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of uncertain problem whenever the uncertainty aspects the vector-valued objective
function.

Hence, in this paper, we study quasiconvex vector optimization with data uncer-
tainty via robust optimization. To the purpose, we introduce surrogate duality for
robust vector optimization by using scalarization. We investigate surrogate min-
max duality for quasiconvex vector optimization with uncertain objective and/or
constraints. For the problem with uncertain objective, we introduce its robust
counterpart as a set-valued optimization problem.

The remainder of the paper is organized as follows. In Section 2, we introduce
some preliminaries and previous results. In Section 3, we investigate surrogate
min-max duality for quasiconvex vector optimization with uncertain constraints. In
Section 4, we investigate surrogate min-max duality for quasiconvex vector opti-
mization with uncertain objective and constraints. In Section 5, we discuss about
our results.

2. Preliminaries

Let X be a locally convex Hausdorff topological vector space, X∗ the continuous
dual space of X, and ⟨x∗, x⟩ the value of a functional x∗ ∈ X∗ at x ∈ X. Given a
set A∗ ⊂ X∗, we denote the w∗-closure, the boundary, the interior, the convex hull,
and the conical hull generated by A∗, by clA∗, bdA∗, intA∗, convA∗, and coneA∗,
respectively. By convention, we define cone ∅ = {0}. The indicator function δA of
A ⊂ X is defined by

δA(x) :=

{
0, x ∈ A,
∞, otherwise.

Let f be a function from X to R := [−∞,+∞]. We denote the domain of f by
domf := {x ∈ X | f(x) < ∞}. The epigraph of f is epif := {(x, r) ∈ X × R |
f(x) ≤ r}, and f is said to be convex if epif is convex. The Fenchel conjugate of
f , f∗ : X∗ → R, is defined as f∗(u) := supx∈domf{⟨u, x⟩ − f(x)}. Define the level

sets of f with respect to a binary relation ⋄ on R as

L(f, ⋄, β) := {x ∈ X | f(x) ⋄ β}

for any β ∈ R. A function f is said to be quasiconvex if for each β ∈ R, L(f,≤, β) is
convex. Any convex function is quasiconvex, but the opposite is not generally true.

Let Y be a locally convex Hausdorff topological vector space, partially ordered
by a nonempty, closed and convex cone K ⊂ Y , that is, for y, z ∈ Y , the notation
y ≤K z will mean z − y ∈ K. A cone K is said to be solid if int K is nonempty.
Let Y ∗ be the continuous dual space of Y , and g a function from X to Y . The
positive polar cone of K is K+ := {λ ∈ Y ∗ | ∀y ∈ K, ⟨λ, y⟩ ≥ 0}. A function g is
said to be K-convex if for all x1, x2 ∈ X, and α ∈ [0, 1], (1 − α)g(x1) + αg(x2) ∈
g((1− α)x1 + αx2) +K. It is well known that g is K-convex if and only if λ ◦ g is
convex for all λ ∈ K+. A function g is said to be K-quasiconvex if for all y ∈ Y , x1,
x2 ∈ X, and α ∈ [0, 1] with y ∈ (g(x1)+K)∩(g(x2)+K), y ∈ g((1−α)x1+αx2)+K.
Also, g is said to be proper quasi K-concave if for each x, y ∈ X and α ∈ (0, 1),
g((1− α)x+ αy) ∈ (g(x) +K) ∪ (g(y) +K), in detail, see [4, 28].
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The following set containment characterizations are well known in convex opti-
mization. There are some similar results in convex and quasiconvex optimization,
for example see, [3, 8, 9, 19,22].

Theorem 2.1 ([3]). Let X be a locally convex Hausdorff topological vector space,
I an arbitrary set, gi a proper lower semicontinuous convex function from X to R
for each i ∈ I, A a closed convex subset of X, {x ∈ A | ∀i ∈ I, gi(x) ≤ 0} ̸= ∅,
x∗ ∈ X∗, and α ∈ R. Then, the following statements are equivalent:

(i) {x ∈ A | ∀i ∈ I, gi(x) ≤ 0} ⊂ {x ∈ X | ⟨x∗, x⟩ ≤ α},

(ii) (x∗, α) ∈ cl cone conv

(∪
i∈I

epig∗i + epiδ∗A

)
.

Theorem 2.2 ([8]). Let X and Y be locally convex Hausdorff topological vector
spaces, K ⊂ Y a nonempty, closed and convex cone, A a closed convex subset of X,
Y partially ordered by K, and g a continuous and K-convex function. Assume that
S = {x ∈ A | g(x) ∈ −K} is nonempty. Then,

epiδ∗S = cl

 ∪
λ∈K+

epi(λ ◦ g)∗ + epiδ∗A

 .

3. Quasiconvex vector optimization with uncertain constraints

In this section, let X, Y and Z be locally convex Hausdorff topological vector
spaces, K ⊂ Y and C ⊂ Z nonempty, solid, pointed, closed and convex cones,
A a closed convex subset of X, Y partially ordered by K, Z partially ordered by
C, f a continuous C-quasiconvex function from X to Z, V a set, g a function
from X × V to Y such that g(·, v) is continuous and K-convex for each v ∈ V,
F(v,λ) = {x ∈ A | λ ◦ g(x, v) ≤ 0} for each (v, λ) ∈ V ×K+, and F = {x ∈ A | ∀v ∈
V, g(x, v) ∈ −K} ̸= ∅.

We investigate the following vector optimization problem with data uncertainty
(UP):

Minimize f(x),
subject to x ∈ A, g(x, v) ∈ −K.

In this problem, v ∈ V indicates data uncertainty. Because of the complexity of
real-world optimization problems, measurement errors, and the other uncertainty,
it is difficult to determine constraint (or objective) functions clearly. In (UP), we
cannot determine v clearly, however, we know that v is an element of the uncertainty
set V. In order to solve such a problem robustly, robust optimization have been
investigated. In robust optimization, we consider the following robust counterpart
(RC):

Minimize f(x),
subject to x ∈ A, ∀v ∈ V , g(x, v) ∈ −K.

In (RC), the constraint set is the intersection of the constraint sets of (UP). Hence,
a feasible solution of (RC) is also a feasible solution of (UP) for each v. It is clear
that val(RC) ≥ val(UP ), where val(RC) (val(UP )) is the minimum value of (RC)
((UP), respectively). Because of these properties, robust optimization is called
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‘worst-case approach’. Since (RC) is a semi-infinite programming problem, we in-
vestigate (RC) by the similar way in previous results via semi-infinite programming.
We define a solution of (RC) as follows.

Definition 3.1. An element x ∈ F is said to be a weakly optimal solution of (RC)
if f(F ) ∩ (f(x)− intC) is empty.

Let e ∈ intC and z0 ∈ Z. We denote by φe,z0 the scalarizing function from Z to

R, that is,
φe,z0(z) = inf{t ∈ R | z ∈ z0 + te− C}.

It is well known that the following statements hold, in detail, see [6, 15].

Theorem 3.2 ([6, 15]). Let e ∈ intC and z0 ∈ Z. Then, the following statements
hold:

(i) φe,z0 is a real-valued continuous function,
(ii) L(φe,z0 ,≤, t) = z0 + te− C,
(iii) L(φe,z0 , <, t) = z0 + te− intC,
(iv) L(φe,z0 ,=, t) = z0 + te− bdC,
(v) if f is C-quasiconvex, then φe,z0 ◦ f is quasiconvex,
(vi) if f is proper quasi C-concave, then φe,z0 ◦ f is quasiconcave,
(vii) x0 is a weakly optimal solution of (RC) if and only if for each e ∈ intC,

there exists z0 ∈ Z such that φe,z0 ◦ f(x0) = minx∈F φe,z0 ◦ f(x).

We need the following proposition.

Proposition 3.3. Let e ∈ intC and z0 ∈ Z Then, for each µ ∈ R,

φe,z0(µe) = µ+ φe,z0(0).

Proof. By the definition of φe,z0 , for each ε > 0, there exists tε < φe,z0(0) + ε such
that 0 ∈ z0 + tεe− C. Hence,

µe ∈ µe+ z0 + tεe− C = z0 + (µ+ tε)e− C.

This shows that

φe,z0(µe) ≤ µ+ tε < µ+ φe,z0(0) + ε.

Therefore, φe,z0(µe) ≤ µ+ φe,z0(0).
Assume that φe,z0(µe) < µ + φe,z0(0). Then, there exists t ∈ R such that

φe,z0(µe) < t < µ + φe,z0(0) and µe ∈ z0 + te − C. Hence, 0 ∈ z0 + (t − µ)e − C.
This shows that φe,z0(0) ≤ t− µ. This is a contradiction. �

We show the following characterizations for robust vector optimization.

Theorem 3.4. The following conditions hold:

(i) epiδ∗F(v,λ)
= cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A},

(ii) epiδ∗F = cl conv
∪

v∈V,λ∈K+

cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A}.
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Proof. By Theorem 2.2,

epiδ∗F(v,λ)
= cl

∪
t≥0

epi (tλ ◦ g(·, v))∗ + epiδ∗A


= cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A} .

This shows that the condition (i) holds.
(ii) Since K is a closed convex cone,

F = {x ∈ A | ∀v ∈ V, ∀λ ∈ K+, λ ◦ g(x, v) ≤ 0}
=

∩
v∈V,λ∈K+

F(v,λ)

=
∩

v∈V,λ∈K+

L(δF(v,λ)
,≤, 0).

Since epiδ∗F(v,λ)
is a convex cone, by Theorem 2.1 and the condition (i) of this

theorem,

epiδ∗F = cl cone conv

 ∪
v∈V,λ∈K+

epiδ∗F(v,λ)
+ epiδ∗X


= cl cone conv

∪
v∈V,λ∈K+

epiδ∗F(v,λ)

= cl conv
∪

v∈V,λ∈K+

epiδ∗F(v,λ)

= cl conv
∪

v∈V,λ∈K+

cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A} .

�

Remark 3.5. It is clear that

cl conv
∪

v∈V,λ∈K+

cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A}

= cl conv
∪

v∈V,λ∈K+

{cone epi (λ ◦ g(·, v))∗ + epiδ∗A} .

However, the operator ‘cl’ in the union is necessary and important to prove surrogate
duality and its constraint qualification.

Remark 3.6. By Theorem 3.4, we show that the following set containment charac-
terization. Let x∗ ∈ X∗, and α ∈ R. Then, the following statements are equivalent:

(i) F ⊂ {x ∈ X | ⟨x∗, x⟩ ≤ α},
(ii) (x∗, α) ∈ cl conv

∪
v∈V,λ∈K+

cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A}.
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By Theorem 3.4, the following robust characteristic cone∪
v∈V,λ∈K+

cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A}

is closed and convex if and only if

epiδ∗F ⊂
∪

v∈V,λ∈K+

cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A} .

In the following theorem, we investigate surrogate min-max duality for quasicon-
vex vector optimization with uncertain constraints.

Theorem 3.7. The following statements are equivalent:

(i) the following robust characteristic cone is closed and convex:∪
v∈V,λ∈K+

cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A} ,

(ii) for each x0 ∈ F and continuous C-quasiconvex function f , x0 is a weakly
optimal solution of (RC) if and only if for each e ∈ intC, there exists z0 ∈ Z
such that

φe,z0 ◦ f(x0) = max
v∈V,λ∈K+

inf
x∈A

{φe,z0 ◦ f(x) | λ ◦ g(x, v) ≤ 0}.

Proof. Assume that (i) holds. Let x0 ∈ F and f a continuous C-quasiconvex func-
tion. By Theorem 3.2 (vii), x0 is a weakly optimal solution of (RC) if and only if
for each e ∈ intC, there exists z0 ∈ Z such that φe,z0 ◦ f(x0) = minx∈F φe,z0 ◦ f(x).
We show that

(3.1) inf
x∈F

φe,z0 ◦ f(x) = max
v∈V,λ∈K+

inf
x∈A

{φe,z0 ◦ f(x) | λ ◦ g(x, v) ≤ 0}.

It is clear that the weak duality holds, that is,

inf
x∈F

φe,z0 ◦ f(x) ≥ sup
v∈V,λ∈K+

inf
x∈A

{φe,z0 ◦ f(x) | λ ◦ g(x, v) ≤ 0}.

Let m = infx∈F φe,z0 ◦f(x). If L(φe,z0 ◦f,<,m) = ∅, then for each v ∈ V and λ = 0,
the equation (3.1) holds. If L(φe,z0 ◦ f,<,m) ̸= ∅, there exists (x∗, α) ∈ X∗ × R
such that for all x ∈ F and y ∈ L(φe,z0 ◦ f,<,m),

⟨x∗, x⟩ ≤ α < ⟨x∗, y⟩ ,

since L(φe,z0 ◦ f,<,m) ∩ F = ∅ and L(φe,z0 ◦ f,<,m) is a nonempty, open and
convex set. Because of the condition (i) and Theorem 3.4,

(x∗, α) ∈ epi δ∗F

⊂
∪

v∈V,λ∈K+

cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A}

=
∪

v∈V,λ∈K+

epi δ∗F(v,λ)
.
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Therefore, there exists (v̄, λ̄) ∈ V × K+ such that (x∗, α) ∈ epi δ∗F(v̄,λ̄)
. For each

x ∈ F(v̄,λ̄),

⟨x∗, x⟩ ≤ α =⇒ x /∈ L(φe,z0 ◦ f,<,m) ⇐⇒ φe,z0 ◦ f(x) ≥ m,

by the above separation inequality. This shows that infx∈A{φe,z0◦f(x) | λ̄◦g(x, v̄) ≤
0} ≥ m. Hence, the equation (3.1) holds. This shows that (i) implies (ii).

Next, we prove that (ii) implies (i). We only show that

epiδ∗F ⊂
∪

v∈V,λ∈K+

cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A} .

Let (x∗, α) ∈ epi δ∗F . We define a function f from X to Z as follows:

f(x) =

{
−⟨x∗, x⟩ e, ⟨x∗, x⟩ > δ∗F (x

∗),
−δ∗F (x

∗)e, ⟨x∗, x⟩ ≤ δ∗F (x
∗),

where e ∈ intC. Then, f is continuous C-quasiconvex and for each x ∈ F , x is a
weakly optimal solution of (RC). Let x0 ∈ F . By the statement (ii), there exist
z0 ∈ Z, v ∈ V, and λ ∈ K+ such that

φe,z0 ◦ f(x0) = inf
x∈A

{φe,z0 ◦ f(x) | λ ◦ g(x, v) ≤ 0}.

By Proposition 3.3,

φe,z0 ◦ f(x) =
{
−⟨x∗, x⟩+ φe,z0(0), ⟨x∗, x⟩ > δ∗F (x

∗),
−δ∗F (x

∗) + φe,z0(0), ⟨x∗, x⟩ ≤ δ∗F (x
∗).

Hence, for each x ∈ F(v,λ),

φe,z0 ◦ f(x) ≥ φe,z0 ◦ f(x0) ⇐⇒ φe,z0 ◦ f(x) ≥ −δ∗F (x
∗) + φe,z0(0)

⇐⇒ ⟨x∗, x⟩ ≤ δ∗F (x
∗).

This implies that δ∗F(v,λ)
(x∗) ≤ δ∗F (x

∗) ≤ α. By Theorem 3.4.

(x∗, α) ∈ epi δ∗F(v,λ)
= cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A} .

This shows that (i) holds. �

4. Quasiconvex vector optimization with uncertain objective and
constraints

In this section, let X and Y be locally convex Hausdorff topological vector spaces,
K ⊂ Y a nonempty, solid, pointed, closed and convex cone, A a closed convex
subset of X, Y partially ordered by K, U a compact set, f a continuous function
from X × U to Rn, Rn

++ = {x ∈ Rn | ∀i ∈ {1, . . . , n}, xi > 0}, V a set, g a
function from X × V to Y such that g(·, v) is continuous K-convex for each v ∈ V,
F(v,λ) = {x ∈ A | λ ◦ g(x, v) ≤ 0} for each (v, λ) ∈ V ×K+, and F = {x ∈ A | ∀v ∈
V, g(x, v) ∈ −K} ̸= ∅.

We study vector optimization with uncertain objective and constraints. Consider
the following uncertain problem:

Minimize f(x, u),
subject to x ∈ A, g(x, v) ∈ −K.

In this paper, we introduce the following robust counterpart (RC):
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Minimize f(x,U),
subject to x ∈ A, ∀v ∈ V, g(x, v) ∈ −K,

where f(x,U) = {f(x, u) | u ∈ U}. Hence, we regard (RC) as a set-valued optimiza-
tion problem with vector-valued constraints. For each i ∈ {1, . . . , n}, there exists
fi : X × U → R, i ∈ {1, . . . , n} such that

f(x, u) = (f1(x, u), . . . , fn(x, u)).

Since f is continuous and U is compact, fi(x, ·) attains its maximum on U for each

i and x. Let f̂ be a function from X to Rn as follows:

f̂(x) = (max
u∈U

f1(x, u), . . . ,max
u∈U

fn(x, u)).

In [14], Kuroiwa and Lee introduce the function, and study a similar robust coun-
terpart. Now we define a solution of (RC).

Definition 4.1. An element x0 ∈ F is said to be a solution of (RC) if f(x,U) ̸⊂
(f̂(x0)− intC) for each x ∈ F .

We compare a solution of (RC) with a solution of set optimization in Section 5.

Theorem 4.2. Let x0 ∈ F , e ∈ Rn
++ and z0 ∈ Rn. Then,

φe,z0(f̂(x0)) = sup
u∈U

φe,z0 ◦ f(x0, u).

Proof. It is clear that f(x0,U) ⊂ f̂(x0)− Rn
+. Hence,

φe,z0(f̂(x0)) ≥ sup
u∈U

φe,z0 ◦ f(x0, u).

By Theorem 3.2, there exists z̄ ∈ bdRn
+ such that f̂(x0) = z0 + φe,z0(f̂(x0))e − z̄.

Since z̄ ∈ bdRn
+, there exists i ∈ {1, . . . , n} such that z̄i = 0. Let ȳ = f̂(x0) −

f(x0, ui) where ui ∈ U such that fi(x, ui) = maxu∈U fi(x, u). Then, ȳ ∈ Rn
+ and

ȳi = 0. This implies that z̄ + ȳ ∈ bdRn
+. Hence,

f(x0, ui) = f̂(x0)− ȳ

= z0 + φe,z0(f̂(x0))e− z̄ − ȳ

∈ z0 + φe,z0(f̂(x0))e− bdRn
+.

This shows that φe,z0(f(x, ui)) = φe,z0(f̂(x0)). This completes the proof. �

In the following theorem, we show a characterization of the solution of (RC).

Theorem 4.3. Let x0 ∈ F . The following statements are equivalent:

(i) x0 is a solution of (RC),
(ii) for each e ∈ Rn

++, there exists z0 ∈ Rn such that

sup
u∈U

φe,z0 ◦ f(x0, u) = min
x∈F

sup
u∈U

φe,z0 ◦ f(x, u).
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Proof. We show that (i) implies (ii). Let e ∈ Rn
++ and z0 = f̂(x0). Then, by

Theorem 4.2, supu∈U φe,z0 ◦ f(x0, u) = φe,z0(f̂(x0)) = 0. By the statement (i),

for each x ∈ F , there exists u ∈ U such that f(x, u) /∈ f̂(x0) − Rn
++. Hence

φe,z0 ◦ f(x, u) ≥ φe,z0(f̂(x0)). This shows that (ii) holds.
Conversely, assume that (ii) holds and there exists x̄ ∈ F such that f(x̄,U) ⊂

f̂(x0)−Rn
++. Let e ∈ Rn

++. By the assumption and Theorem 4.2, there exists z0 ∈
Rn such that φe,z0(f̂(x0)) = supu∈U φe,z0 ◦ f(x0, u) = minx∈F supu∈U φe,z0 ◦ f(x, u).
By monotonicity of the scalarizing function, φe,z0(f̂(x0)) > φe,z0 ◦ f(x̄, u) for each

u ∈ U . Since U is compact and f is continuous, φe,z0(f̂(x0)) > maxu∈U φe,z0◦f(x̄, u).
This is a contradiction. �

Let F be the following set of functions;

F =

f : X × U → Rn

∣∣∣∣∣
f : continuous,
U : compact convex,
f(·, u) : Rn

+-quasiconvex ∀u ∈ U ,
f(x, ·) : proper quasi Rn

+-concave ∀x ∈ X.

 .

In the following theorem, we investigate surrogate min-max duality for quasiconvex
vector optimization with uncertain objective and constraints.

Theorem 4.4. The following statements are equivalent:

(i) the following robust characteristic cone is closed and convex:∪
v∈V,λ∈K+

cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A} ,

(ii) for each x0 ∈ F and f ∈ F , x0 is a solution of (RC) if and only if for each
e ∈ Rn

++, there exists z0 ∈ Rn such that

sup
u∈U

φe,z0 ◦ f(x0, u) = max
v∈V,λ∈K+,u∈U

inf
x∈A

{φe,z0 ◦ f(x, u) | λ ◦ g(x, v) ≤ 0}.

Proof. By Theorem 3.2, φe,z0◦f(·, u) is continuous quasiconvex for each u ∈ U . Since
U is compact, and f is continuous, supu∈U φe,z0 ◦ f(·, u) is continuous quasiconvex.
Hence, we can prove the following equation by the similar way of the proof of
equation (3.1),

inf
x∈F

sup
u∈U

φe,z0 ◦ f(x, u) = max
v∈V,λ∈K+

inf
x∈A

{sup
u∈U

φe,z0 ◦ f(x, u) | λ ◦ g(x, v) ≤ 0}.

Since f is continuous and f(x, ·) is proper quasi Rn
+-concave, by Theorem 3.2,

φe,z0 ◦ f(x, ·) is continuous quasiconcave function. By Sion’s min-max theorem,

inf
x∈A

{sup
u∈U

φe,z0 ◦ f(x, u) | λ ◦ g(x, v) ≤ 0}

= max
u∈U

inf
x∈A

{φe,z0 ◦ f(x, u) | λ ◦ g(x, v) ≤ 0}.

This shows that (i) implies (ii). The proof of converse implication is similar to the
proof of Theorem 3.7. �
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Remark 4.5. In the definition of F , we assume that U is compact convex. Exactly
speaking, we assume that U is a compact convex subset of a topological vector
space. It is not necessary that U is a subset of given topological vector spaces, X,
Y , or Rn.

5. Discussion

In this section, we discuss about our results in this paper. Especially, we in-
vestigate a necessary and sufficient constraint qualification for surrogate duality
via robust optimization. Also, we compare a solution of (RC) in Section 4 with a
solution of set optimization.

Recently, many types of necessary and sufficient constraint qualifications for du-
ality theorems have been investigated, see [8,10,18–26]. In Theorem 3.7 and Theo-
rem 4.4, we show surrogate min-max duality theorems for robust quasiconvex vector
optimization with its necessary and sufficient constraint qualification. In the follow-
ing theorem, we investigate surrogate duality theorem for real-valued optimization
with uncertain objective and constraints. The proof is similar to Theorem 3.7 and
Theorem 4.4, and will be omitted.

Theorem 5.1. The following statements are equivalent:

(i) the following characteristic cone is closed and convex:∪
v∈V,λ∈K+

cl {cone epi (λ ◦ g(·, v))∗ + epiδ∗A} ,

(ii) for each upper semicontinuous quasiconvex function f from X to R,
inf
x∈F

f(x) = max
v∈V,λ∈K+

inf
x∈A

{f(x) | λ ◦ g(x, v) ≤ 0},

(iii) for each continuous function f from X ×U to R with U is compact convex,
f(·, u) is quasiconvex for each u ∈ U , and f(x, ·) is quasiconcave for each
x ∈ X,

inf
x∈F

sup
u∈U

f(x, u) = max
v∈V,λ∈K+,u∈U

inf
x∈A

{f(x, u) | λ ◦ g(x, v) ≤ 0},

(iv) for each x0 ∈ F and continuous C-quasiconvex function f , x0 is a weakly
optimal solution of (RC) if and only if for each e ∈ intC, there exists z0 ∈ Z
such that

φe,z0 ◦ f(x0) = max
v∈V,λ∈K+

inf
x∈A

{φe,z0 ◦ f(x) | λ ◦ g(x, v) ≤ 0},

(v) for each x0 ∈ F and f ∈ F , x0 is a solution of (RC) if and only if for each
e ∈ Rn

++, there exists z0 ∈ Rn such that

sup
u∈U

φe,z0 ◦ f(x0, u) = max
v∈V,λ∈K+,u∈U

inf
x∈A

{φe,z0 ◦ f(x, u) | λ ◦ g(x, v) ≤ 0}.

In the present paper, we introduce a robust counterpart as a set-valued optimiza-
tion problem. Unfortunately, it is not so evident which is the suitable robust coun-
terpart of uncertain problem whenever the uncertainty aspects the vector-valued
objective function. Many researchers introduce various types of robust approach
for uncertain vector optimization problem. For example, in [5], Georgiev, Luc and
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Pardalos define the efficient solutions of robust counterpart as those robust feasi-
ble solutions which are efficient for any possible value of u ∈ U . In [7], Goberna,
Jeyakumar, Li, and López investigate uncertain problems by transferring the un-
certainty from the objective function to the constraints. This approach is a very
elegant and important element for convex optimization problems. However, it is
not always valid for quasiconvex optimization problems, see the following example.

Example 5.2. We consider the following counterpart:

minimize t,
subject to x ∈ F , f(x, u)− t ∈ −C, ∀u ∈ U .

If f(·, u) is C-convex for each u ∈ U , then this counterpart is convex optimization
problem. However, even if f(·, u) is C-quasiconvex, this counterpart is not always
quasiconvex optimization problem.

Let f be the following real-valued quasiconvex function on R:

f(x) :=

{
0, x ≥ 0,
2x, otherwise.

Let f̄(x, t) := f(x)− t, z1 = (−1, 1) and z2 = (1, 3), then

f̄

(
1

2
z1 +

1

2
z2

)
= −2 > −3 = max{f̄(z1), f̄(z2)}

This shows that f̄ is not a quasiconvex function on R2.

In [14], Kuroiwa and Lee introduce a robust counterpart by a similar way in
Section 4 of this paper. We consider this robust counterpart is one of the natural
pessimistic approach to uncertain vector optimization problems.

In set-valued optimization, there are some definitions of solutions. Especially,
Kuroiwa investigate set optimization approach, see [12, 13]. Next, we compare a
solution of (RC) in Section 4 with a solution of set optimization. In set optimization,
the following relation have been investigated. Let A and B be subsets of Z. The
notation A ≤u B will mean A ⊂ B − C. Also, A <u B will mean A ⊂ B − intC.
An element x0 ∈ F is said to be a u-type weak minimal solution if there does not
exist x ∈ F such that f(x,U) <u f(x0,U). We can check easily that if x0 ∈ F is a
solution of (RC), then x0 is a u-type weak minimal solution. However, the converse
is not generally true, see the following example.

Example 5.3. Let x0, x ∈ F , A = f(x0,U) = {a ∈ R2 | ∥a∥ ≤ 1}, and B =
f(x,U) = {a ∈ R2 | ∥a − (12 ,

1
2)∥ ≤ 3

8}. Then, f(x,U) ̸⊂ f(x0,U) − R2
++, that is

f(x,U) ̸<u f(x0,U). If f(y,U) ̸<u f(x0,U) for each y ∈ F , then x0 is a u-type weak

minimal solution. However, f̂(x0) = (max(x1,x2)∈A x1,max(x1,x2)∈A x2) = (1, 1) and

f(x,U) ⊂ f̂(x0) − R2
++. Hence, x0 is not a solution of (RC). This indicates the

existence of a u-type weak minimal solution which is not a solution of (RC).
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A

B

f̂(x0)

Fig. 1

In Theorem 4.3, we investigate a characterization of a solution of (RC) by the
scalarizing function. We can check easily that if for each e ∈ Rn

++, there exists
z0 ∈ Rn such that

sup
u∈U

φe,z0 ◦ f(x0, u) = min
x∈F

sup
u∈U

φe,z0 ◦ f(x, u),

then x0 ∈ F is a u-type weak minimal solution. However, the converse is not
generally true by Theorem 4.2 and Example 5.3. This means that a u-type weak
minimal solution is not characterized by this type of scalarization. By using the
notion of the solution of (RC) in this paper and the scalarizing function, we show
surrogate min-max duality via robust quasiconvex vector optimization.

6. Conclusion

In this paper, we investigate surrogate duality for robust quasiconvex vector op-
timization. In Section 3 and Section 4, we investigate robust vector optimization
by using scalarization. We investigate surrogate min-max duality for quasiconvex
vector optimization with uncertain constraints and introduce a necessary and suf-
ficient constraint qualification for surrogate duality. Also, we investigate vector
optimization with uncertain objective and constraints. Because of the uncertainty
of the objective function, the robust counterpart is a set-valued optimization prob-
lem. We introduce a notion of solutions of the robust counterpart, and we investi-
gate surrogate min-max duality with its constraint qualification. In Section 5, we
discuss about our results. We investigate surrogate duality for real-valued robust
optimization with its constraint qualification. Also, we compare a solution of (RC)
in Section 4 with a u-type weak minimal solution in set optimization.
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