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The layout of this paper is as follows: In Section 2, we gather definitions, no-
tations and preliminaries which are used in the paper. In Section 3, we present
a method to obtain a min-type subgradient of a degree-one calm function and we
apply it to design a generalized cutting plane method. In order to solve a sub-
problem of aforementioned algorithm, we derive a method to minimize a max-min
function in Section 4. We also present another version of cutting angle method
which uses approximate solutions and prove its convergence. In addition to propos-
ing some packages from the literature, we will finally illustrate our method through
a geometric example.

2. preliminaries

Let H be a set of finite-valued functions defined on a set X. Recall that a function
f : X → R+∞ := R∪{+∞} is called abstract convex with respect to H or H-convex
on X [17], if there exists a set U ⊂ H such that

f(x) = sup{l(x) | l ∈ U} (x ∈ X)

with the convention sup ∅ = −∞. We assume that the function −∞, where
−∞(x) = −∞ for all x ∈ X, is also abstract convex. Note also that H is called the
set of all elementary functions.

For a positive integer number k, we denote the set of all functions defined as a
minimum of at most k affine functions by Hk. In other words,

(2.1) Hk := {h : Rn → R | h(·) := min
1≤i≤j

(⟨li, ·⟩+ αi), li ∈ Rn, αi ∈ R, j ≤ k}.

The following observation characterizes Hn+1-convex functions, which also indicates
how large this class of functions is.

Theorem 2.1 ([20], Theorem 5.1). Suppose f : Rn −→ R+∞ is a proper, lower
semicontinuous function. Then, the following statements are equivalent:

(i) f is Hn+1-convex.
(ii) There exists ℓ ∈ Hn+1 such that f ≥ ℓ.

It is worthy saying that every function with a finite global infimum is Hn+1-
convex. Moreover, every star-shaped function (function with a star-shaped epi-
graph) is Hn+1-convex as well.

Let dom(f) := {x ∈ X | f(x) < +∞}. Recall that the H-subdifferential of the
function f at a point x0 ∈ dom(f) is defined by

∂Hf(x0) := {h ∈ H | ∀x ∈ X : f(x)− f(x0) ≥ h(x)− h(x0)}.

Every element of ∂Hf(x0) is called an abstract subgradient of f at the point x0.
Notice that ∂∗Hf(x) ⊂ ∂Hf(x) for all x ∈ X, where

∂∗Hf(x) := {h ∈ supp(f,H) | h(x) = f(x)}.

Recall that a function f : X → R+∞ is called degree-one calm at the point x ∈
dom(f), if

lim inf
y→x

f(y)− f(x)

∥y − x∥
> −∞.
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Equivalently, f is degree-one calm at x ∈ dom(f) if and only if there exist ϵ > 0
and K > 0 such that

(2.2) ∀y ∈ B(x, ϵ) : f(y)− f(x) ≥ −K∥y − x∥,

where B(x, ϵ) := {z ∈ X | ∥z−x∥ ≤ ϵ}. The following observation shows where the
Hn+1-subdifferential of a function is nonempty.

Theorem 2.2 ([20], Theorem 6.3). Let f : Rn → R+∞ be a lower semicontinuous
non-negative function and x ∈ Rn be such that f(x) ̸= +∞. Assume f is degree-one
calm at the point x. Then ∂∗Hn+1

f(x) ̸= ∅.

Recall that a family of function G := {g | Rn → R} is called equicontinuous at a
point x0 ∈ Rn if for every ϵ > 0 there exists a neighborhood Vx0 such that

|g(x)− g(x0)| < ϵ,

for all x ∈ Vx0 and for all g ∈ G. G is called equicontinuous on C ⊆ Rn if G is
equicontinuous at every point of C.

Our main result will be established upon the following theorem.

Theorem 2.3 ([14], Theorem 9.1.1’). Let (X, d) be a metric space and H be a
equicontinuous family of real-valued functions defined on X. Let f be a continuous
function such that

(2.3) f(x) = sup{h(x) + c | h ∈ H, c ∈ R, h+ c ≤ f},

for all x ∈ X. Let {ϵk} be a nonincreasing sequence of positive numbers tending
to 0. Let the sequences (xk)k∈N and (hk)k∈N be defined by the following recursive
procedure:

For the initial data x0, x1, . . . , xk−1 ∈ X and h0, . . . , hk−1, the point xk ∈
X is chosen so that ψk(xk) − infx∈X ψk(x) < ϵk; where ψk(x) :=
max{h0(x), h1(x), . . . , hk−1(x)}. Let hk ∈ H be chosen so that hk(x) ≤ f(x) for
all x ∈ X and

ψk(xk) ≤ hk(xk) ≤ f(xk) ≤ ψk(xk) + ϵk.

If the sequence (xk) has a limit point x∗, then x∗ is a minimizer of the following
minimization problem:

f(x) −→ inf, x ∈ X.

Remark 2.4. Suppose that the family of functions H is closed under addition, i.e.,
H+ c = H for all c ∈ R. Then, (2.3) is fulfilled if and only if f is H-convex.

3. Generalized cutting plane method

In this section, we apply generalized cutting plane method [14] by means of min-
imum type subdifferentials. We first present the generalized cutting plane method
and then discuss the details of the algorithm.

Let X be a normed space and H be a set of functions defined on an open set
containing the compact convex set C ⊆ X. Assume that f is an abstract convex
function with respect to the set H. Consider the following minimization problem.

(3.1) f(x) → min, x ∈ C.
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To solve this problem, the generalized cutting-plane method is applied as follows:

Algorithm 1. Generalized cutting plane method (GCPM)
Step 0. Let k := 0 and arbitrarily choose an x0 ∈ C.
Step 1. Find hk ∈ ∂∗Hf(xk).
Step 2. Find a global optimum for the problem

max
0≤i≤k

hi(x) → min, x ∈ C.

Let y∗ be a solution of this subproblem.
Step 3. Set k := k + 1, xk := y∗ and return to Step 1.

A convergence of this algorithm has been proved in [14] (compare also with [17],
Theorem 9.1) under weak assumptions.

Theorem 3.1 ([14], Theorem 9.1.1). Assume that the set H consists of continuous
functions and let f be a continuous H-convex function. Then, each limit point of
the sequence (xk) produced by GCPM is a global minimizer of the function f over
the set C.

Our main goal is to solve the minimization problem defined by (3.1) by means
of a developed version of GCPM, whenever the objective function is degree-one
calm and H-convex function. As seen from (2.1), the elements of Hn+1 are contin-
uous functions. This fulfills the first assumption of Theorem 3.1. Therefore, the
generalized cutting plane method by means of Hn+1-subdifferentials is convergent,
provided f is a continuous Hn+1-convex function.

On the other hand, Theorem 2.2 ensures that ∂Hn+1f(x) is nonempty for every
x ∈ C under the degree-one calm assumption of the function f over the set C.
However, we need a formula to calculate a minimum-type subgradient of function f
at each point. In [20] Section 6, a method has been presented in order to construct
a subgradient of a non-negative, lower semicontinuous and degree-one calm function
with respect to the class of min-type functions Hn+1. We develop this method and
formulate it through the following algorithm.

Algorithm 2. (Constructing a minimum-type subgradient)
Input: A continuous function f , x ∈ C such that f is degree-one calm at the point
x with respect to the constant K and the set B(x, ϵ), where 0 < ϵ ≤ 1 satisfying
(2.2). Let M ≥ 0 such that f +M ≥ 0 over C.

Step 1.
If f(x) = 0
h := 0 and exit.

Else
f := f(x) +M .

Step 2. ([20], Theorem 6.2)
If ∥x∥ ≤ 1
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K̂ :=
√
2K + f ; ϵ̂ := ϵ

3 .
Else
K̂ :=

√
2K∥x∥+ f ; ϵ̂ := ϵ

3∥x∥ .

Step 3. ([20], Theorem 4.2)
m = max{n, 1

1−ϵ̂}+
1

1000 ; ϵ1 :=
n

(1+nϵ̂)m3K̂2
.

Step 4. ([20], Lemma 2.1)

λ := ϵ1f2
√
n∥(x,1)∥ ,

di :=
1
f (x1, x2, . . . , xi + λ, . . . , xn, 1− λxi) for i = 1, 2, . . . , n.

dn+1 :=
1
f (x1 − λ, x2 − λ, . . . , xn − λ, 1 + λ(x1 + . . .+ xn)).

Step 5. ([20], Theorem 6.1)

B := ( d1
n+1

d2
n+1 · · ·

dn+1

n+1 ), that is an (n + 1) × (n + 1) squared matrix. Here di
n+1 is

the ith column of B for i = 1, 2, . . . , n+ 1.

Step 6.
Calculate B−1. Let ai ∈ Rn+1 be the ith row of B−1 and ai = (li, αi) ∈ Rn × R for
i = 1, . . . , n+ 1.

Output: ([20], Theorem 6.3)
h := min1≤i≤n+1⟨li, .⟩ + αi −M. Return h as a minimum type subgradient of f at
the point x.

Remark 3.2. In Algorithm 2, if f is nonnegative over C, then clearly one could
assume M = 0. Notice also that the minimum-type subgradient h obtained by
Algorithm 2 belongs to ∂∗Hn+1

f(x). See [20] (Section 6) for the details.

So far, we have proved the convergence of GCPM and presented an algorithm to
find a minimum-type subgradient of the function f at each point of C. Thus, the
subproblem defined in Step 2 of GCPM is the last challenging task. In the next
section, we discuss how to solve this subproblem. In fact, we replace the subproblem
2 of GCPM by an inexact counterpart and then we will prove the convergence of
the new algorithm.

4. Inexact generalized cutting plane method
and convergence analysis

In this section, first we study some numerical methods to solve the following
problem

(P1) min
x∈C

max
1≤i≤k

( min
1≤j≤n+1

⟨aij , x⟩+ αij),

where C is a subset of Rn, k ∈ N, aij ∈ Rn and αij ∈ R, for j = 1, n+ 1 and

i = 1, k.
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There exist only a few methods in the literature to find a stationary point of
a max-min function, see for examples [15, 16, 21]. Using Armijo condition [13,
Section 2], these methods have been established based on a line search method. It
is worthy saying that in our case, (P1) should be solved in each iteration of the
algorithm GCPM (Step 2). Hence, we are not able to use such iterative algorithm,
which obviously increases the complexity of the algorithm. Therefore, we will use a
smooth function as a surrogate function defined in [21] and will replace the objective
function in (P1) by it. Then, an inexact solution is computed. More precisely, let

Φ(x) := max
1≤i≤k

min
1≤j≤n+1

⟨aij , x⟩+ αij (x ∈ Rn).

Consider the following smooth approximation function for p > 0

(4.1) Φp(x) :=
1

p
ln

( k∑
i=1

1∑n+1
j=1 exp(−p⟨aij , x⟩ − pαij)

)
+

ln(n+ 1)

p
.

Applying Proposition 2.1 of [21], one has

Φ(x) ≤ Φp(x) ≤ Φ(x) +
ln k(n+ 1)

p
(4.2)

for all x ∈ Rn.
We will show that replacing Φp with sufficiently large p in Step 2 of (GCPM)

necessitates a convergence to a global minimum of the function f , even if the func-
tion Φp is minimized approximately. To do this, first we present a new version of
GCPM using the approximate under-estimator Φp.

Algorithm 3. Generalized cutting plane method with approximate under-
estimators (GCPMwAU)
Step 0. Let k := 0, σ > 0, ϵ0 ≥ 0 and x0 ∈ C be arbitrary chosen.
Step 1. Find hk := min1≤j≤n+1⟨aij , .⟩ + αij ∈ ∂∗Hn+1

f(xk) (Algorithm 2 may be

used here).
Step 2. For ϵk ≥ 0, choose pk > 0 sufficiently large such that

ln(k + 1)(n+ 1)

pk
< min

{ 1

k + 1
, ϵk

}
,

and let

Φk(x) :=
1

pk
ln

( k∑
i=0

1∑n+1
j=1 exp(−pk⟨aij , x⟩ − pkαij)

)
+

ln(n+ 1)

pk
.

Step 3. For the following minimization problem

Φk(x) → min, x ∈ C,

find an approximate solution y∗ ∈ C such that

Φk(y
∗) ≤ inf

x∈C
Φk(x) + ϵk.(4.3)

Step 4. If |Φk(y
∗)−Φk−1(xk)| ≤ σ− 1

k , then stop with the xk as a (σ−ϵk)-solution.
That is |Φk−1(xk)−minx∈C f(x)| < σ − ϵk.
Otherwise, choose ϵk+1 such that 0 ≤ ϵk+1 ≤ ϵk; set k := k + 1 and xk = y∗. Go to
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Step 1.

Algorithm 3 benefits from two superiorities rather than Algorithm 1. First, in
Step 3 of GCPMwAU we have a smooth function to minimize, while in Step 2 of
GCPM the function is nonsmooth. Secondly, in Step 3 of GCPMwAU we need to
obtain an approximate solution satisfying (4.3), while in Step 2 of GCPM one needs
to reach an exact solution. In the end of this section, we will show the convergence
of GCPMwAU.

Now we discuss how to find a y∗ satisfying (4.3) in the kth iteration. For this
end, we discuss two cases: either C is a box or C is defined as a system of equalities
in Rn. For the sake of simplicity, we denote Φk by ψ.

Case 1: Let l, u ∈ Rn and C := [l, u], i.e.,

(4.4) C = {x ∈ Rn | li ≤ xi ≤ ui, 1 ≤ i ≤ n},

where l = (l1, l2, . . . , ln), u = (u1, u2, . . . , un). Since ψ is a smooth function, one
could apply the nonlinear gradient projection method [13]. This method is a sequen-
tial quadratic type method and uses either line search approaches or trust-region
methods. We briefly explain this method using the line search approaches.

At the iteration k, one may replace ψ by a quadratic model at the a point z as
follows:

q(x) := ψ(z) +∇ψ(z)T (x− z) +
1

2
(x− z)TB(x− z),

where B is a positive definite approximation to the Hessian ∇2ψ(z). Therefore, a
line search method is applied. Indeed, at the iterate zi of the line search method,
define the quadratic model of ψ by

qi(x) := ψ(zi) +∇ψ(zi)T (x− zi) +
1

2
(x− zi)

TBi(x− zi).

Then, use the gradient projection method for quadratic programming in order to
find an approximate solution of the problem

(4.5) qi(x) → min, l ≤ x ≤ u.

Let ẑ be an approximate solution. The descent direction for the objective function
ψ is ẑ − zi. Thus, zi+1 := zi + αi(ẑ − zi) is the new iteration, where αi is chosen to
satisfy Armijo condition. To implement this method, one may apply the software of
[22] (see also [7]) in which the Hessian approximation is defined by limited-memory
BFGS updating.
Case 2: Let

(4.6) C = {x ∈ Rn| l ≤ x ≤ u, gi(x) = 0, i = 1, 2, . . . ,m},

where, gi : Rn → R is continuously differentiable functions for i = 1, 2, . . . ,m and
l, u ∈ Rn. Thus, we can write the subproblem of GCPMwAU by

ψ(x) → min, gi(x) = 0, i = 1, 2, . . .m, l ≤ x ≤ u.
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The augmented Lagrangian method could be applied in this case (see [8], Chapter
1-3 for the details). For λi ∈ R, i = 1, . . . ,m and µ > 0, let

L(x, λ;µ) = f(x)− Σm
i=1λigi(x) +

µ

2
Σm
i=1g

2
i (x),

be the augmented Lagrangian function. Consider the following subproblem

L(x, λ;µ) → min, l ≤ x ≤ u,

where λ = (λ1, . . . , λm). With the same argument to solve the problem of (4.5), the
nonlinear gradient projection is applied to approximately solved this subproblem at
each iteration. For the best implementation of augmented Lagrangian method, we
refer the reader to MINOS [12] and LANCELOT packages [10].

Remark 4.1. In the iteration k of GCPMwAU, whenever C is determined by one
of the aforementioned cases, the subproblem has an approximate solution yk ∈ C
such that Φk(yk) ≤ infx∈C Φk(x) + ϵk, for a positive tolerance ϵk.

Next, we discuss the convergence of the GCPMwAU. For this end, the following
lemmas are needed.

Lemma 4.2. Let aij ∈ Rn and αij ∈ R, for i = 0, 1, 2, . . . and j = 1, n+ 1. Set

A := {ξi(·) := min
1≤j≤n+1

⟨aij , ·⟩+ αij | i = 0, 1, 2, . . .}.

If {aij | j = 1, n+ 1, i = 0, 1, 2, . . .} is bounded, then A is equicontinuous over Rn.

Proof. Let x0 ∈ Rn, ξk ∈ A and ϵ > 0 be given. Since {aij | j = 1, n+ 1, i =
0, 1, 2, . . .} is bounded, there exists M > 0 such that ∥aij∥ ≤ M for all j =
1, n+ 1, i = 0, 1, 2, . . .. Let δ := ϵ

M . Assume that x ∈ Rn satisfying ∥x − x0∥ < δ.
Then,

|⟨aij , x− x0⟩| < ϵ,(4.7)

for j = 1, n+ 1, i = 0, 1, 2, . . .. On the other hand, there exist s, t ∈ {1, n+ 1} such
that ⟨aks, x0⟩+ αks = ξk(x0) and ⟨akt, x⟩+ αkt = ξk(x). Applying (4.7), we have

ξk(x) = ⟨akt, x⟩+ αkt > ⟨akt, x0⟩+ αkt − ϵ ≥ ξk(x0)− ϵ

and
ξk(x0) = ⟨aks, x0⟩+ αks > ⟨aks, x⟩+ αks − ϵ ≥ ξk(x)− ϵ.

Therefore, |ξk(x)− ξk(x0)| < ϵ. This completes the proof. �
Lemma 4.3. Let Φk, hk, xk and ϵk be obtained in the iteration k of GCPMwAU.
Then,

(i) hk(xk) ≤ Φk(xk) ≤ hk(xk) +
1

k+1 .

(ii) Φk(x)− 1
k+1 ≤ f(x), for all x ∈ C.

(iii) For k ≥ 1, Φk(xk) ≥ minx∈C f(x) ≥ Φk−1(xk)− 1
k − ϵk.

Proof. (i) follows from (4.2). (ii) follows from (i) and the fact that hk(x) ≤ f(x) for
all x ∈ C. Finally, (iii) follows from the following inequality.

Φk(xk) ≥ hk(xk) = f(xk) ≥ min
x∈C

f(x) ≥ min
x∈C

Φk−1(x)−
1

k
≥ Φk−1(xk)−

1

k
− ϵk,

where the last inequality follows from (4.3). �
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By the following Theorem, we show that GCPMwAU is convergent. We denote
all the positive integer numbers by N.

Theorem 4.4. Let 0 < ρ < 1 and 0 ≤ ϵk+1 ≤ ρϵk. Assume that there exists M > 0
such that ∥aij∥ ≤ M , where aij ∈ Rn is obtained from Step 1 of GCPMwAU for
j = 1, n+ 1 and i ∈ N ∪ {0}. Then, GCPMwAU will terminate after finitely many
iterations.

Proof. Assume, by the way of contradiction, that the number of vectors xk generated
by Step 4 of GCPMwAU is infinite. Let

A := { min
1≤j≤n+1

⟨aij , ·⟩+ αij | i = 0, 1, 2, . . .}

and

B := {Φk(·) =
1

pk
ln

( k∑
i=0

1∑n+1
j=1 exp(−pk⟨aij , ·⟩ − pkαij)

)
+

ln(n+ 1)

pk
| k ≥ 0}.

Applying Lemma 4.2, A is equicontinuous. Now, we are going to show that the
family of functions B is equicontinuous as well. Let η > 0 be arbitrary and x0 ∈ C.
Using (4.2) and equicontinuity of A, there exists a neighborhood Vx0 of x0 such that

|Φ(x)− Φ(x0)| < η

and
Φ(x) ≤ Φk(x) < Φ(x) + η

for all Φ ∈ A and x ∈ Vx0 . This implies that |Φk(x) − Φk(x0)| < η. Thus, B is
equicontinuous.
It follows now from Theorem 2.3 that every limit point of (xk) is a global minimizer
of f over C. Let (xkj ) be a convergent subsequence of (xk) and xkj → x∗ ∈ C,
where minx∈C f(x) = f(x∗). Since ϵk ↓ 0, equicontinuity of B and Lemma 4.3 part
(iii) imply that

lim
j→+∞

Φkj−1(xkj ) = lim
j→+∞

Φkj (xkj ) = f(x∗),

which means |Φkj (xkj ) − Φkj−1(xkj )| → 0. Therefore, the stopping criterion of

GCPMwAU (|Φk(y
∗) − Φk−1(xk)| ≤ σ − 1

k ) will eventually happen. This is a con-
tradiction. Therefore, GCPMwAU will terminate after finitely many iterations. �

The following proposition shows the convergence of GCPMwAU with an exact
minimizer, whenever two consecutive iterations have the same solution.

Proposition 4.5. Let xk and xk+1 be obtained from Step 4 of GCPMwAU and
xk = xk+1. Then, xk is an exact global minimizer of the function f over C.

Proof. Since xk = xk+1, max0≤i≤k hi = max0≤i≤k+1 hi and consequently Φk =
Φk+1. Therefore,

Φk(xk) = Φk+j(xk) = Φk+1+j(xk+1) = Φk+1(xk+1),(4.8)

for all j = 0, 1, 2, . . . . On the other hand, by Lemma 4.3 part (iii) we have

Φk+j+1(xk) ≥ min
x∈C

f(x) ≥ Φk+j(xk)−
1

k + j
− ϵk+j ,(4.9)
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for all j = 0, 1, 2, . . .. As j → +∞, it follows from (4.8) and (4.9) that

min
x∈C

f(x) = Φk(xk).

This completes the proof. �

In the rest of this section and through the following geometric example, we illus-
trate how GCPMwAU works.

Figure 1. The algorithm terminates here due to x2 = 0 = x3.

Example 4.6. Let f(x) :=
√

|x| and C := [−1, 1]. Let x0 = 1 and h0 ∈ ∂∗Hn+1
f(x0)

be defined by

h0(x) =

{
x x ≤ 1,
1 x > 1.

Choose p0 = 10 and ϵ0 = 0 in Step 2,

Φ0(x) :=
1

10
ln

( 1

exp(−10) + exp(−10x)

)
+

ln(10)

10
.

Figure 1 part (a) and (c) depict the function h0 and its smooth estimator, respec-
tively. The minimizer of Φ0 on [−1, 1] is x1 = −1. So, we take h1 ∈ ∂∗Hn+1

f(x1)

defined by

h1(x) =

{
−x x ≥ −1,
1 x < −1.
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For p1 = 10 and ϵ1 = 0,

Φ1(x) :=
1

10
ln

( 1

exp(−10) + exp(−10x)
+

1

exp(−10) + exp(10x)

)
+

ln(10)

10
.

Figure 1 part (b) and (d) depict the function h1 and the smooth estimator Φ1,
respectively. Therefore, the minimizer of Φ1 over C is x2 = 0. Now, we take h2 = 0
of ∂∗Hn+1

f(x2). So max{h0, h1, h2} = max{h0, h1}. This means that Φ1 = Φ2 and

consequently x3 = 0 = x2. It follows from Proposition 4.5 that x2 = 0 is the
minimizer of f over [−1, 1] which we have already known.

Figure 2. The exact global minimizer is obtained by Φ1.

It is worthy mentioning that the function f(x) =
√

|x| is neither smooth nor lo-
cally Lipschitz at 0. Moreover, comparing parts (a) and (b) of Figure 2, GCPMwAU
gives us a smooth function which has the same minimizer at the point 0. Neverthe-
less, we emphasis here that the shape of Φk entirely depends on both the abstract
subgradients choosing in Step 1 and the values of pk and ϵk picking in Step 2.
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