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condition

(1.3) x(0) = x0 ∈ E.

Notice that the problem under consideration includes, as particular cases,

1) j0(x(T )) −→ min (terminal control problem);

2) j0(x(T )) +
∫ T
0 f0(t, x(t))dt −→ min (particular Bolza problem).

We deal also with the time-optimal problem which consists in finding of such a
trajectory of the system which, starting from a given initial set M0 ⊂ E attains a
certain target set M ⊂ E in the shortest time.

As example, we consider optimization problems for a time-fractional diffusion
type system which include as a particular case the same problems for a controlled
process of fractional heat transfer.

2. Preliminaries

Let X,Y be Banach spaces;

P (Y ) = {D ⊆ Y,D ̸= ∅},

K(Y ) = {D ∈ P (Y ) : D is compact },

Kv(Y ) = {D ∈ K(Y ) : D is convex}.
The Hausdorff metric on the collection K(Y ) is defined as a function H : K(Y ) ×
K(Y ) → R+ :

H(B1, B2) = inf{ε>0 : B1 ⊂ Uε(B2), B2 ⊂ Uε(B1)},

where Uε(B) denotes the ε-neighborhood of a set B.

We will need the following notions (see, e.g., [2, 3, 8]).

Definition 2.1. A multivalued map (multimap) F : X → P (Y ) is called upper
semicontinuous if the set

F−1
+ (V ) = {x ∈ X : F (x) ⊂ V }

is open in X for every open set V ⊂ Y . A multimap F : X → P (Y ) is called lower
semicontinuous if the set F−1(W ) is closed in X for every closed set W ⊂ Y . If a
multimap F is upper and lower semicontinuous it is called continuous.

Let us mention the following property (see, e.g., [2], Proposition 17.30; [8], The-
orem 1.1.7).

Lemma 2.2. Let F : X → K(Y ) be a upper semicontinuous multimap. If A ⊂ X
be a compact set then its image F (A) is a compact subset of Y.

Let E be a separable Banach space; an interval [a, b] is equipped with the
Lebesgue measure.

Recall that a multifunction G : [a, b] → K(E) is called measurable provided
it satisfies one of two equivalent conditions: ) the set G−1(V ) is measurable for
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every open set V ⊂ E; ) there exists a sequence {gn}∞n=1 of measurable functions
gn : [a, b] → E such that

G(t) = {gn(t)∞n=1}
for almost all t ∈ [a, b] (see, e.g., [2, 3, 4]).

Let E′ be a separable Banach space.

Definition 2.3. A multimap F : [a, b] × E′ → K(E) is called superpositionally
measurable provided the multifunction H : [a, b] → K(E), H(t) = F(t,Q(t)) is
measurable for every measurable multifunction Q : [a, b] → K(E′).

It is known (see, e.g., [8], Proposition 1.3.1 and Theorem 1.3.4) that a multimap
F is superpositionally measurable provided it is upper semicontinuous or satisfies
the following Carathéodory conditions:

(i) for every x ∈ E′ the multifunction F(·, x) : [a, b] → K(E) is measurable;
(ii) for a.e. t ∈ [a, b] the multimap F(t, ·) : E′ → K(E) is continuous.

From the other side, it is clear that if a multimap F is superpositionally measur-
able then it satisfies the above condition (i).

In the sequel, we will need the following assertion which is due to Castaing (see,
e.g., [2], Theorem 20.7; [8], Corollary 1.3.3).

Lemma 2.4. Let a multimap F : [a, b] × E′ → K(E) satisfies the following condi-
tions:

(i′) for each x ∈ E′ the multifunction F(·, x) : [a, b] → K(E) admits admits a
measurable selection, i.e., there exists a measurable function f : [a, b] → E
such that f(t) ∈ F(t, x) for a.e. t ∈ [a, b];

(ii′) for a.e. t ∈ [a, b] the multimap F(t, ·) : E′ → K(E) is upper semicontinuous.

Then for every for every measurable multifunction Q : [a, b] → K(E′), the multi-
function H : [a, b] → K(E), H(t) = F(t,Q(t)) admits a measurable selection.

We will use also some notions from the fractional analysis (see, e.g., [9, 11, 13]).

Definition 2.5. The Riemann–Liouville fractional derivative of the order q ∈ (0, 1)
of a continuous function g : [0, T ] → E is the function Dqg of the following form:

Dqg(t) =
1

Γ(1− q)

d

dt

∫ t

0
(t− s)−qg(s) ds

provided the right-hand side of this equality is well defined.

Here Γ is the Euler gamma-function

Γ(r) =

∫ ∞

0
sr−1e−sds.

Definition 2.6. The Caputo fractional derivative of the order q ∈ (0, 1) of a con-
tinuous function g : [0, T ] → E is the function CDqg defined in the following way:

CDqg(t) =
(
Dq(g(·)− g(0))

)
(t)

provided the right-hand side of this equality is well defined.
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Consider the Cauchy problem for a fractional order semilinear differential inclu-
sion in E :

(2.1) CDqx(t) ∈ Ax(t) + F(t, x(t)), 0 6 t 6 T,

(2.2) x(0) = x0 ∈ E,

under the following assumptions.

(A) A : D(A) ⊆ E → E is a linear closed not necessarily bounded operator
generating a bounded C0-semigroup {eAt}t≥0 of linear operators in E.

For a multimap F : [0, T ]× E → Kv(E) we will suppose that:

(F1) for each x ∈ E the multifunction F(·, x) : [0, T ] → Kv(E) admits a measur-
able selection, i.e., there exists a measurable function f : [0, T ] → E such
that f(t) ∈ F(t, x) for a.e. t ∈ [0, T ];

(F2) for almost every t ∈ [0, T ] the multimap F(t, ·) : E → Kv(E) is upper
semicontinuous;

(F3) there exists a function α(·) ∈ L∞
+ ([0, T ]) such that

∥F(t, x)∥ := sup{∥y∥ : y ∈ F(t, x)} ≤ α(t)(1 + ∥x∥) a.e. t ∈ [0, T ]

for all x ∈ E;
(F4) there exists a function k(·) ∈ L∞

+ ([0, T ]) such that for every nonempty
bounded set D ⊂ E the following estimate holds true for a.e. t ∈ [0, T ] :

χ(F(t,D)) ≤ k(t)χ(D),

where χ is the Hausdorff measure of noncompactness in E:

χ(D) = inf{ε>0 : D has a finite ε− net}.

It is clear that condition (F1) is fulfilled if for every x ∈ E the multifunction
F(·, x) is measurable.

Definition 2.7. (cf. [6]) A mild solution of problem (2.1)-(2.2) is a function x ∈
C([0, T ];E) which can be represented as:

x(t) = G(t)x0 +
∫ t

0
(t− s)q−1T (t− s)f(s)ds, t ∈ [0, T ],

where f(·) ∈ L∞
+ ([0, T ];E), f(t) ∈ F(t, x(t)) for a.e. t ∈ [0, T ] and

G(t) =
∫ ∞

0
ξq(θ)e

A(tqθ)dθ, T (t) = q

∫ ∞

0
θξq(θ)e

A(tqθ)dθ,

ξq(θ) =
1

q
θ
−1− 1

qψq(θ
−1/q),

ψq(θ) =
1

π

∞∑
n=1

(−1)n−1θ−qn−1Γ(nq + 1)

n!
sin(nπq), θ ∈ R+.

The next existence and continuous dependence result follows from the results of
the papers [6, 7].
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Theorem 2.8. Under conditions (A) and (F1)− (F4) the set Σx0 of all mild solu-
tions of the Cauchy problem (2.1)-(2.2) is a nonempty compact subset of C([0, T ]);E)
and, moreover, the multimap

Σ: E ( K(C([0, T ]);E)), Σ(x) = Σx

is upper semicontinuous.

We will need also the following assertion (see [8], Proposition 2.2.2).

Theorem 2.9. Let a multimap Φ: E × E → K(E) be such that:

i) for every x ∈ E and bounded set Ω ⊂ E the set Φ(x,Ω) is relatively compact
in E;

ii) for every y ∈ E the multimap Φ(·, y) : E → K(E) is κ-Lipschitz (κ ≥ 0)
with respect to the Hausdorff metric H in K(E), i.e.,

H (Φ(x1, y),Φ(x2, y)) ≤ κ∥x1 − x2∥
for every x1, x2 ∈ E.

Then the multimap Ψ : E → K(E),Ψ(x) = Φ(x, x) is (κ, χ)-bounded, i.e.,

χ(ψ(Ω)) ≤ κχ(Ω)

for every bounded set Ω ⊂ E.

3. Optimization problems

We will consider system (1.1)-(1.2) under the following assumptions.

Let the linear operator A satisfy condition (A) of the previous section.

Further, let E1 be a separable space of controls. The multimap F : [0, T ] × E ×
E1 → K(E) obeys the conditions:

(F1) the multifunction F (·, x, u) : [0, T ] → K(E) admits a measurable selection
for every (x, u) ∈ E × E1;

(F2) the multimap F satisfies the following Lipschitz condition in the second
argument with respect to the Hausdorff metric H:

H (F (t, x1, u), F (t, x2, u)) ≤ k(t)∥x1 − x2∥
for each x1, x2 ∈ E, u ∈ U([0, T ] × E), where k(·) ∈ L∞

+ ([0, T ]) does not
depend on u;

(F3) the multimap F (t, ·, ·) : E × E1 → K(E) is upper semicontinuous for a.e.
t ∈ [0, T ].

For the feedback multimap U : [0, T ]× E → K(E1) we will assume that:

(U1) the multimap U is superpositionally measurable;
(U2) the multimap U(t, ·) : E → K(E1) is upper semicontinuous for a.e. t ∈

[0, T ];
(U3) the set

F(t, x) = F (t, x, U(t, x))

is convex for all (t, x) ∈ [0, T ]× E;
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(U4) the multimap F : [0, T ] × E → Kv(E) satisfies the boundedness condition
(F3);

(U5) for every (t, x) ∈ [0, T ]× E and a bounded set D ⊂ E the set

F (t, x, U(t,D))

is relatively compact in E.

In accordance with Definition 2.7 we introduce the following notion.

Definition 3.1. A pair {x, u}, where x ∈ C([0, T ];E) and u : [0, T ] → E1 is a
measurable function, is called a mild solution to problem (1.1)-(1.3) if

x(t) = G(t)x0 +
∫ t

0
(t− s)q−1T (t− s)f(s)ds, t ∈ [0, T ],

where f(·) ∈ L∞
+ ([0, T ];E), f(t) ∈ F (t, x(t), u(t)) for a.e. t ∈ [0, T ], and u(t) ∈

U(t, x(t)), t ∈ [0, T ].
The function x is called a mild trajectory of the system and the function u is a
control function.

The following result on the optimization of a cost functional holds true.

Theorem 3.2. Let j : C([0, T ];E) → R be a lower semicontinuous functional.
Then under assumptions (A), (F1)-(F3), and (U1)-(U5) there exists a mild solution
{x⋆, u⋆} to problem (1.1)-(1.3) such that

j(x⋆) = min
x∈Σx0

j(x),

where Σx0 is the set of all mild trajectories of problem (1.1)-(1.3).

Proof. Let us show that the multimap F(t, x) = F (t, x, U(t, x)) satisfies conditions
of Theorem 2.8. First of all, let us mention that due to Lemma 2.2 and conditions
(F3), (U3) the multimap F has compact convex values. Further, condition (F1)
follows from conditions (F1), (F3), (U1) and Lemma 2.4. Conditions (F3), (U2)
and the continuity property of the composition of multimaps (see, e.g., [8], Theorem
1.2.8) imply condition (F2). Condition (F3) follows directly from (U4).

Now, let us verify that the multimap F satisfies condition (F4). Fix t ∈ [0, T ] and
consider the multimap Φ : E × E → K(E) defined as

Φ(x, y) = F (t, x, U(t, y)).

This multimap satisfies conditions of Theorem 2.9. In fact, the validity of condition
(i) of this theorem follows immediately from (U5). Now, fix y ∈ E and take x1, x2 ∈
E and arbitrary φ1 ∈ Φ(x1, y). Then φ1 ∈ F (t, x1, u), for some u ∈ U(t, y). From
condition (F2) it follows that there exists φ2 ∈ F (t, x2, u) ⊂ Φ(x2, y) such that

∥φ1 − φ2∥ ≤ k(t)∥x1 − x2∥
that implies condition (ii) of Theorem 2.9. By applying this theorem we get that
the multimap F(t, x) satisfies condition (F4).

Now, from Theorem 2.8 it follows that there exists a nonempty compact set of
functions x ∈ C([0, T ];E) of the form

x(t) = G(t)x0 +
∫ t

0
(t− s)q−1T (t− s)f(s)ds, t ∈ [0, T ],
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where f(t) ∈ F(t, x(t)) = F (t, x(t), U(t, x(t))) for a.e. t ∈ [0, T ] is a measurable
selection. By using condition (U1) and applying the Filippov implicit function
lemma (see, e.g., [8], Theorem 1.3.3) we conclude that every such function is a mild
trajectory of the system (1.1)-(1.3). Let x⋆ be a mild trajectory minimizing the
functional j and u⋆ be a corresponding control function. The pair {x⋆, u⋆} is the
required optimal solution of problem (1.1)-(1.3). �

Now we will consider the time-optimality problem for system (1.1)-(1.2) satisfying
conditions (A), (F1) − (F3), and (U1) − (U5). Let M0 ⊂ E be a given compact
initial set, M ⊂ E a given closed target set.

Theorem 3.3. Let there exist a mild trajectory of system (1.1)-(1.2) starting from
the set M0 and attaining the set M at a certain moment t1 ∈ (0, T ]. Then there
exists a mild trajectory of the system attaining the set M from the set M0 in a
shortest time.

Proof. Denote by Σ(x) ⊂ C([0, T ];E) the set of all mild trajectories of the system
emanating from a point x ∈ M0. From Theorem 2.8 we know that the multimap
Σ: E ( C([0, T ];E) is compact-valued and upper semicontinuous. Hence the set
Σ(M0) of all mild trajectories emanating from M0 is compact (Lemma 2.2).

Consider the attainability multifunction Π: [0, T ] → K(E) defined as

Π(t) = Σ(M0)(t) = {x(t) : x ∈ Σ(M0)}.
and the set

T = Π−1
− (M) = {t ∈ [0, T ] : Π(t) ∩M ̸= ∅}.

This set is nonempty since, by assumption, it contains the point t1. Further, it is
easy to verify that the multimap Π is upper semicontinuous and therefore the set
T ⊂ [0, T ] is closed and contains its lower bound t⋆ which is the minimal moment
of attainability of the set M. �

4. Optimization of a time-fractional diffusion system

We will consider optimization problems for the following time-fractional diffusion
system. Let G ⊂ Rn be a domain of a finite measure with a smooth boundary ∂G.
The state of a system will be characterized by a function z : [0, T ]×G→ R and its
dynamics is described by the following relations

(4.1) CDq
t z(t, y) =

n∑
k=1

∂2

∂y2k
z(t, y) + h(y, z(t, y), v(t, y)), 0 ≤ t ≤ T

(4.2) z(t, ·)|∂G = 0, 0 ≤ t ≤ T.

It is worth noting that the equationDα
t z = zxx, known as time-fractional diffusion

equation presents a mathematical model finding wide applications, due to anoma-
lous diffusion effects in disordered materials, where the environment is constrained
and trapping and binding of particles can occur. It describes anomalous diffusion
characterized by the mean square displacement of particles from the original start-
ing site, verifying the generalized Fick’s second law. Important applications include
viscoelasticity and seismic-wave theory, diffusion in turbulent plasma, fractal media
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and porous media (see, e.g., [5] and the references therein). We consider a perturbed
equation modeling the influence of a control on the dynamics of the process.

As the space of the system states we will consider a Hilbert space E = L2(G;R)
and a Hilbert space E1 = L2(G,Rm) will be considered as the space of controls. Let
a feedback multimap U : [0, T ] × E → K(E1) at each moment t ∈ [0, T ] associates
to a state of the system z(t, ·) the set of admissible controls

(4.3) v(t, ·) ∈ U(t, z(t, ·)).

We will assume that the function h : G × R × Rm → R satisfies the following
conditions:

(h1) the function h(·, z, u) : G→ R is measurable ∀z ∈ R, u ∈ Rm;
(h2) the function h(y, ·, ·) : R× Rm → R is continuous ∀y ∈ G;
(h3) there exists a function a ∈ L2

+(G;R) such that

|h(y, z, u)| ≤ a(y) ∀z ∈ R, u ∈ U([0, T ]× E);

(h4) |h(y, z1, u)− h(y, z2, u)| ≤ k|z1 − z2| ∀z1, z2 ∈ R, y ∈ G, u ∈ U([0, T ]×E),
where k > 0 does not depend on y and u.

Let the multimap U satisfy conditions (U1) and (U2) of the previous section and,
moreover, let the following condition hold true:

(U5′) for every t ∈ [0, T ] and x ∈ E the set of functions

{h(·, x(·), u(·)) : u ∈ U(t,D)}

is relatively compact in E for each bounded set D ⊂ E.

The map h generates the map F : E × E1 → E as

F (x, u) = h(·, x(·), u(·)).

We will assume that for every t ∈ [0, T ] and x ∈ E the set of functions

{h(·, x(·), u(·)) : u ∈ U(t, x)}

is convex in E.
The continuity of the map F follows from the Krasnoselskii theorem on the

continuity of the superposition operator (see, e.g., [10]) and hence condition (F3)
is fulfilled for the map F.

Notice that from the continuity of the map F (x, ·) it follows that condition (U5′)
will be fulfilled provided the multimap U is completely upper semicontinuous in the
second argument, i.e., for each t ∈ [0, T ] the image U(t,D) of every bounded set
D ⊂ E is relatively compact.

Let us verify now condition (F2). Take x1, x2 ∈ E, u ∈ U([0, T ]× E), then

∥F (x1, u)− F (x2, u)∥E = ∥h(·, x1(·), u(·))− h(·, x2(·), u(·))∥E

=
(∫

G
|h(y, x1(y), u(y))− h(y, x2(y), u(y))|2dy

)1/2

≤ k
(∫

G
|x1(y)− x2(y)|2dy

)1/2
= k∥x1 − x2∥E .
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In the space L2(G;R) consider the Laplace operator

∆ =
n∑

k=1

∂2

∂y2k

with the domain W 2,2(G;R) ∩ W 1,2
0 (G;R). It is known (see, e.g. [12]) that ∆

generates a C0-semigroup of contractions and so condition (A) is fulfilled.

Now we see that system (4.1)-(4.3) satisfies all conditions described in the previ-
ous section. It means that we can formulate the following optimization results.

Theorem 4.1. Let j : C([0, T ];L2(G;R)) → R be a given lower semicontinuous
functional. Then there exists a mild solution {z⋆, v⋆} of problem (4.1)-(4.3) satisfy-
ing a given initial value condition

(4.4) z(t, ·) = x0 ∈ L2(G;R)
with z⋆ ∈ C([0, T ];L2(G;R)) and a measurable function t ∈ [0, T ] → v⋆(t, ·) ∈
L2(G;Rm) such that

j(x⋆) = min
x∈Σx0

j(x),

where Σx0 ⊂ C([0, T ];L2(G;R)) is the set of all mild trajectories of problem (4.1)-
(4.4).

Theorem 4.2. Let there exist a mild trajectory of system (4.1)-(4.3) starting from
a compact set M0 ⊂ L2(G;R) and attaining a closed set M ⊂ L2(G;R) at a certain
moment t1 ∈ (0, T ]. Then there exists a mild trajectory of the system attaining the
set M from the set M0 in a shortest time.

Example 4.3. We will consider optimization problems in a time-fractional process
of heat transfer. Let G ⊂ R3 be a domain of a finite measure with a smooth
boundary ∂G. A function

z(t, y), z ∈ C([0, T ];L2(G;R))
characterizes the temperature in a point y ∈ G at a moment t ∈ [0, T ].

Let in the domain G there exist m heat sources whose properties depend on the
temperature and whose densities are described by functions φi(y, z), i = 1, . . . ,m, φi :
G×R → R. The intensity of sources is regulated by the controls ui : [0, T ] → R(i =
1, ...,m) which are measurable functions satisfying the following feedback condition:

(4.5) u(t) = (u1(t), . . . , um(t)) ∈W (z(t, ·)), t ∈ [0, T ],

whereW a upper semicontinuous multimap from L2(G;R) to Rm with convex closed
values such that

∥W (x)∥ ≤M

for all x ∈ L2(G;R), where M>0.
Now the controlled time-fractional process of heat transfer in the domain G is

described, together with (4.5), by the following relations:

(4.6) CDq
t z(t, y) =

3∑
k=1

∂2

∂y2k
z(t, y) +

m∑
i=1

ui(t)φi(y, z(t, y)), 0 ≤ t ≤ T ;
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(4.7) z(t, ·)|∂G = 0, 0 ≤ t ≤ T ;

(4.8) z(0, ·) = x0 ∈ L2(G;R).

We will assume that the functions φi satisfy for each i = 1, ...,m the following
conditions:

φ1) φi(·, z) : G→ R is measurable ∀z ∈ R;
φ2) |φi(y, z)| ≤ αi(y) ∀z ∈ R, where αi ∈ L2

+(G;R);
φ3) |φi(y, z1) − φi(y, z2)| ≤ ki|z1 − z2| ∀z1, z2 ∈ R, y ∈ G, where ki does not

depend on y.

Then it is easy to see that the function h : G× R× Rm → R

h(y, z, u) =

m∑
i=1

uiφi(y, z)

satisfies conditions (h1)-(h4).
Making the natural embedding of the space Rm into L2(G;Rm), we will induce by

the multimap W a upper semicontinuous multimap U from L2(G;R) to L2(G,Rm)
for which all necessary conditions will be fulfilled. In particular, the validity of
property (U5′) follows from the fact that for every x ∈ L2(G;R) the set

{h(·, x(·), u(·)) : u ∈ U(L2(G;R))}
is a bounded subset of a linear hull of the functions

φ1(·, x(·)), . . . , φm(·, x(·)) ∈ L2(G;R).

Therefore, from Theorem 4.1 we conclude that there exists a mild solution
{z⋆(t, y), u⋆(t)} of problem (4.5)-(4.8) such that the function z⋆ minimizers the func-
tional

j(z) =

∫
G
|z(T, y)− z0(y)|2dy,

expressing the mean square deviation of the temperature distribution at the final
moment t = T from a prescribed distribution z0 ∈ L2(G;R).

A similar application of Theorem 4.2 yields the existence of a time-optimal solu-
tion of problem (4.5)-(4.8) attaining a given closed setM ⊂ L2(G;R) of temperature
distributions.
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