Applied Analysis and Optimization Yokohama Publishers

Volume 2, Number 1, 2018, 41-46 ISSN 2189-1664 Online Journal
(©) Copyright 2018

A FIXED SET THEOREM FOR SET-TO-SET MAPS
KAZUKI SETO AND DAISHI KUROIWA

ABSTRACT. A fixed set theorem in term of T'(A) = A for set-to-set Hausdorff
continuous self-mappings on a family of all nonempty compact convex subset of
a normed space was given by using an embedding idea by Radstrom [8].

1. INTRODUCTION

Let X be a compact convex subset of a normed space. For a set-valued map
T:X — 2%, 7€ X is said to be a fixed point of T if T(Z) > Z. Nadler established
a fixed point theorem for set-valued maps in [7] which is an extension of the Banach
contraction principle, Mizoguchi and Takahashi have extended Nadler’s results in
[6]. Also Fakhar, Soltani and Zafarani gave a maximal invariant set (fixed set)
theorem for set-valued maps in [3].

On the other hand, for a set-to-set map 7 : 2% — 2% and a nonempty set
A € 2% there are four type fized set notions which are generalizations of the fixed
point notion:

(1) T(A) = A;
(2) T(A) C A
(3) T(A) D A;
(4) T(A)N A £ (.
We can find the following previous works for such fixed set theorems: Pradip,
Binayak and Murchana showed a fixed set theorem in term of T'(A) D A in [2],
which is a generalization of Nadler’s result, and Robert, Klaus and Bradon showed
a fixed set theorem in term of T'(B) = B for a monotone map 7" under the existence
of A such that T(A) C Ain [1], and applied to study of a boundary value problem for
a system of differential equations. In this paper, we give another fixed set theorem
for set-to-set maps, by using an embedding idea in [8], which is a generalization of
the following Schauder fixed point theorem, see [9]:

Theorem 1.1. Let X be a nonempty conver subset of a normed space E, and let
T be a continuous self-mapping on X. If T(X) is compact, then there exists T € X
such that T(Z) = .

2. MAIN RESULTS

Throughout this paper, let E be a normed space, let X be a nonempty compact
convex subset of E, and let Cx be the family of all nonempty compact convex
subsets of X.
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Lemma 2.1. Define H : Cx X Cx — [0,+00) by
H(A,B) := inf ||a — b inf |la — b
(4, B) := max{sup fnf [l — ]|, sup inf fla —bll},

forany A, B € Cx. Then H is a metric on Cx, which is called the Hausdorff metric,
and the metric space (Cx, H) is compact.

Proof. We give a proof based on the non-convex version, see [4]. Since X is compact,
that is, X is totally bounded, for any € > 0, there exists a finite set Y C X such
that

mind(z,y) < € for any x € X.
yey

For any C € Cx, put S ={y € Y | d(C,y) < €}, then H(C,S) < ¢ holds, that is,
H(C,coS) < ¢ holds. Put a finite subfamily 7 = {coS | S € 2V}, then T C Cx and

in H(C,T) < ¢ f C eCx.
mmin (C,T) < € for any X
This shows that (Cx, H) is also total bounded. Next, for any Cauchy sequence
{4,} C Cx, define
A={ze X|Hzn} C X st. 2, > x,2, € Ay, Vn € N},

then we can see that A is a nonempty compact convex subset of X and {A,}
converges to A with respect to the Hausdorff metric H. Then (Cx, H) is complete,
and consequently (Cx, H) is compact. O

Now we give the main theorem.

Theorem 2.2. Let A be a subfamily of Cx satisfying
(2.1) A BeA N (0,1)= (1-ANA+ABeA,
and let T : A — A be continuous with respect to the Hausdorff metric H. If either
the following (i) or (ii) holds:
(i) A is closed with respect to the Hausdorff metric H,
(ii) T(A) :={T(A) | A € A} is closed with respect to the Hausdorff metric H,
then T has a fized set, that is, there exists A € A such that T(A) = A.
Proof. We may assume (ii). Indeed, if (i) holds, then A is compact because A is
closed and Cx is compact with respect to the Hausdorff metric H, therefore, the
image T'(A) is also compact because T is continuous.
Let C be the family of all nonempty compact convex subsets of F, and define a
binary relation = on C? by, for all (A, B), (C, D) € C?,
(A,B)=(C,D)it A+ D=B+C,
then = is an equivalence relation on C2. The cancellation low on C, that is,
A+BCA+C=BcCC
is essential to show the equivalence. Define the quotient space
C%/=:={[A,B] | (A, B) € C?},

where
A, B] == {(C.D) € C*| (A, B) = (C. D)},
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and define the following addition and scholar multiplication on C?/= by
[A,B]+[C,D] = [A+ C,B + D],
_ [AA, \B] if A>0

Al4, B] = { [—AB,~M] if A <0,

for any [A, B],[C, D] € C?/= and A € R, then C%/= is a vector space over R. Also
define
1A, Blll = H(A, B)

for each [A, B] € C?/=, then (C?/=,| - |) becomes a normed space. For details
about these arguments, see [5, 8].
Define
v A — C?=
w w
A — [A{0}].
Note that
[(A) = (B)I| = [[A,{0}] - [B, {0}]|| = [[[A, Bl|| = H(A, B),

for any A, B € Cx. Consequently, v is continuous because

for a sequence {Ay,}neny C A converges to A € A with respect to the Hausdorff
metric H. Also ¢(A) is a convex subset of C2/=. Indeed, for any ¥(A),¥(B) € ¥(A)
and A € (0,1), from

(1 =)(A) + Mp(B) = [(1 = A)A+ AB,{0}] = ¢((1 - A\)A + AB)
and (1 —A\)A+ AB € A, then (1 — \)(A) + M\)(B) € ¥(A).
Consider a self-mapping on convex set 1)(.A) defined by
ToowA) - )

w w
[A4,{0}] — [T(A),{0}],

then T is continuous. Indeed, if a sequence {¢(A4,)} C ¥(A) converges to 1(A) €
»(A), that is ||v(Ay) — ¥(A)]] = 0, then H(A,, A) — 0 and

1T (An)) = T (@A) = [IIT(An), {0}] = [T(A), {0}][| = H(T(An), T(A)).
Since T is continuous with respect to H, then H(T(A,,),T(A)) — 0. This shows T
is continuous. Also 7 (¢(A)) is compact because T'(.A) is compact, 1 is continuous,

nd T((A) = {(T((A) | Ac A}
— {(TA{0}) | Ac A)
— {[T(A), {0}] | A € A}
— ($(T(A)) | A c A}
— B(T(A).

By using Theorem 1.1, there exists A € A such that T(1)(A)) = ¢(A), that is,
T(A) = A. O
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Remark 2.3. It is clear that Theorem 2.2 is different from the previous fixed set
theorems in [1, 2].

We can obtain the following corollaries by using Theorem 2.2:

Corollary 2.4. Let T be a continuous self-mapping on Cx with respect to the Haus-
dorff metric H. Then T has a fized set, that is, there exist A € Cx such that
T(A) = A.

Proof. Put A := Cx, then we can see that A is closed with respect to H satisfying
(2.1). Therefore we can apply Theorem 2.2 to show the existence of fixed sets of
T. O

Corollary 2.5 (Theorem 1.1). Let X be a nonempty convexr subset of a normed
space E, and let T be a continuous self-mapping on X. If T(X) is compact, then
there exists T € X such that T'(z) = Z.

Proof. Put A := {{z} | z € X}, then we can see that A is closed with respect to
H satisfying (2.1) and 7' : A — A, defined by T'({z}) = {T(x)}, is continuous with
respect to the Hausdorff metric H. Therefore we can apply Theorem 2.2 to show
the existence of fixed sets of T 0

Remark 2.6. Theorem 2.2 does not guarantee an existence fixed set A is a non-
singleton set. However by constructing A which does not include singleton sets,
every existence fixed set becomes non-singleton. We give the following examples to
explain this remark:

Example 2.7. Let X = [0,2]? and
A= {B(zy,z2,7) | B(z1,20,7) C X, (x1,22) € R?, 7 > 0},

where B(x1,72,7) = {(y1,52) € R? | (y1 — 21)? + (y2 — x2)? < r?}. Then A C Cx is
closed with respect to the Hausdorff metric H. Hence each continuous self-mapping
on A with respect to H has a fixed set from Theorem 2.2. For example, define

T(B(x1,z2,1)) = B(xg,xl,'rQ),

then we can check that T': A — A is continuous with respect to H and then there
exists a fixed set A € A such that T'(4) = A. However, we can not see whether an
existence fixed set A is a non-singleton set or not. Indeed, B(1,1,1) and B(x, z,0),
0 <z <2, are fixed sets of T. On the other hand, let

A" = {B(x1,79,7) | B(z1,22,7) C X, (21,22) € R2 r > 0}

and assume that a self-mapping 7" on A’ has a fixed set A, then A should be non-
singleton. However A’ is not closed with respect to H and Theorem 2.2 can not be
applied to the situation.

Example 2.8. Let X = [0,4] x [0,4] C R? and let
A={[a,b] x[c,d] |0<a<b<4,0<c<d<4,(b—a)(d—c)=1}.
Consider a self-mapping T : A — A defined by
T([a,b] X [c,d]) = [a+tw(a) — h,b—tg(b) + h] X [c+ ts(c) — h,d — tn(d) + h]
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F1GURE 1. The orbit {77([0,1] x [0,1])} in Example 2.8

where tyy(a) = 3(4—a)/16, tp(b) =b/8, ts(c) = 5(4 —¢)/32, tn(d) = 3d/32, and h
is the biggest solution of the following quadratic function:

(b—tp(b) —a—tw(a)+2h)(d—tn(d) —c—tg(c) + 2h) = 1.
Since A does not include any singleton, every fixed set A of T is non-singleton.
We can see that the only fixed set is [4 — k/6,k/4] x [4 — k/5,k/3] where k =
(171 — 3v/249)/20. This example shows a model of residence movement against

natural threats from north, south, east, and west. The orbit {T7™(]0, 1] x [0, 1])} is
given in Figure 1.

Example 2.9. Let X be a nonempty compact convex subset of a normed space E
and for any € > 0, define

A. = {A C Cx | there exists z € X such that B(x,e) C A},

where B(z,e) = {y € X | |ly — z|| < e}. Then we can check that A is closed with
respect to the Hausdorff metric H and (2.1). If T is a continuous self-mapping on
A, then there exists a fixed set A € A.. Clearly, A is a non-singleton set.
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