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TOPOLOGICAL METHODS IN THE STUDY OF POSITIVE
SOLUTIONS FOR SYSTEMS OF EQUATIONS IN ORDERED
BANACH SPACES

MOHAMMED SAID EL KHANNOUSSI AND ABDERRAHIM ZERTITI

ABSTRACT. In this paper, we are interested in producing sufficient conditions
for the existence of coexistence states to systems of equations in ordered Banach
spaces. For it, we use topological methods, more precisely, the fixed point index.

1. INTRODUCTION

In this paper we are interested in the existence of nonnegative and nontrivial
solution (x,y) of the following system

= G(z,y)

y=H(z,y)
in F x E, where F is an appropriate ordered Banach space with cone P.

The so called ”coexistence states” are of special importance: these are solutions
(z,y) with both components nonnegative and nontrivial. Semitrivial solutions i.e.,
solutions (x,y) with exactly one component nonnegative and nontrivial, are also of
interest.

Note that a direct application of the corresponding Amann’s results in [1] in the
Banach space (E x E, P x P) for the map F' = (G, H) implies the existence of a
solution (x,y) € Px P\{(0,0)}, this means that (z,y) # (0,0) but some component
of the fixed point (x,y) may be trivial. To solve this problem, A. Canada and A.
Zertiti have given some new result (see Theorem 2.1 in [3]) to assure that each
component of (x,y) belongs to P\ {0}. In the present paper, we shall also give some
new abstract results (with different conditions) for the existence of these important
solutions. Furthermore, if we suppose that F' verifies the hypothesis

G(0,y) = H(x,0) =0, VY(x,y) € ExE,

we assure the existence of ”semitrivial solutions”. Hence, we deduce the existence
of four fixed points in P x P : (0,0), (x0,0), (0,y0), (x1,y1) such that

(1.1) Tj,Y; € P\ {O}
for j =0, 1.
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Finally, in order to prove the importance of our results we give two important
applications to some systems of nonlinear fractional differential equations and non-
linear integral equations.

Note that the abstract results which we obtain here may be applied to some other
situations such as nonlinear boundary value problems for elliptic systems, and other
kinds of systems of nonlinear integral equations.

2. MAIN RESULTS

Let (E,||.]|g) be a real Banach space and P be a nonempty closed convex set in
E.
P is called a cone if it satisfies the following two conditions:
(i) re PAX\>0= Xz €eP
(ii) x € P,—x € P = x = 6, where 6 denotes the zero element in E.

The cone P defines a linear ordering in E by
r<y iff y—xeP.

For every open subset U of P (from now on, the topological notions of subsets of P
refer to the relative topology of P as a topological subspace of E') and every compact
map F : U — P (F is continuous and F(U) is relatively compact), which has no
fixed points on OU, there exists an integer, i,(F,U), called the fixed point index
of F on U with respect to P, satisfying the usual properties of the Leray-Schauder
degree.

It is trivial that P x P is a cone in the Banach space (E X E| ||.||[px ) where, for
each (z,y) e ExXE

Iz, 9) | x e = max{||z/|e, [yllz}-
The cone P x P defines a linear ordering in £ x E by
(1,91) < (z2,92) Hf 22 —71€P and ya—y1 €P.
For any two real numbers 0 < a < 3, we denote by R, g the set

Rop={(z,y) € Px P:|zllp < llyle < B},
and if r > 0, we denote
P.={zeP:z|lg<r}, S ={xeP:|z|g=r}
Define the compact operator F' = (G, H) : Rg g — P x P, where G : Rg 3 — P and
H: Rﬁﬂg — P verifying the following hypotheses:

(F1) : There exists a continuous map g : P x P — P which is linear with respect
to the first variable such that G(z,y) = g(z,y) + r(x,y). Here r is an
o(||z||g) for x € P near zero uniformly on bounded y sets.

(F2) : There exists a continuous map h : P x P — P which is linear with respect
to the second variable such that H(x,y) = h(x,y) + 7'(x,y). Here 1’ is an
o(|lyllg) for y € P near zero uniformly on bounded z sets.

To prove the main results in this paper, we will employ the following lemmas :
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Lemma 2.1. The map g transforms every bounded set A x B C PB X P% into a
compact set.

Proof. Since the operator g(.,y), (y € Ps) is linear it suffices to consider the case
where A = 5;.
Assuming the contrary. Then there exists a sequence of elements (hy,, k,) € Ax B
satisfying ||h,|| = 1 and
19(hns kn) — g(hims k)|l = €0 m # 1,
where ¢¢ is some positive number. From hypothesis (F1) we can choose a § > 0
such that

e _
1G(,y) = g(z, y)|| < gollfcll, V(z,y) € Psx B and [lz] <.

Whence, for m # n we have
|G (0T, k) — G (ST, k) || > 6]1g(hns kn) = g(Rans ki) |
— |G (6hn, k) — g(6hn, kn) |
— G (Shim, kim) — g(6hum, k)|
> €00
- 3

From which it follows that G(S; x B) is not compact. This contradiction completes
the proof of the lemma. O

In a similar way, one can see that h is compact on bounded subsets of PB X 155.
In the following, define the set A = H(Pg x Pg) N Pg.

Lemma 2.2. Under the previous hypotheses, we suppose that, for everyy € ]55, 1
is not an eigenvalue of g(.,y) to a positive eigenvector. Then a number aq > 0 can
be found such that

|z —g(z,9)|| >, VzelS:,VyecA
Hence, there erists a positive number ay > 0 such that
lx — g(z,y)|| > a1]|z||, Vze P,Vye A.

Proof. We shall carry out the proof from the contrary. In fact, we construct a
sequence of elements z,, € S1,y, € A such that ||z, — g(xn,yn)|| — 0. Without loss
of generality, it could be assumed that g(z,,y,) would converge to some element
z € P and the elements y, also would converge to y € 155. Then the elements
z, also would converge to z € S; and the equality z = g(z,y) would hold. This
contradiction completes the proof of the lemma. O

After these preparations we are ready for the statement of our main results:
Theorem 2.3. Let F : Rg3 — P x P be a compact map verifying the previous
hypotheses (F1)-(F2) and

(H1)

G(z,y) # Xz V(xr,y) € Spx Pg VA>1
and B
H(z,y) # \y V(z,y) € Psx Sg VA>1
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H2) For every (x,y) € Pg x Pg, 1 is neither an eigenvalue of g(.,y) nor of
B B
h(z,.) to a positive eigenvector and both g(.,y) and h(x,.) possess a positive
etgenvector to an eigenvalue greater than one.

Then F has at least one fized point (x1,y1) in P\ {0} x P\ {0}.

Proof. We shall use the following notation
U= Rag.
The proof is based on the following steps:

a)
ipxp(F,U) = 1.
Indeed, define the homotopy h : [0,1] x U — P x P by h(\,z,y) = AF(z,y). It is
clear that h is compact and from (H1) we have
h(\ z,y) # (z,y), V(A z,y)€[0,1] x oU.
Hence, by homotopy invariance property
ipxp(F,U) =ipxp(h(1,.),U) =ipxp(h(0,.),U) = 1.
b) In view of Lemma 2.2 there exists a positive constant a; such that
(2.1) le = g(z.p) = aulle| VoeP Wye A
Choose p; € (0, 8] such that for all € P,, and y € Ps

T

1G(2,y) — g(z,y)|| < al”QH-
Then for every o € (0, p1], every z; € P satisfying [|z1|| < 75+ and every A € [0, 1]
the map (1 — X)(g + 21, H) + AF = K, possesses no fixed point on 0R, g.

Indeed, by taking into account that
ORsp ={(z,y) € Px P:|lyle =B, [zllp < o}
U{(z,y) € Px P: |lylle < B,|z]le =0},

we distinguish two cases :
D ylle =68, lzleg<o
If K\(z,y) = (z,y) then
(1=NH(x,y) + AH (2, y) = H(z,y) =y
which contradicts (H1).

2) lyle <8, llzllg=0
If Kx(z,y) = (z,y) we get y = H(x,y) € A. But from the equalities

|z = (L =M(g(z,y) + 21) = AG(z,9)|| = ||z — g(=,y)]
— G (2, y) — gz, y)|l — |21l

o _ [l

> 0.
2 o

> 0(041 -

we obtain a contradiction.
Then by the homotopy invariance property

ipxp(F,Ryp) =ipxp((9+ 21, H), Ry ).
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Next we prove that

irxp((g+21,H), Ry ) = 0.
In fact, let y € ]55 and denote by h € S; an eigenvector of g(.,y) to an eigenvalue
A > 1: Then we claim that, for every v > 0, the equation = — g(x,y) = vh
has no positive solution, indeed, suppose that there exists a solution x > 0 for some
v > 0. Then there exists a nonnegative number 79 such that x > m9h and = Z Th
for T > 9. Hence we obtain the inequality

z = g(z,y) + vh > g(roh,y) + vh > (19 + v)h,

which contradicts the maximality of 7p.
Now by setting z = vh with 0 < v < %51, the solution property implies

iPXP(Fa Ro’,ﬂ) = /L'PXP((g + Vh) H)v Ro’,ﬂ) =0.
c¢) Similarly, we find a positive constants ae and py € (0, 5] satisfying
ly — bz, y)ll > azllyll Yy e P, Vxe B=G(Ps)x Ps))N Py
and for all y € P,, and = € P3

1H(@.9) — ey < a2

Then for every o € (0, p2], every zo € P satisfying [|22]] < %52 and every A € [0, 1]
the map (1 — \)(G,h + 22) + AF = K} possesses no fixed point on dRg,. Then,
from what has already been proved

ipxp(F,Rg o) =ipxp((G,h+ 22), Rg ) = 0.

d) Next, we prove that there exists r > 0 such that if (z,y) € P3 x P3 and A\ > 0
satisfy (z,y) = F(x,y) + A(ho, ko) then |[(z,y)|| > r, where (hg, ko) is a fixed
element in P x P\ {(0,0)}. From which it will follows that (see Lemma 12.1 in
[1]) ipxp(F,Rss) = 0, for all ¢ € (0,r]. Assuming the contrary, then there exist
sequences (T, Yn) € ]55 X ]55, An € RT such that (z,,,yn) = F(2n,yn) + An(ho, ko)

and [|(zn,yn)|| < L. Then z, = G(zn,yn) + Anho. (Here we suppose that hg €

P\ {0}). !

Writing the last equality in the form
h n nygn) — ny In ny gn
(2.2) y _ho Tn  G@nyn) = 9(@n,yn)  9(Tn,Yn)

“llanll [ [l

and using Lemma (2.1) we may as well assume that %

It then follows from equality (2.2) that

Y

converge to some z € P.

ol < 1+ .
[
Therefore, without loss of generality, it can be assumed that the sequence ”22”
converges to some number « > 0. By virtue of (2.2) we can assume that IIchII
converges to some element up € P and |lug|| = 1. Passing to the limit in (2.2) we

obtain ug = ahg + g(up,0). It then follows from Hypothesis (H2) of the theorem
that o > 0. Therefore and from what has already been proved above, we obtain a
contradiction.
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e) For fixed p = min{py, p2, r}, we shall use the following notation

U=Rgp, Ui=R,3 Us=Rg, Us=R,,

U4=U\U1U[j2, U5=U1\[j3, UGZUQ\U3.

Therefore

Up={(z,y) e Px P:p<|zlg <B, p<lylle<p}

Now, observe that if A = 1, F = K; = K] has no fixed point on dU; U dUs. Then
I has no fixed point on 0U; U 90U, U OU.

Us and Us are disjoint open subsets of U; such that F' has no fixed points on
U_l \ (Ug U U5), in fact U_l \ (Ug @] U5) C OUy U QU,. Therefore by the additivity
property

ipxp(F,Us) = ipxp(F,Ur) —ipxp(F,Us) = 0.

Similarly, we have
ipxp(F,Us) = ipxp(F,Us) —ipxp(F,U3) = 0.

Finally, (U§ UUsUUg) and Uy are disjoint open subsets of U such that F' has no fixed
points on U\ (UgUU5UU6UU4), in fact U\ <U3UU5UU6UU4) C (8UU8U1 U8U2).
Therefore and by the additivity property

ipxp(F,Us) =ipxp(F,U) —ipxp(F,Us) —ipxp(F,Us) —ipxp(F,Us)
—1,

which implies the existence of a fixed point (x1,y;) of F satisfying (1.1). O

Suppose, in addition, that the maps G and H satisfy the following hypothesis

(2.3) G(0,y) = H(x,0) =0, V(z,y)€ Pg x Ps.

Then, we can prove the existence of two fixed point (semi-trivial solutions)
(20,0), (0,y0), of F satisfying (1.1).

Indeed, define the map G : P3 — P by G1(z) = G(x,0). Clearly G is a compact
map such that G (0)h = g(h,0), Vh € P. Then from (H2) and lemma 13.1 in
[1] there exists o¢ € (0, 3) such that for every o € (0,0¢),ip(G1, P,) = 0. On the
other hand from hypothesis (H1), we have G1(z) # Az, VA >1, Vax € Sg, then
ip(G1,P3) =1 (see Lemma 12.1 in [1]). Therefore, by the additivity property we
have ip(G1, P3 \ P,) = 1. Consequently, G; has at least one fixed point xo with
o < ||zo|lg < B. Now (z9,0) is a fixed point of F.

In a similar manner we can prove the existence of (0, ).

Remark 1. If P has nonempty interior and g(.,y) (resp h(z,0)) is strongly positive
for every y € Pj (resp x € Pg) then it is well known that (see [6], [5]) the spectral
radius of g(.,y) (resp h(z,0)) is an eigenvalue to a positive eigenvector, and in fact
the only eigenvalue with this property. Then we have this corollary:
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Corollary 2.4. Suppose that P has nonempty interior and let F : Ré,g —-PxP
a compact map verifying the previous hypotheses (F1)-(F2) and (2.3). Moreover
suppose that for every (z,y) € Pg x Pg the maps g(.,y) and h(z,.) are strongly
positive. Then if

(H1)
G(z,y) #x V(x,y) € Sgx P3 and H(z,y) }y V(z,y) € Pgx S

(H2) 7(g9(.,y)) > 1 and r(h(z,.)) > 1 for every (z,y) € Pz x Pg.
F has at least four fized points (0,0), (zo,0), (0,y0), (x1,y1) in P x P verifying (1.1).

Remark 2. The main difference between Theorem 2.3 above and Theorem (13.2)
given by Amann in [1] is that a direct application of this Amann’s results in the
Banach space (E x E, P x P) for the map F' = (G, H) implies the existence of
a solution (z,y) € P x P\ {(0,0)}. This means that (z,y) # (0,0) but some
component of the fixed point (x,y) may be trivial. However, our Theorem has the
advantage that it assures that each component of (z,y) belongs to P\ {0}.

3. APPLICATION TO SYSTEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS

In this section we shall study the existence of nonnegative and nontrivial solutions
of boundary value problems for systems of fractional differential equations of the

type

Dgix(t) + f(t,x(t),y(t) =0 0<t<1,
(3.1) Dgiy(t) +g(t,xz(t),y(t) =0 0<t<1,
2(0) = 2'(0) = (1) = y(0) = y'(0) = y'(1) = 0.

where f, g :[0,1]x[0,400) %[0, 400) — [0, +00) are continuous functions, 2 < o < 3
is a real number and Df; is a standard Riemann-Liouville fractional derivative.
Problems of the form (3.1) arise in many applications in physics, mechanics, chem-
istry and engineering, where usually the existence of positive solutions is of interest.
Let (z,y) € C[0,1] x C[0,1], then it is well known that (see [7]) the boundary
value problem (3.1) is equivalent to the following system of integral equations

1
x(t) :/0 G(t,s)f(s,z(s),y(s))ds, te]0,1]

1
y(t) = /0 G(t, 5)g(s,2(s),y(s))ds, € [0,1],

where

1
(1=s)?2t271 _ (t=s)
& fa— 0<s<t<l

(A=s)o2tet 0<t<s<
G(t,s) = { F(a%ta—l7 (t—s)~1 T

Here I' denotes the Gamma function.
The following Lemma (see [7], Lemma 2.8) will be used later

Lemma 3.1. G(t,s) > t*"1G(1,s) >0 for 0 < s,t < 1.
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For our considerations, we shall consider the Banach space F = C|0, 1] equipped
with the standard norm

Izl = max fa(t)].

We define the normal cone P by P = {z € C|0,1] : z(t) > 0}. Defining F': EX E —
E x E by

F(z,y)(t) = /Gts s, x( ds/Gts sx)())ds)
=(mmmmme@)

Standard arguments show that F(P x P) C P x P and that F' is compact on
bounded subsets of P x P. So we have the conditions to apply to problem (3.1) our
abstract results. In fact we have

Theorem 3.2. Suppose that

(H’1) there exists positive constants aj, ag, by, be and a positive numbers vy, va, pi, g <
1 such that

[t x,y) < a(e™ +yM) + by,
9(t,z,y) < az(x" +y") + by,
¥(t,2,) € [0,1] X [0,+00) x [0, +00),
(H'2) there exists a continuous function a : [0,1] X [0+ 0c0) — R such that
i L &2Y) _

z—0t x

<
<

a(t,y),

uniformly in (t,y) € [0,1] x [0,7], for every ~ >0

where
'2a—-1)2a—-1)
MNa—1)(a—1) "’
(H’3) there exists a continuous function b : [0, 1] x [0, 4+00) — R such that

(3.2) a(t,y) > a > V(t,y) € [0,1] x [0, +0)

lim gttz.y) =b(t,z),
y—0* Y

uniformly in (t,x) € [0,1] x [0,7], for every >0

where

r(2a—1)(2a — 1)
(3.3) bt2) 25> T =)

Then (3.1) has at least one solution (x1,y1) such that x1 € P\{0} and xo € P\{0}.

V(t,z) € [0,1] x [0,400)

Proof. We are going to prove that all conditions of Theorem 2.3 are satisfied. For

it, we must observe that (E, P) is an ordered Banach space with P # (). Moreover,
(1) In order to prove that the condition (H1) of Theorem 2.3 is satisfied, take

B > M max{a; (8" + B") + b1, as (B + B"2) + bo}
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where M = max( 1)1 G(t,5). Take (z,y) € Ps x Sg and A > 1, verifying
K(x,y) = A\y. Whence

1
y () :i/o G(t, $)g(s, 2(s), y(s))ds ¥t € [0, 1].

Since ||y||g = B, there is ¢ty € R such that y(tg) = 8. From which it follows that

1
ﬂzy&OSA<%m$ﬂaﬂﬁwﬁnwéﬂﬂ@w”+ﬂwﬂwﬂ<B,

which is a contradiction. One may proceed in an analogous way if ||y||z < 8 and

|z||z = B. Therefore (H1) of Theorem 2.3 is satisfied.

(2) By using (H’2) and (H’3) we prove the existence of two applications h,k :

P x P — P verifying respectively the hypotheses (F1) and (F2) of Theorem 2.3.
In fact, we are going to see that for all z € P and y € Pg,

1
h(z,y)(t) = L(a,y)z(t) = /0 G(t,s)a(s,y(s))x(s)ds, Vte[0,1]
and

z—0 ||
zEP

=0, uniformly in y € Ps.

For it we must prove that

— H — L
Ve € RY,3r(e) € R* : o] < r(e)(z € P), ye Py L&Y = Llay)z]

Let € > 0, then from (H’2) there is r(¢) € R such that
| f(s,zy) —als,y)e[<elz |, V(s,y) €[0,1] x[0,8],Vz eR:0 <z <r(e).
Then if z € P satisfies ||z|| < r(¢) and y € Pg, we have

1
| H(x,y)(t) — L(a,y)x(t) | < /0 G(t,s) | f(s,2(5),y(s)) — als,y(s))z(s) | ds

1
g/G@QWM)w
0
<eM|z|, Vtel0,1].
Consequently,
|H (z,y) — L(a,y)z|| < eM|jz]|, Vz € P:llz]| <r(e) Vy e Ps.
Similarly we can prove that

K .y
lim (z,y) — L(b,x)y

y-—0 [yl

=0, uniformly in € Ps.

where
1
Mm%@—ﬂxwﬂ—AGw$Ww@w@w,WGMH

(3) In order to prove that (for some y € P3) 1 is not an eigenvalue of h(.,y) to a
positive eigenvector and that h(.,y) possess a positive eigenvector to an eigenvalue
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greater than one, we shall prove that h(.,y) satisfies the conditions of Theorems 2.5
and 2.17 of Krasnosel’skii in [5]. To this end we begin by proving that the linear op-
erator fol G(t,s)a(s,y(s))x(s)ds is up—bounded below (in the sens of Krasnosel’skii
[5]) where ug(t) =t~ L.

In fact, let [t1,t2] C [0,1], (¢1 # t2), then in view of Lemma 3.1 the inequality

to 1 to
G(t,s)ds 2/ 1@, s)ds

t1 F(Oé) t1
el =t (T—t) !t (T—t)* (1)
_I‘(a)( 04—11 B a—21 B 041 * a2 )
tozfl
_@5 (6 >0)

will be satisfied. =~ Moreover, a direct calculation shows that fol G(t,s)ds =
o (L — i). From which it follows that

I'(a) \ a—1 @

to 1
G(t,s)ds > 5/ G(t, s)ds.
0

t1

The last inequality is the condition (7.4) of Lemma 7.1 in [5]. Then the operator
f01 G(t,s)x(s)ds is vg—positive where

vo(t) = /01 G(t, s)ds = ;a(:) (- ! - é)

But from the inequality
temt 1 1 et 1 t et 1
f a1 o) St e o) Stwla—1)
MNa)\a—-1 « MNa)\a—-1 « MNa)\a—-1

one can see that the operator fol G(t,s)z(s)ds is up—positive. It then follows from
(3.2) that the operator fol G(t,s)a(s,y(s))z(s)ds is up—bounded below.

In the following, by using Theorem 2.5 (in [5]) we shall prove that A(.,y) has an
eigenvector to an eigenvalue A > 1. To this end, we need to prove (for fixed y € P3)
the existence of a positive number Ay > 1 satisfying

1
L(a,y)up(t) :/0 G(t,s)a(s,y(s))ug(s)ds > Aouo(t), te€]0,1].

In fact, direct calculation shows that

/1 G(t,s)s* tds = /1 E(1 —5)* 257 s — /t M30‘_1ds
o o I'(a) o T(a) '



TOPOLOGICAL METHODS IN THE STUDY OF POSITIVE 69

Then, by the substitution s = ot and the fundamental properties of the Beta func-
tions we find that

a—1 - 1 _ Ja—1.a—1
/ G t S a lds__ 13 F(O{ 1)P( )_/ t2a71(1 S) S ds
0

MNa) T'2a—1) I'(«)
o1 Na—1) o @

=1 1r(2a—1)(1_t2a—1>
o1 Na—1) ra—1

=1 1F(2a—1)(2a—1>'

By virtue of (3.2) we get

/1 G(t,s)a(s,y(s))ug(s)ds > ato1 MNa—-1) ( a—1
0

T(20 — 1) \2a — 1) = doto(t),

for all t € [0,1],y € Ps. where \g = aIF((QC; 11)) (20; 1) > 1.

Consequently, Theorems 2.17 and 2.5 given by Krasnosel’skii in [5] assure that h
satisfies hypothesis (H2) of the Theorem 2.3. One may proceed in an analogous way
for k and we can prove that hypothesis (H2) of the theorem is satisfied. Therefore,
from (1) — (3) and by using Theorem 2.3, problem (3.1) has at least one solution

(z1,y1) such that z; € P\ {0} and 25 € P\ {0}. O

Remark 3. Suppose in addition that f(¢,0,y) > 0 and g(¢,2,0) >0 V(t,z,y) €
[0,1] x [0,00) X [0, 00), then hypotheses of the Theorem do not imply the existence
of semi-trivial solutions of problem (3.1).

Remark 4. Note that for a metric approach of the above problem, see [9].

4. APPLICATION TO SYSTEMS OF NONLINEAR INTEGRAL EQUATIONS

In this section we shall study the existence of positive solutions of system of
nonlinear integral equations of the form

71(t)
x(t):/ flt,s,z(t—s—1),y(t—s—1)) ds
(4.1) 0

T2(t)
y(t) _/0 g(t,s,z(t —s—1),y(t —s—1)) ds

under the following assumptions on functions f and g : f,g : R x R x [0, +00[x
[0, +0o[— R are continuous functions with :

(F1) : f(t,s,0,y) =g(t,s,z,0) =0 for all (t,s,z,y) € R xR x [0,400[x[0,+00],

(F2) : f(tsxy)>09(tsmy)>0 (tsxy)ERxRx[O,—l—oo[x[O,—}—oo[
and there exists a positive number w, (w > 0) such that f(t + w,s,z,y) =
flt,s,z,y) and g(t + w,s,z,y) = g(t,s,z,y),Y(,s,z,y) € R x Rx
0, +0[x[0, +o0],

(F3) : [ is a nonnegative constant and 71,7 : R — R are continuous and
A-periodic functions (A > 0) such that § = %,p, g€ N.
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System (4.1) includes the system proposed by Cooke and Kaplan [4] as a model
to explain the evolution in time of two interacting species when seasonal factors are
taken into account. Since in this model, f(t,s,z,y) and g(t, s, z,y) mean, respec-
tively, the number of new births per unit time of the species « and y. Assumption
f(t,s,0,y) = g(t,s,x,0) = 0 is completely coherent because of the number of indi-
viduals of the species x (or y) is zero at some time, then the number of new births of
this species must be zero. In particular, this implies that (0,0) is always a solution
of system (4.1).

Taking into account the origin of (3.1) we are interested in the existence of non-
trivial, nonnegative, continuous and qw- periodic solutions. Especially, we are in-
terested in the existence of coexistence states. Also the existence of semitrivial
solutions of (4.1) may be of interest, i.e. solutions with exactly one nontrivial com-
ponent: this means that one species may survive in the absence of the other one.

Denote by P the cone of nonnegative functions in the real Banach space F, of all
real and continuous qw— periodic functions defined on R, where if z €

= t).
= max [z(t)

Define the operator F' = (G,H) : P x P — P x P, by F(z,y)(t) =

Tl(t) T2(t)
(/ f(t787x(t_8_l)7y(t_5_l)) dS,/ g(t,s,m(t—S—l),y(t—s—l)) dS)
0 0
It is easily to see that F'is a compact on bounded subsets of P x P (see [2]).

Theorem 4.1. Suppose that :
(H’1) f and g are bounded functions.
(H2) there exists a continuous function a : R x R x [0, 5] — R such that
t
lim w =al(t,s,y), uniformly in (t,s,y) € R x R x [0,7],
z—0t x

for every v > 0.
(H’3) there exists a continuous function b: R x R x [0, 5] — R such that
t
lim w =b(t,s,z), wuniformly in (t,s,x) € R x R x [0,7],
y—0* Y
for every v > 0.
(H4) A, =B, =0 VteR, where Ay ={(s,y) € Rx R :a(t,t —s,y) =0} and
By ={(s,z) e R x RT : b(¢t,t — s,z) = 0}.
Then if
(4.2) r(L(ri,a,y)) > 1, and r(L(r2,b,2)) >1, V(x,y) € Psx Pg.

F has at least four fized points in P x P : (0,0),(x0,0),(0,v0), (z1,y1) verifying
(1.1), where r(L(71, a,y)) means the spectral radius of the linear operator L(T1,a,y) :
E — FE defined by

Tl(t)
L(Tlvaay)x(t) :/ a(t,s,y(t—s—l))x(t—s—l) d37 V(.’L‘,y) GEXE,
0
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(analogously for r(L(te,b,x)) and L(72,b,x)).

Proof. We are going to prove that all conditions of Theorem 2.3 and Remark 1
are satisfied. For it, we must observe that (£, P) is an ordered Banach space with

P 0.
In order to prove that the condition (H1) of Theorem 2.3 is satisfied, take 5 such
that

> M max{7T{ = ma; t), 74 = ma t
B max {7} Olgtggﬁ()ﬁz o?tg)‘AT?()}

where M is a constant satisfying
M > sup{f(t,s,x,y),q9(t,s,z,y),(t,s,z,y) € R x R x [0, +00[x[0, +o0o[}.
Take (z,y) € Pg x Sg and A > 1, verifying H(x,y) = Ay, whence

T2(t)
y(t):i/ g(t,s,x(t—s—1),yt—s—1)) ds VteR.
0

Since |ly||z = S, there is ¢ty € R such that y(t9) = 8. From which it follows that

T2(t0)
6 = y(t(]) < / 9(75073»33(750 — 85— l)vy(t(] —Ss— l)) ds < MTQ* < Ba
0

which is a contradiction. One may proceed in an analogous way if ||y||z < § and
|lz||z = B. Therefore (H1) of Theorem 2.3 is satisfied. B
As in the proof of Theorem 3.2 one can see that for all x € P and y € P3

- L 5
G(z,y) (11, 0,y)2 =0, uniformlyin y € P;s.

lim
=0 ||
zeP

Similarly

lim H(z,y) — L(m2,b,7)y

=0, uniformly in z € Ps.
y—0 Iyl
yep

Now, it is easily seen (see[2, Theorem 2.1]) that L(71,a,y) and L(72,b,z) are
strongly positive. It then follows from (4.2) that hypothesis (H2) of Theorem 2.3 is
satisfied. This completes the proof of the theorem. O

Now we present an example of Theorem 4.1

Example 4.2. Let f; : [0, +00) — R defined by

fl(x):{x(l—x), 0<z<1

0, x>1
g2 = f1, 91(y) =1 +sin’y Vye [0,00) fo(x) =14 cos?x Vax € [0,00).

And take d,d’ : R — R a continuous, positive and w-periodic functions (w > 0)
and [ =0 .
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Let the system of nonlinear integral equations
T1(t)
o) = [ de= ) has)m o) ds

T2(t)
y(t) = /0 &(t — 5) fal(s))ga(y(s)) ds

hypotheses (H'1) -(H’4) of Theorem 4.1 are satisfied with a(¢,s,y) = d(t — s)(1 +
sin?y), and b(t,s,z) = d'(t — s)(1 + cos® z).
Consequently if

(4.3) r(L(m,a,y)) > 1, 7(L(me,b,2)) > 1, Y(x,y) € Ps x Pg,

(where 3 is defined as in Theorem 4.1) the above system has at least four fixed points
(0,0), (x0,0),(0,90), (z1,y1) in P x P verifying (1.1). Note that in the particular
case where d(t) = d € RT and d'(t) = d’ € Rtconditions (4.3) are satisfied if we
take )

1
— i t d — i t).
< ItIélﬁIgl’Tl( ) an 7 < 12%%17'2( )

Here we use that fact that (see [8, 2])

7’1(t)
min / alt, s,y(t — s)ds < r(L(r1, a,9),
teR 0

and

Tl(t)
min/ b(t,s,x(t — s))ds < r(L(m,b,x)).
teR J
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