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Lemma 2.1. Define H : CX × CX → [0,+∞) by

H(A,B) := max{sup
a∈A

inf
b∈B

∥a− b∥, sup
b∈B

inf
a∈A

∥a− b∥},

for any A,B ∈ CX . Then H is a metric on CX , which is called the Hausdorff metric,
and the metric space (CX ,H) is compact.

Proof. We give a proof based on the non-convex version, see [4]. SinceX is compact,
that is, X is totally bounded, for any ε > 0, there exists a finite set Y ⊂ X such
that

min
y∈Y

d(x, y) < ε for any x ∈ X.

For any C ∈ CX , put S = {y ∈ Y | d(C, y) < ε}, then H(C, S) < ε holds, that is,
H(C, coS) < ε holds. Put a finite subfamily T = {coS | S ∈ 2Y }, then T ⊂ CX and

min
T∈T

H(C, T ) < ε for any C ∈ CX .

This shows that (CX ,H) is also total bounded. Next, for any Cauchy sequence
{An} ⊂ CX , define

A := {x ∈ X | ∃{xn} ⊂ X s.t. xn → x, xn ∈ An ∀n ∈ N},
then we can see that A is a nonempty compact convex subset of X and {An}
converges to A with respect to the Hausdorff metric H. Then (CX ,H) is complete,
and consequently (CX ,H) is compact. �

Now we give the main theorem.

Theorem 2.2. Let A be a subfamily of CX satisfying

(2.1) A,B ∈ A, λ ∈ (0, 1) ⇒ (1− λ)A+ λB ∈ A,
and let T : A → A be continuous with respect to the Hausdorff metric H. If either
the following (i) or (ii) holds:

(i) A is closed with respect to the Hausdorff metric H,
(ii) T (A) := {T (A) | A ∈ A} is closed with respect to the Hausdorff metric H,

then T has a fixed set, that is, there exists Ā ∈ A such that T (Ā) = Ā.

Proof. We may assume (ii). Indeed, if (i) holds, then A is compact because A is
closed and CX is compact with respect to the Hausdorff metric H, therefore, the
image T (A) is also compact because T is continuous.

Let C be the family of all nonempty compact convex subsets of E, and define a
binary relation ≡ on C2 by, for all (A,B), (C,D) ∈ C2,

(A,B) ≡ (C,D) if A+D = B + C,

then ≡ is an equivalence relation on C2. The cancellation low on C, that is,
A+B ⊂ A+ C ⇒ B ⊂ C

is essential to show the equivalence. Define the quotient space

C2/≡:= {[A,B] | (A,B) ∈ C2},
where

[A,B] := {(C,D) ∈ C2 | (A,B) ≡ (C,D)},
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and define the following addition and scholar multiplication on C2/≡ by

[A,B] + [C,D] = [A+ C,B +D],

λ[A,B] =

{
[λA, λB] if λ ≥ 0

[−λB,−λA] if λ < 0,

for any [A,B], [C,D] ∈ C2/≡ and λ ∈ R, then C2/≡ is a vector space over R. Also
define

∥[A,B]∥ = H(A,B)

for each [A,B] ∈ C2/≡, then (C2/≡, ∥ · ∥) becomes a normed space. For details
about these arguments, see [5, 8].

Define
ψ : A → C2/≡

∈ ∈

A 7−→ [A, {0}].
Note that

∥ψ(A)− ψ(B)∥ = ∥[A, {0}]− [B, {0}]∥ = ∥[A,B]∥ = H(A,B),

for any A,B ∈ CX . Consequently, ψ is continuous because

∥ψ(An)− ψ(A)∥ = H(An, A) → 0

for a sequence {An}n∈N ⊂ A converges to A ∈ A with respect to the Hausdorff
metricH. Also ψ(A) is a convex subset of C2/≡. Indeed, for any ψ(A), ψ(B) ∈ ψ(A)
and λ ∈ (0, 1), from

(1− λ)ψ(A) + λψ(B) = [(1− λ)A+ λB, {0}] = ψ((1− λ)A+ λB)

and (1− λ)A+ λB ∈ A, then (1− λ)ψ(A) + λψ(B) ∈ ψ(A).
Consider a self-mapping on convex set ψ(A) defined by

T : ψ(A) → ψ(A)

∈ ∈

[A, {0}] 7−→ [T (A), {0}],
then T is continuous. Indeed, if a sequence {ψ(An)} ⊂ ψ(A) converges to ψ(A) ∈
ψ(A), that is ∥ψ(An)− ψ(A)∥ → 0, then H(An, A) → 0 and

∥T (ψ(An))− T (ψ(A))∥ = ∥[T (An), {0}]− [T (A), {0}]∥ = H(T (An), T (A)).

Since T is continuous with respect to H, then H(T (An), T (A)) → 0. This shows T
is continuous. Also T (ψ(A)) is compact because T (A) is compact, ψ is continuous,
and

T (ψ(A)) = {T (ψ(A)) | A ∈ A}
= {T ([A, {0}]) | A ∈ A}
= {[T (A), {0}] | A ∈ A}
= {ψ(T (A)) | A ∈ A}
= ψ(T (A)).

By using Theorem 1.1, there exists Ā ∈ A such that T (ψ(Ā)) = ψ(Ā), that is,
T (Ā) = Ā. �
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Remark 2.3. It is clear that Theorem 2.2 is different from the previous fixed set
theorems in [1, 2].

We can obtain the following corollaries by using Theorem 2.2:

Corollary 2.4. Let T be a continuous self-mapping on CX with respect to the Haus-
dorff metric H. Then T has a fixed set, that is, there exist Ā ∈ CX such that
T (Ā) = Ā.

Proof. Put A := CX , then we can see that A is closed with respect to H satisfying
(2.1). Therefore we can apply Theorem 2.2 to show the existence of fixed sets of
T . �

Corollary 2.5 (Theorem 1.1). Let X be a nonempty convex subset of a normed
space E, and let T be a continuous self-mapping on X. If T (X) is compact, then
there exists x̄ ∈ X such that T (x̄) = x̄.

Proof. Put A := {{x} | x ∈ X}, then we can see that A is closed with respect to

H satisfying (2.1) and T̂ : A → A, defined by T̂ ({x}) = {T (x)}, is continuous with
respect to the Hausdorff metric H. Therefore we can apply Theorem 2.2 to show
the existence of fixed sets of T . �

Remark 2.6. Theorem 2.2 does not guarantee an existence fixed set Ā is a non-
singleton set. However by constructing A which does not include singleton sets,
every existence fixed set becomes non-singleton. We give the following examples to
explain this remark:

Example 2.7. Let X = [0, 2]2 and

A = {B(x1, x2, r) | B(x1, x2, r) ⊂ X, (x1, x2) ∈ R2, r ≥ 0},
where B(x1, x2, r) = {(y1, y2) ∈ R2 | (y1 − x1)

2 + (y2 − x2)
2 ≤ r2}. Then A ⊂ CX is

closed with respect to the Hausdorff metric H. Hence each continuous self-mapping
on A with respect to H has a fixed set from Theorem 2.2. For example, define

T (B(x1, x2, r)) = B(x2, x1, r
2),

then we can check that T : A → A is continuous with respect to H and then there
exists a fixed set Ā ∈ A such that T (Ā) = Ā. However, we can not see whether an
existence fixed set Ā is a non-singleton set or not. Indeed, B(1, 1, 1) and B(x, x, 0),
0 ≤ x ≤ 2, are fixed sets of T . On the other hand, let

A′ = {B(x1, x2, r) | B(x1, x2, r) ⊂ X, (x1, x2) ∈ R2, r > 0}
and assume that a self-mapping T on A′ has a fixed set Ā, then Ā should be non-
singleton. However A′ is not closed with respect to H and Theorem 2.2 can not be
applied to the situation.

Example 2.8. Let X = [0, 4]× [0, 4] ⊂ R2 and let

A = {[a, b]× [c, d] | 0 ≤ a ≤ b ≤ 4, 0 ≤ c ≤ d ≤ 4, (b− a)(d− c) = 1}.
Consider a self-mapping T : A → A defined by

T ([a, b]× [c, d]) = [a+ tW (a)− h, b− tE(b) + h]× [c+ tS(c)− h, d− tN (d) + h]
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Figure 1. The orbit {Tn([0, 1]× [0, 1])} in Example 2.8

where tW (a) = 3(4− a)/16, tE(b) = b/8, tS(c) = 5(4− c)/32, tN (d) = 3d/32, and h
is the biggest solution of the following quadratic function:

(b− tE(b)− a− tW (a) + 2h)(d− tN (d)− c− tS(c) + 2h) = 1.

Since A does not include any singleton, every fixed set Ā of T is non-singleton.
We can see that the only fixed set is [4 − k/6, k/4] × [4 − k/5, k/3] where k =
(171 − 3

√
249)/20. This example shows a model of residence movement against

natural threats from north, south, east, and west. The orbit {Tn([0, 1]× [0, 1])} is
given in Figure 1.

Example 2.9. Let X be a nonempty compact convex subset of a normed space E
and for any ε > 0, define

Aε = {A ⊂ CX | there exists x ∈ X such that B(x, ε) ⊂ A},
where B(x, ε) = {y ∈ X | ∥y − x∥ ≤ ε}. Then we can check that Aε is closed with
respect to the Hausdorff metric H and (2.1). If T is a continuous self-mapping on
Aε, then there exists a fixed set Ā ∈ Aε. Clearly, Ā is a non-singleton set.
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