \tilde{z}\right)=\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, z\right) \cdot\left(x_{1}^{\prime}, y_{1}^{\prime}, \ldots, x_{n}^{\prime}, y_{n}^{\prime}, z^{\prime}\right) \\
= & \left(x_{1}+x_{1}^{\prime}, y_{1}+y_{1}^{\prime}, \ldots, x_{n}+x_{n}^{\prime}, y_{n}+y_{n}^{\prime}, z+z^{\prime}+2 \sum_{j=1}^{n} \alpha_{j}\left(x_{j} y_{j}^{\prime}-y_{j} x_{j}^{\prime}\right)\right) .
\end{aligned}
$$

The Heisenberg vector fields on \mathcal{H}^{n} are given by

$$
\begin{equation*}
X_{j}=\partial_{x_{j}}-2 \alpha_{j} y_{j} \partial_{z}, \quad Y_{j}=\partial_{y_{j}}+2 \alpha_{j} x_{j} \partial_{z}, \quad j=1, \ldots, n \tag{1.3}
\end{equation*}
$$

where the coefficients α_{j} are assumed not all zero so that ∂_{z} can be generated by X_{j} and Y_{j} by their Lie bracket $\left[X_{j}, Y_{j}\right]=X_{j} Y_{j}-Y_{j} X_{j}=4 \alpha_{j} \partial_{z}$.

The quaternion Heisenberg group $q H^{n-1}$ is a $4 n-1$ real-dimensional nilpotent Lie group with the group law

$$
\begin{aligned}
& (p, w) \cdot(q, v) \\
& =\left(p+q, w+v+\left(\sum_{j, k=1}^{4(n-1)} a_{j k}^{1} x_{j}^{\prime} x_{k}\right) \mathbf{i}+\left(\sum_{j, k=1}^{4(n-1)} a_{j k}^{2} x_{j}^{\prime} x_{k}\right) \mathbf{j}+\left(\sum_{j, k=1}^{4(n-1)} a_{j k}^{3} x_{j}^{\prime} x_{k}\right) \mathbf{k}\right)
\end{aligned}
$$

where $(p, w)=\left(p_{1}, \ldots, p_{n-1}, w\right)$ and $(q, v)=\left(q_{1}, \ldots, q_{n-1}, v\right)$ are in $\mathbb{R}^{4 n-4} \times \mathbb{R}^{3}, p_{j}=$ $\left(x_{4 j-3}, x_{4 j-2}, x_{4 j-1}, x_{4 j}\right), q_{j}=\left(x_{4 j-3}^{\prime}, x_{4 j-2}^{\prime}, x_{4 j-1}^{\prime}, x_{4 j}^{\prime}\right)$, and all $a_{j k}^{l}$ are real which satisfying

$$
\begin{equation*}
a_{j k}^{l}=-a_{k j}^{l} \tag{1.4}
\end{equation*}
$$

Consider $n=2$ for simplicity, the vector fields on $q H^{1}$ are given by

$$
\begin{equation*}
X_{j}=\frac{\partial}{\partial x_{j}}+\sum_{k=1}^{4} \sum_{l=1}^{3} a_{j k}^{l} x_{k} \frac{\partial}{\partial y_{l}}, \quad j=1, \ldots, 4 \tag{1.5}
\end{equation*}
$$

Missing directions are generated by their Lie brackets given by

$$
\begin{equation*}
\left[X_{n}, X_{m}\right]=X_{n} X_{m}-X_{m} X_{n}=-2 \sum_{l=1}^{3} a_{n m}^{l} \frac{\partial}{\partial y_{l}} \tag{1.6}
\end{equation*}
$$

Remark 1.1. The quaternion Heisenberg group $q H^{1}$ can be reduced to an isotropic quaternion Heisenberg group, which is identified to the boundary of the Siegel upper half plane of high dimensional quaternion space, if we modify (1.4) to the following assumption (see e.g., [5] and [8])

$$
\left\{\begin{array}{l}
a_{j k}^{l}=-a_{k j}^{l} \tag{1.7}\\
a_{21}^{1}=a_{34}^{1}=a_{31}^{2}=a_{42}^{2}=a_{41}^{3}=a_{23}^{3}=a>0 \\
a_{j k}^{l}=0, \quad \text { otherwise }
\end{array}\right.
$$

Since $q H^{1}$ is a larger class than the isotropic quaternion Heisenberg group, this article will focus on $q H^{1}$, the (nonisotropic) quaternion Heisenberg group.

Now we are ready to recall characterizations of conservative vector fields on \mathcal{H}^{n} and $q H^{1}$.

2. Integrability condition

We now consider the solvability condition, called the integrability condition, for (1.1). That is, we wish to know characterizations for conservative vector fields. The first result was discovered by Chang, et al. [2] on \mathcal{H}^{1} which we recorded as follows.

Theorem 2.1 ([2]). Let $X_{1}=\partial_{x}-2 y \partial_{z}, X_{2}=\partial_{y}+2 x \partial_{z}$ be the Heisenberg vector fields. The system $X_{1} f=a, X_{2} f=b$ has a solution if and only if

$$
\begin{aligned}
& X_{1}^{2} b=\left(X_{1} X_{2}+\left[X_{1}, X_{2}\right]\right) a \\
& X_{2}^{2} a=\left(X_{2} X_{1}+\left[X_{2}, X_{1}\right]\right) b
\end{aligned}
$$

Followed by Theorem 2.1, the same question was considered on \mathcal{H}^{n} by Chang, et al. [4]. The biggest difference between \mathcal{H}^{n} for $n \geq 2$ and \mathcal{H}^{1} is the concept of curl, which was used essentially in deriving the integrability condition.
Theorem 2.2. Let $X_{j}, Y_{j}, j=1, \ldots, n$ be the Heisenberg vector fields on \mathcal{H}^{n} defined in (1.3). For smooth functions $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$, the system $X_{j} f=a_{j}, Y_{j} f=b_{j}, j=$ $1, \ldots, n$ is solvable if and only if

$$
\left\{\begin{array}{l}
X_{l} a_{j}=X_{j} a_{l}, \quad X_{j} b_{l}=Y_{l} a_{j}, \quad Y_{l} b_{j}=Y_{j} b_{l} \tag{2.1}\\
{\left[X_{j_{0}}, Y_{j_{0}}\right] a_{j}=X_{j}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right),} \\
{\left[X_{j_{0}}, Y_{j_{0}}\right] b_{j}=Y_{j}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right),} \\
X_{j} b_{j}-Y_{j} a_{j}= \begin{cases}0, & \text { if } \alpha_{j}=0 \\
\frac{\alpha_{j}}{\alpha_{0}}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right), & \text { if } \alpha_{j} \neq 0\end{cases}
\end{array}\right.
$$

where $1 \leq j \neq l \leq n$ and j_{0} is a positive integer no larger than n such that $\alpha_{j_{0}} \neq 0$. Proof. Since α_{j} are not all zero, choose an index j_{0} such that $\alpha_{j_{0}} \neq 0$. Let $T_{j}=$ $\left[X_{j}, Y_{j}\right]$ for $1 \leq j \leq n, T=T_{j_{0}}$, and $c=X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}$. Then $\left\{X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right.$, $T\}$ forms an orthonormal basis on \mathcal{H}^{n} with respect to a Riemannian metric g. Observe that

$$
X_{j} f=a_{j}, Y_{j} f=b_{j}, \quad j=1,2, \ldots, n
$$

if and only if

$$
X_{j} f=a_{j}, Y_{j} f=b_{j}, T f=c, \quad j=1,2, \ldots, n
$$

Consider vector fields

$$
\operatorname{grad} f=\sum_{j=1}^{n}\left(\left(X_{j} f\right) X_{j}+\left(Y_{j} f\right) Y_{j}\right)+(T f) T \quad \text { and } \quad U=\sum_{j=1}^{n}\left(a_{j} X_{j}+b_{j} Y_{j}\right)+c T
$$

Then

$$
\begin{align*}
& X_{j} f=a_{j}, Y_{j} f=b_{j}, \quad j=1,2, \ldots, n \\
\Longleftrightarrow & X_{j} f=a_{j}, Y_{j} f=b_{j}, T f=c, \quad j=1,2, \ldots, n \\
\Longleftrightarrow & \operatorname{grad} f=U \Longleftrightarrow \operatorname{curl} U=0 \\
\Longleftrightarrow & A\left(X_{j}, Y_{j}\right)=A\left(X_{j}, X_{l}\right)=A\left(X_{j}, Y_{l}\right)=A\left(Y_{j}, Y_{l}\right) \\
& =A\left(X_{j}, T\right)=A\left(Y_{j}, T\right)=0, \quad 1 \leq j \neq l \leq n \tag{2.2}
\end{align*}
$$

where curl U is a 2-covariant antisymmetric tensor A on a pair of vector fields (X, Y) defined by

$$
\begin{equation*}
A(X, Y)=Y g(U, X)-X g(U, Y)+g(U,[X, Y]) \tag{2.3}
\end{equation*}
$$

The proof of $\operatorname{grad} f=U \Leftrightarrow \operatorname{curl} U=0$ can be found in [7]. Applying (2.3) on $\left\{X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}, T\right\}$ we have

$$
\begin{aligned}
A\left(X_{j}, Y_{j}\right) & =Y_{j} a_{j}-X_{j} b_{j}+g\left(U, \frac{\alpha_{j}}{\alpha_{j_{0}}} T\right)= \begin{cases}Y_{j} a_{j}-X_{j} b_{j}, & \alpha_{j}=0 \\
Y_{j} a_{j}-X_{j} b_{j}+\frac{\alpha_{j}}{\alpha_{j_{0}}} c, & \alpha_{j} \neq 0\end{cases} \\
A\left(X_{j}, Y_{l}\right) & =Y_{l} a_{j}-X_{j} b_{l}, \quad A\left(X_{j}, X_{l}\right)=X_{l} a_{j}-X_{j} a_{l}, \quad A\left(Y_{j}, Y_{l}\right)=Y_{l} b_{j}-Y_{j} b_{l}, \\
A\left(X_{j}, T\right) & =\left[X_{j_{0}}, Y_{j_{0}}\right] a_{j}-X_{j}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right) \\
A\left(Y_{j}, T\right) & =\left[X_{j_{0}}, Y_{j_{0}}\right] b_{j}-Y_{j}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right)
\end{aligned}
$$

Thus (2.2) is equivalent to

$$
\begin{gathered}
X_{j} b_{j}-Y_{j} a_{j}=\left\{\begin{array}{ll}
0, & \alpha_{j}=0, \\
\frac{\alpha_{j}}{\alpha_{0}} c, & \alpha_{j} \neq 0,
\end{array} \quad X_{l} a_{j}=X_{j} a_{l}, \quad X_{j} b_{l}=Y_{l} a_{j}, \quad Y_{l} b_{j}=Y_{j} b_{l}\right. \\
{\left[X_{j_{0}}, Y_{j_{0}}\right] a_{j}=X_{j}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right), \quad\left[X_{j_{0}}, Y_{j_{0}}\right] b_{j}=Y_{j}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right)}
\end{gathered}
$$

Remark 2.3. The earlier version of Theorem 2.2 may be referred to [4], where the authors assumed $\alpha_{j}=1$ for $j=1,2, \ldots, n$. In contrast to Theorem 2.2, we called the corresponding theorem in [4] the integrability condition of isotropic case. Theorem 2.2 is thus the integrability condition of nonisotropic case.

The following theorem is the integrability condition on $q H^{1}$. The key point is to deal with multiple missing directions of $q H^{1}$, in contrast to one missing direction of \mathcal{H}^{n}.

Theorem 2.4. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be the vector fields on $q H^{1}$ which are defined as in (1.5). Let $\left\{\left[X_{i_{1}}, X_{j_{1}}\right],\left[X_{i_{2}}, X_{j_{2}}\right],\left[X_{i_{3}}, X_{j_{3}}\right]\right\}$ be a basis of $\operatorname{span}\left\{\frac{\partial}{\partial y_{1}}, \frac{\partial}{\partial y_{2}}, \frac{\partial}{\partial y_{3}}\right\}$, where $X_{i_{l}}, X_{j_{l}}$ are chosen from $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ with $i_{l}<j_{l}$. Then for any smooth functions $a_{1}, a_{2}, a_{3}, a_{4}$ and some scalars $\alpha_{l}^{i j}$ we have

$$
\begin{align*}
& X_{i} a_{j}-X_{j} a_{i}=\sum_{l=1}^{3} \alpha_{l}^{i j}\left(X_{i_{l}} a_{j_{l}}-X_{j_{l}} a_{i_{l}}\right), \quad 1 \leq i<j \leq 4 \tag{2.4}\\
& {\left[X_{i_{l}}, X_{j_{l}}\right] a_{k}=X_{k}\left(X_{i_{l}} a_{j_{l}}-X_{j_{l}} a_{i_{l}}\right), \quad 1 \leq k \leq 4,1 \leq l \leq 3} \tag{2.5}
\end{align*}
$$

if and only if there exists a function f such that $X_{1} f=a_{1}, X_{2} f=a_{2}, X_{3} f=a_{3}$, and $X_{4} f=a_{4}$.

Proof. For any smooth functions $a_{1}, a_{2}, a_{3}, a_{4}$, we have

$$
\left\{\begin{array} { l }
{ X _ { 1 } f = a _ { 1 } , } \\
{ X _ { 2 } f = a _ { 2 } , } \\
{ X _ { 3 } f = a _ { 3 } , } \\
{ X _ { 4 } f = a _ { 4 } , }
\end{array} \Longleftrightarrow \left\{\begin{array}{ll}
X_{1} f=a_{1}, & X_{2} f=a_{2}, \\
X_{3} f=a_{3}, & X_{4} f=a_{4}, \\
{\left[X_{1}, X_{2}\right] f=c_{12},} & {\left[X_{1}, X_{3}\right] f=c_{13}, \quad\left[X_{1}, X_{4}\right] f=c_{14},} \\
{\left[X_{2}, X_{3}\right] f=c_{23},} & {\left[X_{2}, X_{4}\right] f=c_{24}, \quad\left[X_{3}, X_{4}\right] f=c_{34}}
\end{array}\right.\right.
$$

where $c_{i j}=X_{i} a_{j}-X_{j} a_{i}, 1 \leq i<j \leq 4$. Each Lie bracket $T_{i j}:=\left[X_{i}, X_{j}\right], 1 \leq i<j \leq$ 4 on the right of the last statement, as shown in (1.6), is spanned by $\left\{\frac{\partial}{\partial y_{1}}, \frac{\partial}{\partial y_{2}}, \frac{\partial}{\partial y_{3}}\right\}$, and thus lies in a 3 -dimensional subbundle. From which, the collection of $T_{i j}, 1 \leq$ $i<j \leq 4$ are linearly dependent in the subbundle. By the bracket generating property, $T_{i j}, 1 \leq i<j \leq 4$ form a generating set of this subbundle, i.e.,

$$
\operatorname{span}\left\{T_{12}, T_{13}, T_{14}, T_{23}, T_{24}, T_{34}\right\}=\operatorname{span}\left\{\frac{\partial}{\partial y_{1}}, \frac{\partial}{\partial y_{2}}, \frac{\partial}{\partial y_{3}}\right\}
$$

Thus, there exists a linearly independent subset $\left\{T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, T_{i_{3} j_{3}}\right\}$ of $\left\{T_{12}, T_{13}, T_{14}, T_{23}, T_{24}, T_{34}\right\}$. Therefore, with a Riemannian metric g defined on $q H^{1},\left\{X_{1}, X_{2}, X_{3}, X_{4}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, T_{i_{3} j_{3}}\right\}$ forms an orthonormal basis for $q H^{1}$. Let

$$
U=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+c_{i_{1} j_{1}} T_{i_{1} j_{1}}+c_{i_{2} j_{2}} T_{i_{2} j_{2}}+c_{i_{3} j_{3}} T_{i_{3} j_{3}}
$$

The equivalence of $X_{1} f=a_{1}, X_{2} f=a_{2}, X_{3} f=a_{3}, X_{4} f=a_{4}$ becomes

$$
\begin{aligned}
\left\{\begin{array}{l}
X_{1} f=a_{1}, \\
X_{2} f=a_{2}, \\
X_{3} f=a_{3}, \\
X_{4} f=a_{4},
\end{array}\right. & \Longleftrightarrow \begin{cases}X_{1} f=a_{1}, & X_{2} f=a_{2}, \\
X_{3} f=a_{3}, & X_{4} f=a_{4}, \\
T_{i_{1} j_{1}} f=c_{i_{1} j_{1}}, & T_{i_{2} j_{2}} f=c_{i_{2} j_{2}}, \quad T_{i_{3} j_{3}} f=c_{i_{3} j_{3}},\end{cases} \\
& \Longleftrightarrow \operatorname{grad} f=U \Longleftrightarrow \operatorname{curl} U=0
\end{aligned}
$$

for $1 \leq i, j, k \leq 4$ and $1 \leq l, s \leq 3$, where $\operatorname{grad} f$ is defined by

$$
\begin{aligned}
\operatorname{grad} f=\left(X_{1} f\right) X_{1} & +\left(X_{2} f\right) X_{2}+\left(X_{3} f\right) X_{3}+\left(X_{4} f\right) X_{4} \\
& +\left(T_{i_{1} j_{1}} f\right) T_{i_{1} j_{1}}+\left(T_{i_{2} j_{2}} f\right) T_{i_{2} j_{2}}+\left(T_{i_{3} j_{3}} f\right) T_{i_{3} j_{3}}
\end{aligned}
$$

and curl U is a 2-covariant antisymmetric tensor A on a pair of vector fields (X, Y) defined by

$$
A(X, Y)=Y g(U, X)-X g(U, Y)+g(U,[X, Y])
$$

Now we calculate the contents of $A\left(X_{i}, X_{j}\right), A\left(X_{k}, T_{i l} j_{l}\right)$, and $A\left(T_{i_{l} j_{l}}, T_{i_{s} j_{s}}\right)$ as follows. Since $\left\{T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, T_{i_{3} j_{3}}\right\}$ is linearly independent, $T_{i j}$ can be expressed as

$$
T_{i j}=\sum_{l=1}^{3} \alpha_{l}^{i j} T_{i l} j_{l},
$$

which yields

$$
A\left(X_{i}, X_{j}\right)=X_{j} a_{i}-X_{i} a_{j}+g\left(U, T_{i j}\right)=X_{j} a_{i}-X_{i} a_{j}+\sum_{l=1}^{3} \alpha_{l}^{i j} c_{i j_{l}} .
$$

So $A\left(X_{i}, X_{j}\right)=0$ implies (2.4). Next, since $\left[X_{j},\left[X_{n}, X_{m}\right]\right]=0$, we have

$$
A\left(X_{k}, T_{i_{l} j_{l}}\right)=\left[X_{i_{l}}, X_{j_{l}}\right] a_{k}-X_{k}\left(X_{i_{l}} a_{j_{l}}-X_{j_{l}} a_{i_{l}}\right) .
$$

So $A\left(X_{k}, T_{i l j_{l}}\right)=0$ implies (2.5). Now the fact $\left[T_{i l j_{l}}, T_{i_{s} j_{s}}\right]=0$ implies

$$
A\left(T_{i_{l} j_{l}}, T_{i_{s} j_{s}}\right)=\left[X_{i_{s}}, X_{j_{s}}\right]\left(X_{i_{l}} a_{j_{l}}-X_{j_{l}} a_{i_{l}}\right)-\left[X_{i_{l}}, X_{j_{l}}\right]\left(X_{i_{s}} a_{j_{s}}-X_{j_{s}} a_{i_{s}}\right) .
$$

Due to $\left[X_{j},\left[X_{n}, X_{m}\right]\right]=0$, the previous equality becomes

$$
A\left(T_{i l j}, T_{i_{s} j_{s}}\right)=-X_{j_{l}} A\left(X_{i_{l}}, T_{i_{s} j_{s}}\right)+X_{i_{l}} A\left(X_{j_{l}}, T_{i_{s} j_{s}}\right), \quad 1 \leq l, s \leq 3
$$

Applying $A\left(X_{i_{l}}, T_{i_{s} j_{s}}\right)=A\left(X_{j_{l}}, T_{i_{s} j_{s}}\right)=0$ to obtain $A\left(T_{i_{l} j_{l}}, T_{i_{s} j_{s}}\right)=0$. In summary, $X_{1} f=a_{1}, X_{2} f=a_{2}, X_{3} f=a_{3}, X_{4} f=a_{4}$ is solvable if and only if (2.4) and (2.5) hold.

Theorem 2.4 is actually a revised version of the corresponding theorem in [5]. We newly discovered (2.4) as part of the integrability condition due to incomplete computation of $g\left(U, T_{i j}\right)$ of the corresponding theorem in [5].

3. Poincaré lemma

If the system (1.1) is solvable, the potential function f can be solved explicitly in an integral form. The following theorem is the case in \mathcal{H}^{1}.

Theorem 3.1 ([3]). Let $X_{1}=\partial_{x}-2 y \partial_{z}, X_{2}=\partial_{y}+2 x \partial_{z}$ be the Heisenberg vector fields and $\mathbf{p}=(x, y, z)$ in \mathcal{H}^{1}. Given any smooth functions a and b, and set

$$
c=X_{1} b-X_{2} a, \quad a_{1}=a+y \frac{c}{2}, \quad b_{1}=b-x \frac{c}{2}, \quad c_{1}=\frac{c}{4}
$$

Consider

$$
f(\mathbf{p})=\int_{0}^{1}\left[a_{1}(t \mathbf{p}) x+b_{1}(t \mathbf{p}) y+c_{1}(t \mathbf{p}) z\right] d t
$$

Then

$$
\begin{aligned}
& \left(X_{1} f\right)(\mathbf{p})=a(\mathbf{p})+\int_{0}^{1} \frac{t z}{4}\left(X_{1}^{2} b-\left(X_{1} X_{2}+\left[X_{1}, X_{2}\right]\right) a\right)(t \mathbf{p}) d t \\
& \left(X_{2} f\right)(\mathbf{p})=b(\mathbf{p})-\int_{0}^{1} \frac{t z}{4}\left(X_{2}^{2} a-\left(X_{2} X_{1}+\left[X_{2}, X_{1}\right]\right) b\right)(t \mathbf{p}) d t
\end{aligned}
$$

If the conditions

$$
X_{1}^{2} b=\left(X_{1} X_{2}+\left[X_{1}, X_{2}\right]\right) a, \quad X_{2}^{2} a=\left(X_{2} X_{1}+\left[X_{2}, X_{1}\right]\right) b
$$

hold, then $X_{1} f=a, X_{2} f=b$ with

$$
f(\mathbf{p})=\int_{0}^{1}[a(t \mathbf{p}) x+b(t \mathbf{p}) y] d t
$$

Based on the integrability condition for \mathcal{H}^{n} in Theorem 2.2, the Poincaré's lemma for \mathcal{H}^{n} is able to be deduced. The derivation of the potential function should also be considered in nonisotropic case.

Theorem 3.2. Let $X_{j}, Y_{j}, j=1, \ldots, n$ be the Heisenberg vector fields on \mathcal{H}^{n} defined in (1.3). Given smooth functions $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$ with

$$
\begin{gather*}
X_{j} b_{j}-Y_{j} a_{j}= \begin{cases}0, & \text { if } \alpha_{j}=0 \\
\frac{\alpha_{j}}{\alpha_{j_{0}}}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right), & \text { if } \alpha_{j} \neq 0\end{cases} \\
c^{*}=\frac{X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}}{4 \alpha_{j_{0}}}, \quad a_{j}^{*}=a_{j}+2 \alpha_{j} y_{j} c^{*}, \quad b_{j}^{*}=b_{j}-2 \alpha_{j} x_{j} c^{*}, \tag{3.1}
\end{gather*}
$$

for $1 \leq j \leq n$. Consider

$$
f(\mathbf{p})=\int_{0}^{1} \sum_{j=1}^{n}\left(a_{j}^{*}(t \mathbf{p}) x_{j}+b_{j}^{*}(t \mathbf{p}) y_{j}\right)+c^{*}(t \mathbf{p}) z d t
$$

where $\mathbf{p}=\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, z\right)$ in \mathcal{H}^{n}. Then for $l=1, \ldots, n$,

$$
\begin{aligned}
X_{l} f(\mathbf{p})=a_{l}(\mathbf{p})+\int_{0}^{1} t\{ & \sum_{\substack{j=1 \\
j \neq l}}^{n}\left[x_{j}\left(X_{l} a_{j}-X_{j} a_{l}\right)(t \mathbf{p})+y_{j}\left(X_{l} b_{j}-Y_{j} a_{l}\right)(t \mathbf{p})\right] \\
& \left.+\frac{z}{4 \alpha_{j_{0}}}\left(X_{l}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right)-\left[X_{j_{0}}, Y_{j_{0}}\right] a_{l}\right)(t \mathbf{p})\right\} d t, \\
Y_{l} f(\mathbf{p})=b_{l}(\mathbf{p})+\int_{0}^{1} t\{ & \sum_{\substack{j=1 \\
j \neq l}}^{n}\left[x_{j}\left(Y_{l} a_{j}-X_{j} b_{l}\right)(t \mathbf{p})+y_{j}\left(Y_{l} b_{j}-Y_{j} b_{l}\right)(t \mathbf{p})\right] \\
& \left.+\frac{z}{4 \alpha_{j_{0}}}\left(Y_{l}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right)-\left[X_{j_{0}}, Y_{j_{0}}\right] b_{l}\right)(t \mathbf{p})\right\} d t
\end{aligned}
$$

If the conditions

$$
\begin{aligned}
& {\left[X_{j_{0}}, Y_{j_{0}}\right] a_{j}=X_{j}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right), \quad\left[X_{j_{0}}, Y_{j_{0}}\right] b_{j}=Y_{j}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right),} \\
& X_{l} a_{j}=X_{j} a_{l}, \quad X_{j} b_{l}=Y_{l} a_{j}, \quad Y_{l} b_{j}=Y_{j} b_{l}, \quad 1 \leq j \neq l \leq n \\
& x_{0},
\end{aligned}
$$

hold, then the system $X_{j} f=a_{j}, Y_{j} f=b_{j}, j=1, \ldots, n$ is solvable and

$$
f(\mathbf{p})=\int_{0}^{1} g(U(\gamma(t)), \dot{\gamma}(t)) d t
$$

where γ is a horizontal curve joining the origin and $\mathbf{p}, U=\sum_{j=1}^{n}\left(a_{j} X_{j}+b_{j} Y_{j}\right)$, and $g(\cdot, \cdot)$ is the subRiemannian metric.

Proof. By (1.3),

$$
\left\{\begin{array} { c }
{ X _ { 1 } f = a _ { 1 } } \\
{ Y _ { 1 } f = b _ { 1 } } \\
{ \vdots } \\
{ X _ { n } f = a _ { n } } \\
{ Y _ { n } f = b _ { n } }
\end{array} \Leftrightarrow \left\{\begin{array} { c }
{ \partial _ { x _ { 1 } } f = a _ { 1 } + 2 \alpha _ { 1 } y _ { 1 } \partial _ { z } f } \\
{ \partial _ { y _ { 1 } } f = b _ { 1 } - 2 \alpha _ { 1 } x _ { 1 } \partial _ { z } f } \\
{ \vdots } \\
{ \partial _ { x _ { n } } f = a _ { n } + 2 \alpha _ { n } y _ { n } \partial _ { z } f } \\
{ \partial _ { y _ { n } } f = b _ { n } - 2 \alpha _ { n } x _ { n } \partial _ { z } f }
\end{array} \Leftrightarrow \left\{\begin{array} { c }
{ \partial _ { x _ { 1 } } f = a _ { 1 } ^ { * } } \\
{ \partial _ { y _ { 1 } } f = b _ { 1 } ^ { * } } \\
{ \vdots } \\
{ \partial _ { x _ { n } } f = a _ { n } ^ { * } } \\
{ \partial _ { y _ { n } } f = b _ { n } ^ { * } }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
\partial_{x_{1}} f=a_{1}^{*} \\
\partial_{y_{1}} f=b_{1}^{*} \\
\vdots \\
\partial_{x_{n}} f=a_{n}^{*} \\
\partial_{y_{n} f=b_{n}^{*}}^{\partial_{z} f=c^{*},}
\end{array}\right.\right.\right.\right.
$$

where $c^{*}, a_{j}^{*}, b_{j}^{*}$ are defined in (3.1). Consider

$$
\begin{equation*}
f(\mathbf{p})=\int_{\gamma(t)} \omega=\int_{0}^{1} \sum_{j=1}^{n}\left(a_{j}^{*}(t \mathbf{p}) x_{j}+b_{j}^{*}(t \mathbf{p}) y_{j}\right)+c^{*}(t \mathbf{p}) z d t, \tag{3.2}
\end{equation*}
$$

where $\omega=\sum_{j=1}^{n}\left(a_{j}^{*} d x_{j}+b_{j}^{*} d y_{j}\right)+c^{*} d z$ and

$$
\begin{aligned}
\gamma(t) & =t \mathbf{p}=\left(t x_{1}, t y_{1}, \ldots, t x_{n}, t y_{n}, t z\right) \\
& =\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t), y_{n}(t), z(t)\right), \quad t \in[0,1]
\end{aligned}
$$

is a horizontal curve connecting the origin and $\mathbf{p}=\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, z\right)$ in \mathcal{H}^{n}. Applying partial derivatives $\partial_{x_{l}}, \partial_{y_{l}}$, and ∂_{z} on (3.2), and by (1.3),

$$
\begin{aligned}
\left(\begin{array}{c}
X_{1} f(\mathbf{p}) \\
Y_{1} f(\mathbf{p}) \\
\vdots \\
X_{n} f(\mathbf{p}) \\
Y_{n} f(\mathbf{p})
\end{array}\right) & =B\left(\begin{array}{c}
\partial_{x_{1}} f(\mathbf{p}) \\
\partial_{y_{1}} f(\mathbf{p}) \\
\vdots \\
\partial_{x_{n}} f(\mathbf{p}) \\
\partial_{y_{n}} f(\mathbf{p}) \\
\partial_{z} f(\mathbf{p})
\end{array}\right)=B\left(\begin{array}{c}
a_{1}^{*}(\mathbf{p}) \\
b_{1}^{*}(\mathbf{p}) \\
\vdots \\
a_{n}^{*}(\mathbf{p}) \\
b_{n}^{*}(\mathbf{p}) \\
c^{*}(\mathbf{p})
\end{array}\right)+\int_{0}^{1}\left(t B M \mathbf{p}^{T}\right)(t \mathbf{p}) d t \\
& =\left(\begin{array}{c}
a_{1}(\mathbf{p}) \\
b_{1}(\mathbf{p}) \\
\vdots \\
a_{n}(\mathbf{p}) \\
b_{n}(\mathbf{p})
\end{array}\right)+\int_{0}^{1}\left(t B M \mathbf{p}^{T}\right)(t \mathbf{p}) d t
\end{aligned}
$$

where

$$
B=\left(\begin{array}{cccccc}
1 & 0 & \cdots & 0 & 0 & -2 \alpha_{1} y_{1} \\
& 1 & \cdots & 0 & 0 & 2 \alpha_{1} x_{1} \\
& & \ddots & & & \vdots \\
& & & 1 & 0 & -2 \alpha_{n} y_{n} \\
& & & & 1 & 2 \alpha_{n} x_{n}
\end{array}\right)
$$

is a $2 n \times(2 n+1)$ upper-triangular matrix, and $M=\left(m_{i j}\right)$ is a $(2 n+1) \times(2 n+1)$ skew-symmetric matrix with entries

$$
m_{i j}:=\left\{\begin{array}{ll}
m_{(2 l-1)(2 s-1)} & =\partial_{x_{l}} a_{s}^{*}-\partial_{x_{s}} a_{l}^{*} \\
m_{(2 l)(2 s-1)} & =\partial_{y_{l}} a_{s}^{*}-\partial_{x_{s}} b_{l}^{*} \\
m_{(2 l-1)(2 s)} & =\partial_{x_{l}} b_{s}^{*}-\partial_{y_{s}} a_{l}^{*} \\
m_{(2 l)(2 s)} & =\partial_{y_{l}} b_{s}^{*}-\partial_{y_{s}} b_{l}^{*}
\end{array}\right\} 1 \leq l \leq s \leq n
$$

The integrand $t B M \mathbf{p}^{T}$ of (3.3) is a vector with $2 n$ entries

$$
\begin{aligned}
\left(t B M \mathbf{p}^{T}\right)_{2 l-1}= & t\left\{\sum_{\substack{j=1 \\
j \neq l}}^{n}\left[x_{j}\left(X_{l} a_{j}-X_{j} a_{l}\right)+y_{j}\left(X_{l} b_{j}-Y_{j} a_{l}\right)\right]\right. \\
& \left.+\frac{z}{4 \alpha_{j_{0}}}\left(X_{l}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right)-\left[X_{j_{0}}, Y_{j_{0}}\right] a_{l}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(t B M \mathbf{p}^{T}\right)_{2 l}= & t\left\{\sum_{\substack{j=1 \\
j \neq l}}^{n}\left[x_{j}\left(Y_{l} a_{j}-X_{j} b_{l}\right)+y_{j}\left(Y_{l} b_{j}-Y_{j} b_{l}\right)\right]\right. \\
& \left.+\frac{z}{4 \alpha_{j_{0}}}\left(Y_{l}\left(X_{j_{0}} b_{j_{0}}-Y_{j_{0}} a_{j_{0}}\right)-\left[X_{j_{0}}, Y_{j_{0}}\right] b_{l}\right)\right\}
\end{aligned}
$$

for $l=1, \ldots, n$. Under the integrability condition (2.1), the entries of the integrand $t B M \mathbf{p}^{T}$ are all zero. Hence the system $X_{j} f=a_{j}, Y_{j} f=b_{j}, j=1, \ldots, n$ holds and
its solution f can be deduced from (3.2) as

$$
\begin{align*}
\int_{\gamma(t)} \omega & =\int_{0}^{1} \sum_{j=1}^{n}\left(a_{j}^{*}(\gamma(t)) \dot{x}_{j}+b_{j}^{*}(\gamma(t)) \dot{y}_{j}\right)+c^{*}(\gamma(t)) \dot{z} d t \\
(3.4) & =\int_{0}^{1} \sum_{j=1}^{n}\left(a_{j}(\gamma(t)) \dot{x}_{j}+b_{j}(\gamma(t)) \dot{y}_{j}\right)+\left[\dot{z}-2 \sum_{j=1}^{n} \alpha_{j}\left(x_{j} \dot{y}_{j}-y_{j} \dot{x}_{j}\right)\right] c^{*}(\gamma(t)) d t . \tag{3.4}
\end{align*}
$$

Note that

$$
\begin{equation*}
\dot{\gamma}=\sum_{j=1}^{n}\left(\dot{x}_{j} X_{j}+\dot{y}_{j} Y_{j}\right)+\left[\dot{z}-2 \sum_{j=1}^{n} \alpha_{j}\left(x_{j} \dot{y}_{j}-y_{j} \dot{x}_{j}\right)\right] \partial_{z} . \tag{3.5}
\end{equation*}
$$

Since γ is horizontal, $\dot{\gamma}$ can be constructed only by X_{j} 's and Y_{j} 's. Hence by (3.5), $\dot{z}=2 \sum_{j=1}^{n} \alpha_{j}\left(x_{j} \dot{y}_{j}-y_{j} \dot{x}_{j}\right)$ and so (3.4) turns into

$$
\int_{0}^{1} \sum_{j=1}^{n}\left(a_{j}(\gamma(t)) \dot{x}_{j}+b_{j}(\gamma(t)) \dot{y}_{j}\right) d t=\int_{0}^{1} g(U(\gamma(t)), \dot{\gamma}(t)) d t
$$

where $U=\sum_{j=1}^{n}\left(a_{j} X_{j}+b_{j} Y_{j}\right)$ and $g(\cdot, \cdot)$ is the subRiemannian metric.
The isotropic version for Poincare's lemma in \mathcal{H}^{n} is particularly true. We simply recorded this particular result from our earlier paper as follows.
Corollary 3.3 ([4]). Let $X_{j}, Y_{j}, j=1, \ldots, n$ be the Heisenberg vector fields on \mathcal{H}^{n} defined in (1.3) with $\alpha_{j}=1$ for $j=1, \ldots, n$. Given smooth functions $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$ with

$$
X_{1} b_{1}-Y_{1} a_{1}=\cdots=X_{n} b_{n}-Y_{n} a_{n}
$$

and let

$$
c^{*}=\frac{X_{j} b_{j}-Y_{j} a_{j}}{4}, \quad a_{j}^{*}=a_{j}+2 y_{j} c^{*}, \quad b_{j}^{*}=b_{j}-2 x_{j} c^{*}, \quad 1 \leq j \leq n .
$$

Consider

$$
f(\mathbf{p})=\int_{0}^{1} \sum_{j=1}^{n}\left(a_{j}^{*}(t \mathbf{p}) x_{j}+b_{j}^{*}(t \mathbf{p}) y_{j}\right)+c^{*}(t \mathbf{p}) z d t
$$

where $\mathbf{p}=\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, z\right)$ in \mathcal{H}^{n}. Then for $l=1, \ldots, n$,

$$
\left.\begin{array}{rl}
X_{l} f(\mathbf{p})=a_{l}(\mathbf{p})+\int_{0}^{1} t & t\left\{\begin{array}{c}
\substack{j=1 \\
j \neq l}
\end{array}\right]\left[x_{j}\left(X_{l} a_{j}-X_{j} a_{l}\right)(t \mathbf{p})+y_{j}\left(X_{l} b_{j}-Y_{j} a_{l}\right)(t \mathbf{p})\right] \\
& \left.+\frac{z}{4}\left(X_{l}^{2} b_{l}-\left(X_{l} Y_{l}+\left[X_{l}, Y_{l}\right]\right) a_{l}\right)(t \mathbf{p})\right\} d t
\end{array}\right\} \begin{aligned}
Y_{l} f(\mathbf{p})=b_{l}(\mathbf{p})+\int_{0}^{1} t\{ & \left\{\begin{array}{c}
\substack{j=1 \\
j \neq l}
\end{array}\left[x_{j}\left(Y_{l} a_{j}-X_{j} b_{l}\right)(t \mathbf{p})+y_{j}\left(Y_{l} b_{j}-Y_{j} b_{l}\right)(t \mathbf{p})\right]\right. \\
& \left.+\frac{z}{4}\left(\left(Y_{l} X_{l}+\left[Y_{l}, X_{l}\right]\right) b_{l}-Y_{l}^{2} a_{l}\right)(t \mathbf{p})\right\} d t .
\end{aligned}
$$

If the conditions

$$
\begin{aligned}
& X_{j}^{2} b_{j}=\left(\left[X_{j}, Y_{j}\right]+X_{j} Y_{j}\right) a_{j}, \quad Y_{j}^{2} a_{j}=\left(\left[Y_{j}, X_{j}\right]+Y_{j} X_{j}\right) b_{j} \\
& X_{l} a_{j}=X_{j} a_{l}, \quad X_{j} b_{l}=Y_{l} a_{j}, \quad Y_{l} b_{j}=Y_{j} b_{l}, \quad 1 \leq j \neq l \leq n
\end{aligned}
$$

hold, then the system $X_{j} f=a_{j}, Y_{j} f=b_{j}, j=1, \ldots, n$ is solvable and

$$
\begin{equation*}
f(\mathbf{p})=\int_{0}^{1} g(U(\gamma(t)), \dot{\gamma}(t)) d t \tag{3.6}
\end{equation*}
$$

where γ is a horizontal curve joining the origin and $\mathbf{p}, U=\sum_{j=1}^{n}\left(a_{j} X_{j}+b_{j} Y_{j}\right)$, and $g(\cdot, \cdot)$ is the subRiemannian metric.

The potential function on $q H^{1}$ explored by Wu [8] was recorded as follows.
Theorem 3.4 ([8]). Let $X_{1}, X_{2}, X_{3}, X_{4}$ be the vector fields on $q H^{1}$ given in (1.5). $\operatorname{Let}\left\{\left[X_{i_{1}}, X_{j_{1}}\right],\left[X_{i_{2}}, X_{j_{2}}\right],\left[X_{i_{3}}, X_{j_{3}}\right]\right\}$ be a basis of $\operatorname{span}\left\{\frac{\partial}{\partial y_{1}}, \frac{\partial}{\partial y_{2}}, \frac{\partial}{\partial y_{3}}\right\}$, where $X_{i_{l}}, X_{j_{l}}$ are chosen from $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ with $i_{l}<j_{l}$. Consider any smooth functions $a_{1}, a_{2}, a_{3}, a_{4}$,

$$
\begin{aligned}
\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) & =-\frac{1}{2}\left(\begin{array}{lll}
a_{i_{1} j_{1}}^{1} & a_{i_{1} j_{1}}^{2} & a_{i_{1} j_{1}}^{3} \\
a_{i_{2} j_{2}}^{1} & a_{i_{2} j_{2}}^{2} & a_{i_{2} j_{2}}^{3} \\
a_{i_{3} j_{3}}^{1} & a_{i_{3} j_{3}}^{2} & a_{i_{3} j_{3}}^{3}
\end{array}\right)^{-1}\left(\begin{array}{l}
X_{i_{1}} a_{j_{1}}-X_{j_{1}} a_{i_{1}} \\
X_{i_{2}} a_{j_{2}}-X_{j_{2}} a_{i_{2}} \\
X_{i_{3}} a_{j_{3}}-X_{j_{3}} a_{i_{3}}
\end{array}\right) \\
a_{j}^{*} & =a_{j}+\frac{1}{2} \sum_{k=1}^{4} x_{k}\left(X_{j} a_{k}-X_{k} a_{j}\right), \quad j=1,2,3,4
\end{aligned}
$$

and let

$$
f(\mathbf{p})=\int_{0}^{1}\left[\sum_{j=1}^{4} a_{j}^{*}(t \mathbf{p}) x_{j}+\sum_{l=1}^{3} c_{l}(t \mathbf{p}) y_{l}\right] d t
$$

where $\mathbf{p}=\left(x_{1}, x_{2}, x_{3}, x_{3}, y_{1}, y_{2}, y_{3}\right)$. Then for $i=1,2,3,4$,

$$
\begin{aligned}
\left(X_{i} f\right)(\mathbf{p})=a_{i}(\mathbf{p})- & \int_{0}^{1} \frac{t}{2}\left(y_{1}, y_{2}, y_{3}\right)\left(\begin{array}{ccc}
a_{i_{1} j_{1}}^{1} & a_{i_{1} j_{1}}^{2} & a_{i_{1} j_{1}}^{3} \\
a_{i_{2} j_{2}}^{1} & a_{i_{2} j_{2}}^{2} & a_{i_{2} j_{2}}^{3} \\
a_{i_{3} j_{3}}^{1} & a_{i_{3} j_{3}}^{2} & a_{i_{3} j_{3}}^{3}
\end{array}\right)^{-1} \\
& \times\left[\begin{array}{l}
\left.X_{i}\left(\begin{array}{l}
X_{i_{1}} a_{j_{1}}-X_{j_{1}} a_{i_{1}} \\
X_{i_{2}} a_{j_{2}}-X_{j_{2}} a_{i_{2}} \\
X_{i_{3}} a_{j_{3}}-X_{j_{3}} a_{i_{3}}
\end{array}\right)-\left(\begin{array}{l}
{\left[X_{i_{1}}, X_{j_{1}}\right]} \\
{\left[X_{i_{2}}, X_{j_{2}}\right]} \\
{\left[X_{i_{3}}, X_{j_{3}}\right]}
\end{array}\right) a_{i}\right] d t .
\end{array} .\right.
\end{aligned}
$$

If the integrability conditions (2.4) and (2.5) hold, then the system of equations $X_{1} f=a_{1}, X_{2} f=a_{2}, X_{3} f=a_{3}, X_{4} f=a_{4}$ is solvable and

$$
f(\mathbf{p})=\int_{0}^{1} g\left(U(\gamma(t)), \gamma^{\prime}(t)\right) d t
$$

where $U=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}, \gamma(t)$ is a horizontal curve connecting the origin and \mathbf{p}, and $g(\cdot, \cdot)$ is the subRiemannian metric.

As of Corollary 3.3, we may also state the Poincaré's lemma for isotropic quaternion Heisenberg groups. However, the contents will be almost the same as Theorem 3.4. One only has to add an additional assumption (1.7) for vector fields (1.5) comparing with Theorem 3.4. We thus omit it.

Remark 3.5. The Heisenberg groups \mathcal{H}^{n} and the quaternion Heisenberg groups $q H^{1}$ are, in fact, nilpotent Lie groups of step two since by (1.3),

$$
\left[X_{j},\left[X_{k}, Y_{k}\right]\right]=\left[Y_{j},\left[X_{k}, Y_{k}\right]\right]=0, \quad j, k=1,2, \ldots, n
$$

and since by (1.5),

$$
\left[X_{j},\left[X_{k}, X_{l}\right]\right]=0, \quad j, k, l=1,2,3,4
$$

An article of the Poincaré lemma on nilpotent Lie groups of step two will appear soon.

References

[1] R. Beals, B. Gaveau and P. C. Greiner, Hamilton-Jacobi theory and the heat kernel on Heisenberg groups, J. Math. Pures Appl. 79 (2000), 633-689.
[2] O. Calin, D. C. Chang, and M. Eastwood, Integrability conditions for Heisenberg and Grushintype distributions, Anal. Math. Phys. 4 (2014), 99-114.
[3] O. Calin, D. C. Chang and J. Hu, Poincaré's lemma on the Heisenberg group, Adv. in Appl. Math. 60 (2014), 90-102.
[4] D. C. Chang, Y. S. Lin, H. C. Wu and N. Yang, Poincaré Lemma on Heisenberg Groups, Appl. Anal. Optim. 1 (2017), 283-300.
[5] D. C. Chang, N. Yang and H. C. Wu, Poincaré lemma on quaternion-like Heisenberg groups, Canad. Math. Bull., (2017), to appear. http://dx.doi.org/10.4153/CMB-2017-027-4
[6] W. L. Chow, Uber Systeme van Linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1939), 98-105.
[7] B. Franchi, N. Tchou, and M. C. Tesi, Div-curl type theorem, H-convergence and Stokes formula in the Heisenberg group, Comm. Contemp. Math. 8 (2006), 67-99.
[8] H. C. Wu, Geometric analysis on quaternion Heisenberg groups, Ph. D dissertation, Fu Jen Catholic University, Taiwan, 2017.

Manuscript received January 32018
revised March 242018

Der-Chen Chang
Department of Mathematics and Department of Computer Science, Georgetown University, Washington D.C. 20057, USA;
Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, Taipei 242, Taiwan, ROC

E-mail address: chang@georgetown.edu
Hsi-Chun Wu
Department of Mathematics, National Central University, Taoyuan 32001, Taiwan, ROC
E-mail address: flyinmoon0217@yahoo.com.tw
Nanping Yang
Department of Mathematics, Fu Jen Catholic University, Taipei 24205, Taiwan, ROC
E-mail address: yang@math.fju.edu.tw

[^0]: 2010 Mathematics Subject Classification. Primary 93B05; Secondary 49N99.
 Key words and phrases. Bracket generating property, Heisenberg group, Curl, Integrability condition, Poincaré lemma.
 *Der-Chen Chang is partially supported by an NSF grant DMS-1408839 and a McDevitt Endowment Fund at Georgetown University.
 ${ }^{\dagger}$ Corresponding author

