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Finally, in order to prove the importance of our results we give two important
applications to some systems of nonlinear fractional differential equations and non-
linear integral equations.

Note that the abstract results which we obtain here may be applied to some other
situations such as nonlinear boundary value problems for elliptic systems, and other
kinds of systems of nonlinear integral equations.

2. Main results

Let (E, ∥.∥E) be a real Banach space and P be a nonempty closed convex set in
E.

P is called a cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥ 0 =⇒ λx ∈ P
(ii) x ∈ P,−x ∈ P =⇒ x = θ, where θ denotes the zero element in E.

The cone P defines a linear ordering in E by

x ≤ y iff y − x ∈ P.

For every open subset U of P (from now on, the topological notions of subsets of P
refer to the relative topology of P as a topological subspace of E) and every compact
map F : Ū → P (F is continuous and F (Ū) is relatively compact), which has no
fixed points on ∂U , there exists an integer, ip(F,U), called the fixed point index
of F on U with respect to P , satisfying the usual properties of the Leray-Schauder
degree.

It is trivial that P ×P is a cone in the Banach space (E ×E, ∥.∥E×E) where, for
each (x, y) ∈ E × E

∥(x, y)∥E×E = max{∥x∥E , ∥y∥E}.
The cone P × P defines a linear ordering in E × E by

(x1, y1) ≤ (x2, y2) iff x2 − x1 ∈ P and y2 − y1 ∈ P.

For any two real numbers 0 < α < β, we denote by Rα,β the set

Rα,β = {(x, y) ∈ P × P : ∥x∥E < α, ∥y∥E < β},

and if r > 0, we denote

Pr = {x ∈ P : ∥x∥E < r}, Sr = {x ∈ P : ∥x∥E = r}.

Define the compact operator F = (G,H) : Rβ,β → P ×P , where G : Rβ,β → P and

H : Rβ,β → P verifying the following hypotheses:

(F1) : There exists a continuous map g : P ×P → P which is linear with respect
to the first variable such that G(x, y) = g(x, y) + r(x, y). Here r is an
o(∥x∥E) for x ∈ P near zero uniformly on bounded y sets.

(F2) : There exists a continuous map h : P ×P → P which is linear with respect
to the second variable such that H(x, y) = h(x, y) + r′(x, y). Here r′ is an
o(∥y∥E) for y ∈ P near zero uniformly on bounded x sets.

To prove the main results in this paper, we will employ the following lemmas :
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Lemma 2.1. The map g transforms every bounded set A × B ⊂ P̄β × P̄β into a
compact set.

Proof. Since the operator g(., y), (y ∈ P̄β) is linear it suffices to consider the case
where A = S1.

Assuming the contrary. Then there exists a sequence of elements (hn, kn) ∈ A×B
satisfying ∥hn∥ = 1 and

∥g(hn, kn)− g(hm, km)∥ ≥ ε0 m ̸= n,

where ε0 is some positive number. From hypothesis (F1) we can choose a δ > 0
such that

∥G(x, y)− g(x, y)∥ ≤ ε0
3
∥x∥, ∀(x, y) ∈ P̄β ×B and ∥x∥ < δ.

Whence, for m ̸= n we have

∥G(δhn, kn)−G(δhm, km)∥ ≥ δ∥g(hn, kn)− g(hm, km)∥
− ∥G(δhn, kn)− g(δhn, kn)∥
− ∥G(δhm, km)− g(δhm, km)∥

≥ ε0δ

3
.

From which it follows that G(S1×B) is not compact. This contradiction completes
the proof of the lemma. �

In a similar way, one can see that h is compact on bounded subsets of P̄β × P̄β.
In the following, define the set A = H(P̄β × P̄β) ∩ P̄β.

Lemma 2.2. Under the previous hypotheses, we suppose that, for every y ∈ P̄β, 1
is not an eigenvalue of g(., y) to a positive eigenvector. Then a number α1 > 0 can
be found such that

∥x− g(x, y)∥ > α1, ∀x ∈ S1, ∀y ∈ A.

Hence, there exists a positive number α1 > 0 such that

∥x− g(x, y)∥ > α1∥x∥, ∀x ∈ P, ∀y ∈ A.

Proof. We shall carry out the proof from the contrary. In fact, we construct a
sequence of elements xn ∈ S1, yn ∈ A such that ∥xn − g(xn, yn)∥ → 0. Without loss
of generality, it could be assumed that g(xn, yn) would converge to some element
z ∈ P and the elements yn also would converge to y ∈ P̄β. Then the elements
xn also would converge to z ∈ S1 and the equality z = g(z, y) would hold. This
contradiction completes the proof of the lemma. �

After these preparations we are ready for the statement of our main results:

Theorem 2.3. Let F : Rβ,β → P × P be a compact map verifying the previous
hypotheses (F1)-(F2) and

(H1)
G(x, y) ̸= λx ∀(x, y) ∈ Sβ × P̄β ∀λ ≥ 1

and
H(x, y) ̸= λy ∀(x, y) ∈ P̄β × Sβ ∀λ ≥ 1



62 M. S. EL KHANNOUSSI AND A. ZERTITI

(H2) For every (x, y) ∈ P̄β × P̄β, 1 is neither an eigenvalue of g(., y) nor of
h(x, .) to a positive eigenvector and both g(., y) and h(x, .) possess a positive
eigenvector to an eigenvalue greater than one.

Then F has at least one fixed point (x1, y1) in P \ {0} × P \ {0}.

Proof. We shall use the following notation

U = Rβ,β.

The proof is based on the following steps:
a)

iP×P (F,U) = 1.

Indeed, define the homotopy h : [0, 1] × Ū → P × P by h(λ, x, y) = λF (x, y). It is
clear that h is compact and from (H1) we have

h(λ, x, y) ̸= (x, y), ∀(λ, x, y) ∈ [0, 1]× ∂U.

Hence, by homotopy invariance property

iP×P (F,U) = iP×P (h(1, .), U) = iP×P (h(0, .), U) = 1.

b) In view of Lemma 2.2 there exists a positive constant α1 such that

(2.1) ∥x− g(x, y)∥ ≥ α1∥x∥ ∀x ∈ P ∀y ∈ A.

Choose ρ1 ∈ (0, β] such that for all x ∈ P̄ρ1 and y ∈ P̄β

∥G(x, y)− g(x, y)∥ ≤ α1
∥x∥
2

.

Then for every σ ∈ (0, ρ1], every z1 ∈ P satisfying ∥z1∥ < σα1
2 and every λ ∈ [0, 1]

the map (1− λ)(g + z1,H) + λF = Kλ possesses no fixed point on ∂Rσ,β.
Indeed, by taking into account that

∂Rσ,β ={(x, y) ∈ P × P : ∥y∥E = β, ∥x∥E ≤ σ}
∪ {(x, y) ∈ P × P : ∥y∥E ≤ β, ∥x∥E = σ},

we distinguish two cases :
1) ∥y∥E = β, ∥x∥E ≤ σ
If Kλ(x, y) = (x, y) then

(1− λ)H(x, y) + λH(x, y) = H(x, y) = y

which contradicts (H1).
2) ∥y∥E ≤ β, ∥x∥E = σ
If Kλ(x, y) = (x, y) we get y = H(x, y) ∈ A. But from the equalities

∥x− (1− λ)(g(x, y) + z1)− λG(x, y)∥ ≥ ∥x− g(x, y)∥
− ∥G(x, y)− g(x, y)∥ − ∥z1∥

≥ σ(α1 −
α1

2
− ∥z1∥

σ
) > 0.

we obtain a contradiction.
Then by the homotopy invariance property

iP×P (F,Rσ,β) = iP×P ((g + z1,H), Rσ,β).
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Next we prove that
iP×P ((g + z1,H), Rσ,β) = 0.

In fact, let y ∈ P̄β and denote by h ∈ S1 an eigenvector of g(., y) to an eigenvalue
λ > 1: Then we claim that, for every ν > 0, the equation x − g(x, y) = νh
has no positive solution, indeed, suppose that there exists a solution x > 0 for some
ν > 0. Then there exists a nonnegative number τ0 such that x ≥ τ0h and x � τh
for τ > τ0. Hence we obtain the inequality

x = g(x, y) + νh ≥ g(τ0h, y) + νh ≥ (τ0 + ν)h,

which contradicts the maximality of τ0.
Now by setting z = νh with 0 < ν < σα1

2 , the solution property implies

iP×P (F,Rσ,β) = iP×P ((g + νh,H), Rσ,β) = 0.

c) Similarly, we find a positive constants α2 and ρ2 ∈ (0, β] satisfying

∥y − h(x, y)∥ ≥ α2∥y∥ ∀y ∈ P, ∀x ∈ B = G(P̄β)× P̄β)) ∩ P̄β

and for all y ∈ P̄ρ2 and x ∈ P̄β

∥H(x, y)− h(x, y)∥ ≤ α2
∥y∥
2

.

Then for every σ ∈ (0, ρ2], every z2 ∈ P satisfying ∥z2∥ < σα2
2 and every λ ∈ [0, 1]

the map (1 − λ)(G,h + z2) + λF = K ′
λ possesses no fixed point on ∂Rβ,σ. Then,

from what has already been proved

iP×P (F,Rβ,σ) = iP×P ((G,h+ z2), Rβ,σ) = 0.

d) Next, we prove that there exists r > 0 such that if (x, y) ∈ P̄β × P̄β and λ > 0
satisfy (x, y) = F (x, y) + λ(h0, k0) then ∥(x, y)∥ > r, where (h0, k0) is a fixed
element in P × P \ {(0, 0)}. From which it will follows that (see Lemma 12.1 in
[1]) iP×P (F,Rσ,σ) = 0, for all σ ∈ (0, r]. Assuming the contrary, then there exist
sequences (xn, yn) ∈ P̄β × P̄β, λn ∈ R+ such that (xn, yn) = F (xn, yn) + λn(h0, k0)

and ∥(xn, yn)∥ < 1
n . Then xn = G(xn, yn) + λnh0. (Here we suppose that h0 ∈

P \ {0}).
Writing the last equality in the form

(2.2) λn
h0

∥xn∥
=

xn
∥xn∥

− G(xn, yn)− g(xn, yn)

∥xn∥
− g(xn, yn)

∥xn∥
,

and using Lemma (2.1) we may as well assume that g(xn,yn)
∥xn∥ converge to some z ∈ P .

It then follows from equality (2.2) that

∥h0∥lim
λn

∥xn∥
≤ 1 + ∥z∥.

Therefore, without loss of generality, it can be assumed that the sequence λn
∥xn∥

converges to some number α ≥ 0. By virtue of (2.2) we can assume that xn
∥xn∥

converges to some element u0 ∈ P and ∥u0∥ = 1. Passing to the limit in (2.2) we
obtain u0 = αh0 + g(u0, 0). It then follows from Hypothesis (H2) of the theorem
that α > 0. Therefore and from what has already been proved above, we obtain a
contradiction.
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e) For fixed ρ = min{ρ1, ρ2, r}, we shall use the following notation

U = Rβ,β , U1 = Rρ,β, U2 = Rβ,ρ U3 = Rρ,ρ

U4 = U \ Ū1 ∪ Ū2, U5 = U1 \ Ū3, U6 = U2 \ Ū3.

Therefore

U4 = {(x, y) ∈ P × P : ρ < ∥x∥E < β, ρ < ∥y∥E < β}.

Now, observe that if λ = 1, F = K1 = K ′
1 has no fixed point on ∂U1 ∪ ∂U2. Then

F has no fixed point on ∂U1 ∪ ∂U2 ∪ ∂U .
U3 and U5 are disjoint open subsets of U1 such that F has no fixed points on

Ū1 \ (U3 ∪ U5), in fact Ū1 \ (U3 ∪ U5) ⊂ ∂U1 ∪ ∂U2. Therefore by the additivity
property

iP×P (F,U5) = iP×P (F,U1)− iP×P (F,U3) = 0.

Similarly, we have

iP×P (F,U6) = iP×P (F,U2)− iP×P (F,U3) = 0.

Finally, (U3∪U5∪U6) and U4 are disjoint open subsets of U such that F has no fixed
points on Ū \ (U3∪U5∪U6∪U4), in fact Ū \ (U3∪U5∪U6∪U4) ⊂ (∂U ∪∂U1∪∂U2).
Therefore and by the additivity property

iP×P (F,U4) = iP×P (F,U)− iP×P (F,U3)− iP×P (F,U5)− iP×P (F,U6)

= 1,

which implies the existence of a fixed point (x1, y1) of F satisfying (1.1). �

Suppose, in addition, that the maps G and H satisfy the following hypothesis

(2.3) G(0, y) = H(x, 0) = 0, ∀(x, y) ∈ P̄β × P̄β.

Then, we can prove the existence of two fixed point (semi-trivial solutions)
(x0, 0), (0, y0), of F satisfying (1.1).

Indeed, define the map G1 : P̄β → P by G1(x) = G(x, 0). Clearly G1 is a compact
map such that G′

1+(0)h = g(h, 0), ∀h ∈ P . Then from (H2) and lemma 13.1 in
[1] there exists σ0 ∈ (0, β) such that for every σ ∈ (0, σ0), iP (G1, Pσ) = 0. On the
other hand from hypothesis (H1), we have G1(x) ̸= λx, ∀λ ≥ 1, ∀x ∈ Sβ, then
iP (G1, Pβ) = 1 (see Lemma 12.1 in [1]). Therefore, by the additivity property we
have iP (G1, Pβ \ P̄σ) = 1. Consequently, G1 has at least one fixed point x0 with
σ < ∥x0∥E < β. Now (x0, 0) is a fixed point of F .

In a similar manner we can prove the existence of (0, y0).

Remark 1. If P has nonempty interior and g(., y) (resp h(x, 0)) is strongly positive
for every y ∈ P̄β (resp x ∈ P̄β) then it is well known that (see [6], [5]) the spectral
radius of g(., y) (resp h(x, 0)) is an eigenvalue to a positive eigenvector, and in fact
the only eigenvalue with this property. Then we have this corollary:
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Corollary 2.4. Suppose that P has nonempty interior and let F : ¯Rβ,β → P × P
a compact map verifying the previous hypotheses (F1)-(F2) and (2.3). Moreover
suppose that for every (x, y) ∈ P̄β × P̄β the maps g(., y) and h(x, .) are strongly
positive. Then if

(H1)

G(x, y) � x ∀(x, y) ∈ Sβ × P̄β and H(x, y) � y ∀(x, y) ∈ P̄β × Sβ

(H2) r(g(., y)) > 1 and r(h(x, .)) > 1 for every (x, y) ∈ P̄β × P̄β.

F has at least four fixed points (0, 0), (x0, 0), (0, y0), (x1, y1) in P×P verifying (1.1).

Remark 2. The main difference between Theorem 2.3 above and Theorem (13.2)
given by Amann in [1] is that a direct application of this Amann’s results in the
Banach space (E × E,P × P ) for the map F = (G,H) implies the existence of
a solution (x, y) ∈ P × P \ {(0, 0)}. This means that (x, y) ̸= (0, 0) but some
component of the fixed point (x, y) may be trivial. However, our Theorem has the
advantage that it assures that each component of (x, y) belongs to P \ {0}.

3. Application to Systems of Fractional Differential Equations

In this section we shall study the existence of nonnegative and nontrivial solutions
of boundary value problems for systems of fractional differential equations of the
type

(3.1)

Dα
0+x(t) + f(t, x(t), y(t)) = 0 0 < t < 1,

Dα
0+y(t) + g(t, x(t), y(t)) = 0 0 < t < 1,

x(0) = x′(0) = x′(1) = y(0) = y′(0) = y′(1) = 0.

where f, g : [0, 1]×[0,+∞)×[0,+∞) → [0,+∞) are continuous functions, 2 < α < 3
is a real number and Dα

0+ is a standard Riemann-Liouville fractional derivative.
Problems of the form (3.1) arise in many applications in physics, mechanics, chem-
istry and engineering, where usually the existence of positive solutions is of interest.

Let (x, y) ∈ C[0, 1] × C[0, 1], then it is well known that (see [7]) the boundary
value problem (3.1) is equivalent to the following system of integral equations

x(t) =

∫ 1

0
G(t, s)f(s, x(s), y(s))ds, t ∈ [0, 1]

y(t) =

∫ 1

0
G(t, s)g(s, x(s), y(s))ds, t ∈ [0, 1],

where

G(t, s) =

{
(1−s)α−2tα−1

Γ(α) , 0 ≤ t ≤ s ≤ 1
(1−s)α−2tα−1

Γ(α) − (t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1.

Here Γ denotes the Gamma function.
The following Lemma (see [7], Lemma 2.8) will be used later

Lemma 3.1. G(t, s) ≥ tα−1G(1, s) ≥ 0 for 0 ≤ s, t ≤ 1.
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For our considerations, we shall consider the Banach space E = C[0, 1] equipped
with the standard norm

∥x∥ = max
0≤t≤1

|x(t)|.

We define the normal cone P by P = {x ∈ C[0, 1] : x(t) ≥ 0}. Defining F : E×E →
E × E by

F (x, y)(t) =
(∫ 1

0
G(t, s)f(s, x(s), y(s))ds,

∫ 1

0
G(t, s)g(s, x(s), y(s))ds

)
.

=
(
H(x, y)(t),K(x, y)(t)

)
.

Standard arguments show that F (P × P ) ⊂ P × P and that F is compact on
bounded subsets of P ×P . So we have the conditions to apply to problem (3.1) our
abstract results. In fact we have

Theorem 3.2. Suppose that

(H’1) there exists positive constants a1, a2, b1, b2 and a positive numbers ν1, ν2, µ1, µ2 <
1 such that

f(t, x, y) ≤ a1(x
ν1 + yµ1) + b1,

g(t, x, y) ≤ a2(x
ν2 + yµ2) + b2,

∀(t, x, y) ∈ [0, 1]× [0,+∞)× [0,+∞),

(H’2) there exists a continuous function a : [0, 1]× [0 +∞) −→ R such that

lim
x→0+

f(t, x, y)

x
= a(t, y),

uniformly in (t, y) ∈ [0, 1]× [0, γ], for every γ > 0

where

(3.2) a(t, y) ≥ a >
Γ(2α− 1)(2α− 1)

Γ(α− 1)(α− 1)
, ∀(t, y) ∈ [0, 1]× [0,+∞)

(H’3) there exists a continuous function b : [0, 1]× [0,+∞) −→ R such that

lim
y→0+

g(t, x, y)

y
= b(t, x),

uniformly in (t, x) ∈ [0, 1]× [0, γ], for every γ > 0

where

(3.3) b(t, x) ≥ b >
Γ(2α− 1)(2α− 1)

Γ(α− 1)(α− 1)
∀(t, x) ∈ [0, 1]× [0,+∞)

Then (3.1) has at least one solution (x1, y1) such that x1 ∈ P \{0} and x2 ∈ P \{0}.

Proof. We are going to prove that all conditions of Theorem 2.3 are satisfied. For

it, we must observe that (E,P ) is an ordered Banach space with
◦
P ̸= ∅. Moreover,

(1) In order to prove that the condition (H1) of Theorem 2.3 is satisfied, take

β > M max{a1(βν1 + βµ1) + b1, a2(β
ν2 + βµ2) + b2}
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where M = max[0,1]×[0,1]G(t, s). Take (x, y) ∈ P̄β × Sβ and λ ≥ 1, verifying
K(x, y) = λy. Whence

y(t) =
1

λ

∫ 1

0
G(t, s)g(s, x(s), y(s))ds ∀t ∈ [0, 1].

Since ∥y∥E = β, there is t0 ∈ R such that y(t0) = β. From which it follows that

β = y(t0) ≤
∫ 1

0
G(t0, s)g(s, x(s), y(s))ds ≤ M(a2(β

ν2 + βµ2) + b2) < β,

which is a contradiction. One may proceed in an analogous way if ∥y∥E ≤ β and
∥x∥E = β. Therefore (H1) of Theorem 2.3 is satisfied.
(2) By using (H’2) and (H’3) we prove the existence of two applications h, k :
P × P → P verifying respectively the hypotheses (F1) and (F2) of Theorem 2.3.

In fact, we are going to see that for all x ∈ P and y ∈ P̄β,

h(x, y)(t) = L(a, y)x(t) =

∫ 1

0
G(t, s)a(s, y(s))x(s)ds, ∀t ∈ [0, 1]

and

lim
x−→0
x∈P

H(x, y)− L(a, y)x

∥x∥
= 0, uniformly in y ∈ P̄β.

For it we must prove that

∀ε ∈ R+, ∃r(ε) ∈ R+ : ∥x∥ ≤ r(ε)(x ∈ P ), y ∈ P̄β ⇒ ∥H(x, y)− L(a, y)x∥
∥x∥

≤ ε.

Let ε > 0, then from (H’2) there is r(ε) ∈ R+ such that

| f(s, x, y)− a(s, y)x |≤ ε | x |, ∀(s, y) ∈ [0, 1]× [0, β], ∀x ∈ R : 0 ≤ x ≤ r(ε).

Then if x ∈ P satisfies ∥x∥ ≤ r(ε) and y ∈ P̄β, we have

| H(x, y)(t)− L(a, y)x(t) | ≤
∫ 1

0
G(t, s) | f(s, x(s), y(s))− a(s, y(s))x(s) | ds

≤
∫ 1

0
G(t, s) | εx(s) | ds

≤ εM∥x∥, ∀t ∈ [0, 1].

Consequently,

∥H(x, y)− L(a, y)x∥ ≤ εM∥x∥, ∀x ∈ P : ∥x∥ ≤ r(ε) ∀y ∈ P̄β.

Similarly we can prove that

lim
y−→0
y∈P

K(x, y)− L(b, x)y

∥y∥
= 0, uniformly in x ∈ P̄β.

where

L(b, x)y(t) = k(x, y)(t) =

∫ 1

0
G(t, s)b(s, x(s))y(s)ds, ∀t ∈ [0, 1].

(3) In order to prove that (for some y ∈ P̄β) 1 is not an eigenvalue of h(., y) to a
positive eigenvector and that h(., y) possess a positive eigenvector to an eigenvalue
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greater than one, we shall prove that h(., y) satisfies the conditions of Theorems 2.5
and 2.17 of Krasnosel’skii in [5]. To this end we begin by proving that the linear op-

erator
∫ 1
0 G(t, s)a(s, y(s))x(s)ds is u0−bounded below (in the sens of Krasnosel’skii

[5]) where u0(t) = tα−1.
In fact, let [t1, t2] ⊂ [0, 1], (t1 ̸= t2), then in view of Lemma 3.1 the inequality∫ t2

t1

G(t, s)ds ≥ 1

Γ(α)

∫ t2

t1

tα−1G(1, s)ds

=
tα−1

Γ(α)

((1− t1)
α−1

α− 1
− (1− t2)

α−1

α− 1
− (1− t1)

α

α
+

(1− t2)
α

α

)
=

tα−1

Γ(α)
δ (δ > 0)

will be satisfied. Moreover, a direct calculation shows that
∫ 1
0 G(t, s)ds =

tα−1

Γ(α)

(
1

α−1 − t
α

)
. From which it follows that

∫ t2

t1

G(t, s)ds ≥ δ

∫ 1

0
G(t, s)ds.

The last inequality is the condition (7.4) of Lemma 7.1 in [5]. Then the operator∫ 1
0 G(t, s)x(s)ds is v0−positive where

v0(t) =

∫ 1

0
G(t, s)ds =

tα−1

Γ(α)

( 1

α− 1
− t

α

)
.

But from the inequality

tα−1

Γ(α)

( 1

α− 1
− 1

α

)
≤ tα−1

Γ(α)

( 1

α− 1
− t

α

)
≤ tα−1

Γ(α)

( 1

α− 1

)
,

one can see that the operator
∫ 1
0 G(t, s)x(s)ds is u0−positive. It then follows from

(3.2) that the operator
∫ 1
0 G(t, s)a(s, y(s))x(s)ds is u0−bounded below.

In the following, by using Theorem 2.5 (in [5]) we shall prove that h(., y) has an
eigenvector to an eigenvalue λ > 1. To this end, we need to prove (for fixed y ∈ P̄β)
the existence of a positive number λ0 > 1 satisfying

L(a, y)u0(t) =

∫ 1

0
G(t, s)a(s, y(s))u0(s)ds ≥ λ0u0(t), t ∈ [0, 1].

In fact, direct calculation shows that∫ 1

0
G(t, s)sα−1ds =

∫ 1

0

tα−1

Γ(α)
(1− s)α−2sα−1ds−

∫ t

0

(t− s)α−1

Γ(α)
sα−1ds.
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Then, by the substitution s = σt and the fundamental properties of the Beta func-
tions we find that∫ 1

0
G(t, s)sα−1ds = =

tα−1

Γ(α)

Γ(α− 1)Γ(α)

Γ(2α− 1)
−

∫ 1

0
t2α−1 (1− s)α−1sα−1

Γ(α)
ds

= tα−1 Γ(α− 1)

Γ(2α− 1)

(
1− tα

α

2α− 1

)
≥ tα−1 Γ(α− 1)

Γ(2α− 1)

( α− 1

2α− 1

)
.

By virtue of (3.2) we get∫ 1

0
G(t, s)a(s, y(s))u0(s)ds ≥ atα−1 Γ(α− 1)

Γ(2α− 1)

( α− 1

2α− 1

)
≥ λ0u0(t),

for all t ∈ [0, 1], y ∈ P̄β. where λ0 = a Γ(α−1)
Γ(2α−1)

(
α−1
2α−1

)
> 1.

Consequently, Theorems 2.17 and 2.5 given by Krasnosel’skii in [5] assure that h
satisfies hypothesis (H2) of the Theorem 2.3. One may proceed in an analogous way
for k and we can prove that hypothesis (H2) of the theorem is satisfied. Therefore,
from (1) − (3) and by using Theorem 2.3, problem (3.1) has at least one solution
(x1, y1) such that x1 ∈ P \ {0} and x2 ∈ P \ {0}. �

Remark 3. Suppose in addition that f(t, 0, y) > 0 and g(t, x, 0) > 0 ∀(t, x, y) ∈
[0, 1]× [0,∞)× [0,∞), then hypotheses of the Theorem do not imply the existence
of semi-trivial solutions of problem (3.1).

Remark 4. Note that for a metric approach of the above problem, see [9].

4. Application to systems of nonlinear integral equations

In this section we shall study the existence of positive solutions of system of
nonlinear integral equations of the form

(4.1)

x(t) =

∫ τ1(t)

0
f(t, s, x(t− s− l), y(t− s− l)) ds

y(t) =

∫ τ2(t)

0
g(t, s, x(t− s− l), y(t− s− l)) ds

under the following assumptions on functions f and g : f, g : R × R × [0,+∞[×
[0,+∞[−→ R are continuous functions with :

(F1) : f(t, s, 0, y) = g(t, s, x, 0) = 0 for all (t, s, x, y) ∈ R×R× [0,+∞[×[0,+∞[,
(F2) : f(t, s, x, y) ≥ 0, g(t, s, x, y) ≥ 0, ∀(t, s, x, y) ∈ R × R × [0,+∞[×[0,+∞[

and there exists a positive number w, (w > 0) such that f(t + w, s, x, y) =
f(t, s, x, y) and g(t + w, s, x, y) = g(t, s, x, y),∀(t, s, x, y) ∈ R × R×
[0,+∞[×[0,+∞[,

(F3) : l is a nonnegative constant and τ1, τ2 : R −→ R+ are continuous and
λ-periodic functions (λ > 0) such that ω

λ = p
q , p, q ∈ N.
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System (4.1) includes the system proposed by Cooke and Kaplan [4] as a model
to explain the evolution in time of two interacting species when seasonal factors are
taken into account. Since in this model, f(t, s, x, y) and g(t, s, x, y) mean, respec-
tively, the number of new births per unit time of the species x and y. Assumption
f(t, s, 0, y) = g(t, s, x, 0) = 0 is completely coherent because of the number of indi-
viduals of the species x (or y) is zero at some time, then the number of new births of
this species must be zero. In particular, this implies that (0,0) is always a solution
of system (4.1).

Taking into account the origin of (3.1) we are interested in the existence of non-
trivial, nonnegative, continuous and qω- periodic solutions. Especially, we are in-
terested in the existence of coexistence states. Also the existence of semitrivial
solutions of (4.1) may be of interest, i.e. solutions with exactly one nontrivial com-
ponent: this means that one species may survive in the absence of the other one.

Denote by P the cone of nonnegative functions in the real Banach space E, of all
real and continuous qω− periodic functions defined on R, where if x ∈ E

∥x∥ = max
0≤t≤qω

|x(t)|.

Define the operator F = (G,H) : P × P → P × P , by F (x, y)(t) =(∫ τ1(t)

0
f(t, s, x(t− s− l), y(t− s− l)) ds,

∫ τ2(t)

0
g(t, s, x(t− s− l), y(t− s− l)) ds

)
.

It is easily to see that F is a compact on bounded subsets of P × P (see [2]).

Theorem 4.1. Suppose that :

(H’1) f and g are bounded functions.
(H’2) there exists a continuous function a : R× R× [0, β] −→ R such that

lim
x→0+

f(t, s, x, y)

x
= a(t, s, y), uniformly in (t, s, y) ∈ R× R× [0, γ],

for every γ > 0.
(H’3) there exists a continuous function b : R× R× [0, β] −→ R such that

lim
y→0+

g(t, s, x, y)

y
= b(t, s, x), uniformly in (t, s, x) ∈ R× R× [0, γ],

for every γ > 0.

(H’4)
◦
At =

◦
Bt = ∅ ∀t ∈ R, where At = {(s, y) ∈ R× R+ : a(t, t− s, y) = 0} and

Bt = {(s, x) ∈ R× R+ : b(t, t− s, x) = 0}.
Then if

(4.2) r(L(τ1, a, y)) > 1, and r(L(τ2, b, x)) > 1, ∀(x, y) ∈ P̄β × P̄β.

F has at least four fixed points in P × P : (0, 0), (x0, 0), (0, y0), (x1, y1) verifying
(1.1), where r(L(τ1, a, y)) means the spectral radius of the linear operator L(τ1, a, y) :
E −→ E defined by

L(τ1, a, y)x(t) =

∫ τ1(t)

0
a(t, s, y(t− s− l))x(t− s− l) ds, ∀(x, y) ∈ E × E,
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(analogously for r(L(τ2, b, x)) and L(τ2, b, x)).

Proof. We are going to prove that all conditions of Theorem 2.3 and Remark 1
are satisfied. For it, we must observe that (E,P ) is an ordered Banach space with
◦
P ̸= ∅.

In order to prove that the condition (H1) of Theorem 2.3 is satisfied, take β such
that

β > M max{τ∗1 = max
0≤t≤λ

τ1(t), τ
∗
2 = max

0≤t≤λ
τ2(t)}

where M is a constant satisfying

M ≥ sup{f(t, s, x, y), g(t, s, x, y), (t, s, x, y) ∈ R× R× [0,+∞[×[0,+∞[}.

Take (x, y) ∈ Pβ × Sβ and λ ≥ 1, verifying H(x, y) = λy, whence

y(t) =
1

λ

∫ τ2(t)

0
g(t, s, x(t− s− l), y(t− s− l)) ds ∀t ∈ R.

Since ∥y∥E = β, there is t0 ∈ R such that y(t0) = β. From which it follows that

β = y(t0) ≤
∫ τ2(t0)

0
g(t0, s, x(t0 − s− l), y(t0 − s− l)) ds ≤ Mτ∗2 < β,

which is a contradiction. One may proceed in an analogous way if ∥y∥E ≤ β and
∥x∥E = β. Therefore (H1) of Theorem 2.3 is satisfied.

As in the proof of Theorem 3.2 one can see that for all x ∈ P and y ∈ P̄β

lim
x−→0
x∈P

G(x, y)− L(τ1, a, y)x

∥x∥
= 0, uniformly in y ∈ P̄β.

Similarly

lim
y−→0
y∈P

H(x, y)− L(τ2, b, x)y

∥y∥
= 0, uniformly in x ∈ P̄β.

Now, it is easily seen (see[2, Theorem 2.1]) that L(τ1, a, y) and L(τ2, b, x) are
strongly positive. It then follows from (4.2) that hypothesis (H2) of Theorem 2.3 is
satisfied. This completes the proof of the theorem. �

Now we present an example of Theorem 4.1

Example 4.2. Let f1 : [0,+∞) → R+ defined by

f1(x) =

{
x(1− x), 0 ≤ x ≤ 1

0, x > 1

g2 = f1, g1(y) = 1 + sin2 y ∀y ∈ [0,∞) f2(x) = 1 + cos2 x ∀x ∈ [0,∞).

And take d, d′ : R → R a continuous, positive and ω-periodic functions (ω > 0)
and l = 0 .



72 M. S. EL KHANNOUSSI AND A. ZERTITI

Let the system of nonlinear integral equations

x(t) =

∫ τ1(t)

0
d(t− s)f1(x(s))g1(y(s)) ds

y(t) =

∫ τ2(t)

0
d′(t− s)f2(x(s))g2(y(s)) ds

hypotheses (H’1) -(H’4) of Theorem 4.1 are satisfied with a(t, s, y) = d(t − s)(1 +
sin2 y), and b(t, s, x) = d′(t− s)(1 + cos2 x).

Consequently if

(4.3) r(L(τ1, a, y)) > 1, r(L(τ2, b, x)) > 1, ∀(x, y) ∈ P̄β × P̄β,

(where β is defined as in Theorem 4.1) the above system has at least four fixed points
(0, 0), (x0, 0), (0, y0), (x1, y1) in P × P verifying (1.1). Note that in the particular
case where d(t) ≡ d ∈ R+ and d′(t) ≡ d′ ∈ R+conditions (4.3) are satisfied if we
take

1

d
< min

t∈R
τ1(t) and

1

d′
< min

t∈R
τ2(t).

Here we use that fact that (see [8, 2])

min
t∈R

∫ τ1(t)

0
a(t, s, y(t− s)ds ≤ r(L(τ1, a, y)),

and

min
t∈R

∫ τ1(t)

0
b(t, s, x(t− s))ds ≤ r(L(τ1, b, x)).
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