A FIXED SET THEOREM FOR SET-TO-SET MAPS

KAZUKI SETO AND DAISHI KUROIWA

Abstract

A fixed set theorem in term of $T(A)=A$ for set-to-set Hausdorff continuous self-mappings on a family of all nonempty compact convex subset of a normed space was given by using an embedding idea by Radström [8].

1. Introduction

Let X be a compact convex subset of a normed space. For a set-valued map $T: X \rightarrow 2^{X}, \bar{x} \in X$ is said to be a fixed point of T if $T(\bar{x}) \ni \bar{x}$. Nadler established a fixed point theorem for set-valued maps in [7] which is an extension of the Banach contraction principle, Mizoguchi and Takahashi have extended Nadler's results in [6]. Also Fakhar, Soltani and Zafarani gave a maximal invariant set (fixed set) theorem for set-valued maps in [3].

On the other hand, for a set-to-set map $T: 2^{X} \rightarrow 2^{X}$ and a nonempty set $A \in 2^{X}$, there are four type fixed set notions which are generalizations of the fixed point notion:
(1) $T(A)=A$;
(2) $T(A) \subset A$;
(3) $T(A) \supset A$;
(4) $T(A) \cap A \neq \emptyset$.

We can find the following previous works for such fixed set theorems: Pradip, Binayak and Murchana showed a fixed set theorem in term of $T(A) \supset A$ in [2], which is a generalization of Nadler's result, and Robert, Klaus and Bradon showed a fixed set theorem in term of $T(B)=B$ for a monotone map T under the existence of A such that $T(A) \subset A$ in [1], and applied to study of a boundary value problem for a system of differential equations. In this paper, we give another fixed set theorem for set-to-set maps, by using an embedding idea in [8], which is a generalization of the following Schauder fixed point theorem, see [9]:

Theorem 1.1. Let X be a nonempty convex subset of a normed space E, and let T be a continuous self-mapping on X. If $T(X)$ is compact, then there exists $\bar{x} \in X$ such that $T(\bar{x})=\bar{x}$.

2. Main Results

Throughout this paper, let E be a normed space, let X be a nonempty compact convex subset of E, and let \mathcal{C}_{X} be the family of all nonempty compact convex subsets of X.

[^0]Lemma 2.1. Define $H: \mathcal{C}_{X} \times \mathcal{C}_{X} \rightarrow[0,+\infty)$ by

$$
H(A, B):=\max \left\{\sup _{a \in A} \inf _{b \in B}\|a-b\|, \sup _{b \in B} \inf _{a \in A}\|a-b\|\right\}
$$

for any $A, B \in \mathcal{C}_{X}$. Then H is a metric on \mathcal{C}_{X}, which is called the Hausdorff metric, and the metric space $\left(\mathcal{C}_{X}, H\right)$ is compact.

Proof. We give a proof based on the non-convex version, see [4]. Since X is compact, that is, X is totally bounded, for any $\varepsilon>0$, there exists a finite set $Y \subset X$ such that

$$
\min _{y \in Y} d(x, y)<\varepsilon \text { for any } x \in X
$$

For any $C \in \mathcal{C}_{X}$, put $S=\{y \in Y \mid d(C, y)<\varepsilon\}$, then $H(C, S)<\varepsilon$ holds, that is, $H(C, \operatorname{co} S)<\varepsilon$ holds. Put a finite subfamily $\mathcal{T}=\left\{\operatorname{co} S \mid S \in 2^{Y}\right\}$, then $\mathcal{T} \subset \mathcal{C}_{X}$ and

$$
\min _{T \in \mathcal{T}} H(C, T)<\varepsilon \text { for any } C \in \mathcal{C}_{X}
$$

This shows that $\left(\mathcal{C}_{X}, H\right)$ is also total bounded. Next, for any Cauchy sequence $\left\{A_{n}\right\} \subset \mathcal{C}_{X}$, define

$$
A:=\left\{x \in X \mid \exists\left\{x_{n}\right\} \subset X \text { s.t. } x_{n} \rightarrow x, x_{n} \in A_{n} \forall n \in \mathbb{N}\right\}
$$

then we can see that A is a nonempty compact convex subset of X and $\left\{A_{n}\right\}$ converges to A with respect to the Hausdorff metric H. Then $\left(\mathcal{C}_{X}, H\right)$ is complete, and consequently $\left(\mathcal{C}_{X}, H\right)$ is compact.

Now we give the main theorem.
Theorem 2.2. Let \mathcal{A} be a subfamily of \mathcal{C}_{X} satisfying

$$
\begin{equation*}
A, B \in \mathcal{A}, \lambda \in(0,1) \Rightarrow(1-\lambda) A+\lambda B \in \mathcal{A} \tag{2.1}
\end{equation*}
$$

and let $T: \mathcal{A} \rightarrow \mathcal{A}$ be continuous with respect to the Hausdorff metric H. If either the following (i) or (ii) holds:
(i) \mathcal{A} is closed with respect to the Hausdorff metric H,
(ii) $T(\mathcal{A}):=\{T(A) \mid A \in \mathcal{A}\}$ is closed with respect to the Hausdorff metric H, then T has a fixed set, that is, there exists $\bar{A} \in \mathcal{A}$ such that $T(\bar{A})=\bar{A}$.

Proof. We may assume (ii). Indeed, if (i) holds, then \mathcal{A} is compact because \mathcal{A} is closed and \mathcal{C}_{X} is compact with respect to the Hausdorff metric H, therefore, the image $T(\mathcal{A})$ is also compact because T is continuous.

Let \mathcal{C} be the family of all nonempty compact convex subsets of E, and define a binary relation \equiv on \mathcal{C}^{2} by, for all $(A, B),(C, D) \in \mathcal{C}^{2}$,

$$
(A, B) \equiv(C, D) \text { if } A+D=B+C
$$

then \equiv is an equivalence relation on \mathcal{C}^{2}. The cancellation low on \mathcal{C}, that is,

$$
A+B \subset A+C \Rightarrow B \subset C
$$

is essential to show the equivalence. Define the quotient space

$$
\mathcal{C}^{2} / \equiv:=\left\{[A, B] \mid(A, B) \in \mathcal{C}^{2}\right\}
$$

where

$$
[A, B]:=\left\{(C, D) \in \mathcal{C}^{2} \mid(A, B) \equiv(C, D)\right\}
$$

and define the following addition and scholar multiplication on \mathcal{C}^{2} / \equiv by

$$
\begin{gathered}
{[A, B]+[C, D]=[A+C, B+D],} \\
\lambda[A, B]=\left\{\begin{array}{cc}
{[\lambda A, \lambda B]} & \text { if } \lambda \geq 0 \\
{[-\lambda B,-\lambda A]} & \text { if } \lambda<0
\end{array}\right.
\end{gathered}
$$

for any $[A, B],[C, D] \in \mathcal{C}^{2} / \equiv$ and $\lambda \in \mathbb{R}$, then \mathcal{C}^{2} / \equiv is a vector space over \mathbb{R}. Also define

$$
\|[A, B]\|=H(A, B)
$$

for each $[A, B] \in \mathcal{C}^{2} / \equiv$, then $\left(\mathcal{C}^{2} / \equiv,\|\cdot\|\right)$ becomes a normed space. For details about these arguments, see $[5,8]$.

Define

$$
\begin{array}{rllc}
\psi: & \mathcal{A} & \rightarrow & \mathcal{C}^{2} / \equiv \\
\Psi & & \cup \\
A & \longmapsto & {[A,\{0\}] .}
\end{array}
$$

Note that

$$
\|\psi(A)-\psi(B)\|=\|[A,\{0\}]-[B,\{0\}]\|=\|[A, B]\|=H(A, B)
$$

for any $A, B \in \mathcal{C}_{X}$. Consequently, ψ is continuous because

$$
\left\|\psi\left(A_{n}\right)-\psi(A)\right\|=H\left(A_{n}, A\right) \rightarrow 0
$$

for a sequence $\left\{A_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{A}$ converges to $A \in \mathcal{A}$ with respect to the Hausdorff metric H. Also $\psi(\mathcal{A})$ is a convex subset of \mathcal{C}^{2} / \equiv. Indeed, for any $\psi(A), \psi(B) \in \psi(\mathcal{A})$ and $\lambda \in(0,1)$, from

$$
(1-\lambda) \psi(A)+\lambda \psi(B)=[(1-\lambda) A+\lambda B,\{0\}]=\psi((1-\lambda) A+\lambda B)
$$

and $(1-\lambda) A+\lambda B \in \mathcal{A}$, then $(1-\lambda) \psi(A)+\lambda \psi(B) \in \psi(\mathcal{A})$.
Consider a self-mapping on convex set $\psi(\mathcal{A})$ defined by

$$
\begin{array}{cccc}
\mathcal{T}: & \psi(\mathcal{A}) & \rightarrow & \psi(\mathcal{A}) \\
\Psi & & \cup \\
{[A,\{0\}]} & \longmapsto & {[T(A),\{0\}]}
\end{array}
$$

then \mathcal{T} is continuous. Indeed, if a sequence $\left\{\psi\left(A_{n}\right)\right\} \subset \psi(\mathcal{A})$ converges to $\psi(A) \in$ $\psi(\mathcal{A})$, that is $\left\|\psi\left(A_{n}\right)-\psi(A)\right\| \rightarrow 0$, then $H\left(A_{n}, A\right) \rightarrow 0$ and

$$
\left\|\mathcal{T}\left(\psi\left(A_{n}\right)\right)-\mathcal{T}(\psi(A))\right\|=\left\|\left[T\left(A_{n}\right),\{0\}\right]-[T(A),\{0\}]\right\|=H\left(T\left(A_{n}\right), T(A)\right)
$$

Since T is continuous with respect to H, then $H\left(T\left(A_{n}\right), T(A)\right) \rightarrow 0$. This shows \mathcal{T} is continuous. Also $\mathcal{T}(\psi(\mathcal{A}))$ is compact because $T(\mathcal{A})$ is compact, ψ is continuous, and

$$
\begin{aligned}
\mathcal{T}(\psi(\mathcal{A})) & =\{\mathcal{T}(\psi(A)) \mid A \in \mathcal{A}\} \\
& =\{\mathcal{T}([A,\{0\}]) \mid A \in \mathcal{A}\} \\
& =\{[T(A),\{0\}] \mid A \in \mathcal{A}\} \\
& =\{\psi(T(A)) \mid A \in \mathcal{A}\} \\
& =\psi(T(\mathcal{A})) .
\end{aligned}
$$

By using Theorem 1.1, there exists $\bar{A} \in \mathcal{A}$ such that $\mathcal{T}(\psi(\bar{A}))=\psi(\bar{A})$, that is, $T(\bar{A})=\bar{A}$.

Remark 2.3. It is clear that Theorem 2.2 is different from the previous fixed set theorems in [1, 2].

We can obtain the following corollaries by using Theorem 2.2:
Corollary 2.4. Let T be a continuous self-mapping on \mathcal{C}_{X} with respect to the Hausdorff metric H. Then T has a fixed set, that is, there exist $\bar{A} \in \mathcal{C}_{X}$ such that $T(\bar{A})=\bar{A}$.

Proof. Put $\mathcal{A}:=\mathcal{C}_{X}$, then we can see that \mathcal{A} is closed with respect to H satisfying (2.1). Therefore we can apply Theorem 2.2 to show the existence of fixed sets of T.

Corollary 2.5 (Theorem 1.1). Let X be a nonempty convex subset of a normed space E, and let T be a continuous self-mapping on X. If $T(X)$ is compact, then there exists $\bar{x} \in X$ such that $T(\bar{x})=\bar{x}$.

Proof. Put $\mathcal{A}:=\{\{x\} \mid x \in X\}$, then we can see that \mathcal{A} is closed with respect to H satisfying (2.1) and $\hat{T}: \mathcal{A} \rightarrow \mathcal{A}$, defined by $\hat{T}(\{x\})=\{T(x)\}$, is continuous with respect to the Hausdorff metric H. Therefore we can apply Theorem 2.2 to show the existence of fixed sets of T.
Remark 2.6. Theorem 2.2 does not guarantee an existence fixed set \bar{A} is a nonsingleton set. However by constructing \mathcal{A} which does not include singleton sets, every existence fixed set becomes non-singleton. We give the following examples to explain this remark:
Example 2.7. Let $X=[0,2]^{2}$ and

$$
\mathcal{A}=\left\{B\left(x_{1}, x_{2}, r\right) \mid B\left(x_{1}, x_{2}, r\right) \subset X,\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, r \geq 0\right\}
$$

where $B\left(x_{1}, x_{2}, r\right)=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} \mid\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2} \leq r^{2}\right\}$. Then $\mathcal{A} \subset \mathcal{C}_{X}$ is closed with respect to the Hausdorff metric H. Hence each continuous self-mapping on \mathcal{A} with respect to H has a fixed set from Theorem 2.2. For example, define

$$
T\left(B\left(x_{1}, x_{2}, r\right)\right)=B\left(x_{2}, x_{1}, r^{2}\right)
$$

then we can check that $T: \mathcal{A} \rightarrow \mathcal{A}$ is continuous with respect to H and then there exists a fixed set $\bar{A} \in \mathcal{A}$ such that $T(\bar{A})=\bar{A}$. However, we can not see whether an existence fixed set \bar{A} is a non-singleton set or not. Indeed, $B(1,1,1)$ and $B(x, x, 0)$, $0 \leq x \leq 2$, are fixed sets of T. On the other hand, let

$$
\mathcal{A}^{\prime}=\left\{B\left(x_{1}, x_{2}, r\right) \mid B\left(x_{1}, x_{2}, r\right) \subset X,\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, r>0\right\}
$$

and assume that a self-mapping T on \mathcal{A}^{\prime} has a fixed set \bar{A}, then \bar{A} should be nonsingleton. However \mathcal{A}^{\prime} is not closed with respect to H and Theorem 2.2 can not be applied to the situation.
Example 2.8. Let $X=[0,4] \times[0,4] \subset \mathbb{R}^{2}$ and let

$$
\mathcal{A}=\{[a, b] \times[c, d] \mid 0 \leq a \leq b \leq 4,0 \leq c \leq d \leq 4,(b-a)(d-c)=1\}
$$

Consider a self-mapping $T: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
T([a, b] \times[c, d])=\left[a+t_{W}(a)-h, b-t_{E}(b)+h\right] \times\left[c+t_{S}(c)-h, d-t_{N}(d)+h\right]
$$

Figure 1. The orbit $\left\{T^{n}([0,1] \times[0,1])\right\}$ in Example 2.8
where $t_{W}(a)=3(4-a) / 16, t_{E}(b)=b / 8, t_{S}(c)=5(4-c) / 32, t_{N}(d)=3 d / 32$, and h is the biggest solution of the following quadratic function:

$$
\left(b-t_{E}(b)-a-t_{W}(a)+2 h\right)\left(d-t_{N}(d)-c-t_{S}(c)+2 h\right)=1
$$

Since \mathcal{A} does not include any singleton, every fixed set \bar{A} of T is non-singleton. We can see that the only fixed set is $[4-k / 6, k / 4] \times[4-k / 5, k / 3]$ where $k=$ $(171-3 \sqrt{249}) / 20$. This example shows a model of residence movement against natural threats from north, south, east, and west. The orbit $\left\{T^{n}([0,1] \times[0,1])\right\}$ is given in Figure 1.
Example 2.9. Let X be a nonempty compact convex subset of a normed space E and for any $\varepsilon>0$, define

$$
\mathcal{A}_{\varepsilon}=\left\{A \subset \mathcal{C}_{X} \mid \text { there exists } x \in X \text { such that } B(x, \varepsilon) \subset A\right\}
$$

where $B(x, \varepsilon)=\{y \in X \mid\|y-x\| \leq \varepsilon\}$. Then we can check that $\mathcal{A}_{\varepsilon}$ is closed with respect to the Hausdorff metric H and (2.1). If T is a continuous self-mapping on $\mathcal{A}_{\varepsilon}$, then there exists a fixed set $\bar{A} \in \mathcal{A}_{\varepsilon}$. Clearly, \bar{A} is a non-singleton set.

References

[1] R. Brooks, K. Schmitt and B. Warner, Fixed set theorems for discrete dynamics and nonlinear boundary-value problems, Electron. J. Differential Equations 201156 (2011), 15 pp.
[2] P. Debnath, B.S. Choudhury and M. Neog, Fixed set of set valued mappings with set valued domain in terms of start set on a metric space with a graph, Fixed point Theory Appl. 5 (2017), 8 pp .
[3] M. Fakhar, Z. Soltani and J. Zafarani, Fixed set theorems with application to the fixed point theory, J. Nonlinear Convex Anal. 17 (2016), 569-578.
[4] J. Henrikson, Completeness and total boundedness of the Hausdorff metric, MIT Undergrad. J. Math. 1 (1999), 69-79.
[5] D. Kuroiwa, Generalized minimality in set optimization. In: Hamel AH, Heyde F, Löhne A, Rudloff B, Schrage C, editors. Set optimization and applications - the state of the art: From set relations to set-valued risk measures, Springer Proceedings in Mathematics \& Statistics, vol. 151 Springer, 2015, pp. 293-311.
[6] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Apple. 141 (1989), 177-188.
[7] S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[8] H. Radström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. $\mathbf{3}$ (1952), 165-169
[9] W. Takahashi, Nonlinear Functional Analysis Fixed Point Theory and its Applications, Yokohama Publishers, Yokohama, 2000.

Manuscript received December 52017 revised February 12018

K. Seto

Interdisciplinary Graduate School of Science and Engineering, Shimane University, Matsue, Shimane, 690-8504, Japan

E-mail address: k.seto@math.shimane-u.ac.jp
D. Kuroiwa

Department of Mathematics, Major in Interdisciplinary Science and Engineering, Shimane University, Matsue, Shimane, 690-8054, Japan

E-mail address: kuroiwa@math.shimane-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. 54H25, 47H10.
 Key words and phrases. Fixed set, set-valued map, Hausdorff continuous, embedding space.
 The second author was partially supported by a grant of JSPS KAKENHI Grant Numbers 16K05274.

