Volume 2, Number 1, 2018, 137–146

A CONFORMAL INVARIANT FOR DOMAINS IN THE HEISENBERG GROUP

YUN SHI AND WEI WANG

ABSTRACT. We construct a conformally invariant contact form θ_{Ω} for domains on the Heisenberg group \mathscr{H}^n , i.e. for a conformal diffeomorphism $f: \Omega \to \Omega'$ between bounded regular domains Ω and Ω' , we have

$$f^*\theta_{\Omega'} = \theta_{\Omega}$$

 θ_{Ω} induces a quasi-hyperbolic Carnot-Carathéodory invariant metric on Ω .

1. INTRODUCTION

By the well known uniformization theorem, any simply connected domain in \mathbb{C} is biholomorphic equivalence to the unit disc in \mathbb{C} or \mathbb{C} . So when such a domain is equivalence to the unit disc, there exists an biholomorphic invariant hyperbolic metric on it. Its higher dimension generalization is to construct a conformally invariant metric on a domain in \mathbb{R}^n , which was given by Leutwiler [7]. But by Liouville's theorem, any conformal mapping restricted to some open set in \mathbb{R}^n is an element of SO(n + 1, 1). So these metrics are invariant under SO(n + 1, 1). In this paper we will consider its CR version.

The simplest CR manifold, which plays the same role of Euclidean space in Riemannian geometry, is the *Heisenberg group* $\mathscr{H}^n = \mathbb{C}^n \oplus \mathbb{R}$. Its multiplication is given by

$$(z,t) \cdot (z',t') = (z+z',t+t'+2\operatorname{Im}(z\overline{z'})),$$

where $z, z' \in \mathbb{C}^n$ and $t, t' \in \mathbb{R}$. The neutral element is (0,0) and the inverse of (z,t)is (-z, -t). Let X_1, \ldots, X_{2n} be the standard left invariant vector fields on \mathscr{H}^n . $H = \text{span } \{X_1, \ldots, X_{2n}\}$ is the horizontal space of \mathscr{H}^n . The standard *Carnot*-*Carathéodory metric* on \mathscr{H}^n is given by

$$g_0(X, X) = ||X||^2 = \sum_{j=1}^n a_j^2,$$

for $X = \sum_{j=1}^{n} a_j X_j \in H$. Let Ω, Ω' be domains in $\mathscr{H}^n, f : \Omega \to \Omega'$ is called *conformal* at point $\xi \in \Omega$ if

 $||f_*X|| = ||f_*Y||,$

for any $X, Y \in H_{\xi}$ with ||X|| = ||Y||.

²⁰¹⁰ Mathematics Subject Classification. 53C17, 32V20.

 $Key\ words\ and\ phrases.$ The Heisenberg group, the Green's function, conformal invariant, invariant contact form.

Supported by National Nature Science Foundation in China (No. 11571305).

Let Δ_0 be the SubLaplacian operator defined in (2.8). Let G_{Ω} be the Green's function of Δ_0 on Ω , i.e. a continuous function $G_{\Omega} : (\bar{\Omega} \times \bar{\Omega}) \setminus \text{diag}(\Omega) \to \mathbb{R}$ which satisfies $G_{\Omega}(x, y) = G_{\Omega}(y, x) = 0$ for $x \in \Omega, y \in \partial\Omega$, and

(1.1)
$$\int_{\Omega} G_{\Omega}(x,y) \Delta_0 u(y) \theta_0 \wedge (\mathrm{d}\theta_0)^n = u(x) \quad \text{for all } u \in C_0^{\infty}(\Omega),$$

where $\theta_0 \wedge (d\theta_0)^n$ is the volume form with θ_0 the standard contact form on \mathscr{H}^n defined in (2.7). Here, $\overline{\Omega} = \Omega \cup \partial \Omega$ is the closure of Ω . To promise the existence of Green's function, we assume domain Ω is bounded and regular. There exists some continuous function $H(x, \cdot)$ for each $x \in \Omega$, such that

(1.2)
$$G_{\Omega}(x,\cdot) = \Gamma(x,\cdot) - H(x,\cdot), \ x \in \Omega,$$

where $\Gamma(x, \cdot)$ is a fundamental solution of Δ_0 with pole at x. So the limit

(1.3)
$$\mathcal{A}_{\Omega}(x) := \lim_{y \to x} |H(x,y)|^{\frac{1}{Q-2}} = \lim_{y \to x} |G_{\Omega}(x,y) - \Gamma(x,y)|^{\frac{1}{Q-2}}$$

exists. We define

(1.4)

$$heta_{\Omega} := \mathcal{A}_{\Omega}^2 heta_0.$$

Then θ_{Ω} is an invariant.

Theorem 1.1. θ_{Ω} is a C^{∞} conformally invariant contact form, i.e. for any conformal diffeomorphism $f: \Omega \to \Omega'$ between two bounded regular domains Ω, Ω' in \mathscr{H}^n , we have

$$f^*\theta_{\Omega'} = \theta_{\Omega}.$$

 θ_{Ω} induces a Carnot-Carathéodory metric on Ω :

$$g_{\Omega}(X,Y) := \mathrm{d}\theta_{\Omega}(X,JY),$$

for any $X, Y \in H$. See section 4 for details. The Carnot-Carathéodory distance d_{cc} associated to a Carnot-Carathéodory metric on Ω is defined by $d_{cc}(x,y) = \inf_{\gamma} \int_{0}^{1} |\gamma'(t)| dt$ for any $x, y \in \Omega$, where $\gamma : [0,1] \to \Omega$ are Lipschitzian horizontal curves, i.e. $\gamma'(t) \in H_{\gamma(t)}$ almost everywhere. Let $d_x = d_{cc}(x,\partial\Omega)$ denote the Carnot-Carathéodory distance from $x \in \Omega$ to $\partial\Omega$.

Let Ω be a bounded subdomain of \mathscr{H}^n and set

(1.5)
$$k_{\Omega}(x) = \frac{1}{d_x^2}$$

for $x \in \Omega$. Then

(1.6)
$$g_k|_x = k_{\Omega}^2(x)g_0|_x$$

defines a quasi-hyperbolic Carnot-Carathéodory metric which is not conformally invariant. We have the following comparison theorem.

Theorem 1.2. Let Ω be a smooth regular domain in \mathcal{H}^n , we have

$$c_1 g_k \le g_\Omega \le c_2 g_k,$$

for some constant $c_1, c_2 > 0$. Moreover,

(1.7)
$$\lim_{x \to \partial\Omega} \frac{g_{\Omega}|_x}{g_k|_x} = 1.$$

139

This domain version invariant was generalized to compact locally conformally flat manifolds in [4]. It also generalized to compact spherical CR manifolds in [10] and compact spherical qc manifolds in [9].

2. Some basic facts

The norm of the Heisenberg group \mathscr{H}^n is defined by

(2.1)
$$||(z,t)|| := (|z|^4 + |t|^2)^{\frac{1}{4}}.$$

We have the following automorphisms of \mathscr{H}^n : (1) dilations:

(2.2)
$$D_{\delta}: (y,t) \longrightarrow (\delta z, \delta^2 t), \ \delta > 0;$$

(2) *left translations*:

(2.3)
$$\tau_{(z',t')}:(z,t) \longrightarrow (z',t') \cdot (z,t);$$

(3) unitary transformations:

(2.4)
$$U_A: (z,t) \longrightarrow (Az,t), \text{ for } A \in \mathrm{U}(n),$$

where

$$\mathbf{U}(n) = \{ A \in \mathrm{GL}(n, \mathbb{C}) | A\bar{A}^t = I_n \};$$

(4) The *inversion*:

(2.5)
$$R: (z,t) \longrightarrow \left(-\frac{z}{|z|^2 - t}, \frac{-t}{|z|^4 + |t|^2}\right).$$

SU(n+1,1) is generated by these automorphisms. The vector fields

(2.6)
$$Z_j = \frac{\partial}{\partial z_j} + i\bar{z}_j \frac{\partial}{\partial t},$$

 $j = 1, \ldots, n$, are left invariant vector fields on \mathscr{H}^n . The subbundle $T_{1,0}$ is $\operatorname{span}\{Z_1,\ldots,Z_n\}$. Let

0

(2.7)
$$\theta_0 = \mathrm{d}t + \sum_{j=1}^n i(z_j \mathrm{d}\bar{z}_j - \bar{z}_j \mathrm{d}z_j)$$

be the standard contact form on \mathscr{H}^n . The SubLaplacian on \mathscr{H}^n is

(2.8)
$$\Delta_0 = -\frac{1}{2} \sum_{j=1}^n (Z_j \bar{Z}_j + \bar{Z}_j Z_j)$$

We also have the real left invariant vector fields:

$$X_j = \frac{1}{2}\frac{\partial}{\partial x_j} + y_j\frac{\partial}{\partial t}, \quad X_{n+j} = \frac{1}{2}\frac{\partial}{\partial y_j} - x_j\frac{\partial}{\partial t}, \quad T = \frac{\partial}{\partial t}$$

It is easy to verify that $\{X_1, \ldots, X_{2n}, T\}$ is a basis for the left invariant vector fields on \mathscr{H}^n and $\operatorname{span}\{Z_j, \overline{Z}_j\}_{j=1}^n = \operatorname{span}\{X_j\}_{j=1}^{2n}$. Then we can write the SubLaplacian as

(2.9)
$$\Delta_0 = -\sum_{j=1}^{2n} X_j^2.$$

We know the explicit form of the fundamental solution of the SubLaplacian of Heisenberg groups.

Proposition 2.1 (cf. p.180 in [6]). The fundamental solution of Δ_0 on the Heisenberg group \mathscr{H}^n with the pole at x is

$$\Gamma(x,y) := \frac{C_Q}{\|x^{-1}y\|^{Q-2}},$$

for $x \neq y, x, y \in \mathscr{H}^n$, where $\|\cdot\|$ is the norm on \mathscr{H}^n defined by (2.1) and

(2.10)
$$C_Q = \frac{2^{2-2n}\pi^{n+1}}{\Gamma\left(\frac{n}{2}\right)^2}.$$

Theorem 2.2 (Liouville type theorem) (cf. Theorem 2.5 in [10])). If f is a local CR diffeomorphism form an open set $\Omega \subset \mathscr{H}^n$ to another open set $V \in \mathscr{H}^n$, then f is the restriction to Ω of an element in SU(n + 1, 1).

A conformal mapping is either CR or anti-CR.

3. A CANONICAL CONTACT FORM ON HEISENBERG GROUP DOMAIN

A domain Ω is called *regular* if for ϕ in $C(\partial\Omega)$, the Dirichlet problem $\Delta_0 u = 0$ in Ω , $u = \phi$ in $\partial\Omega$ has a classical solution $u \in L^2(\Omega) \cap C(\overline{\Omega})$. $H(x, \cdot)$ defined in (1.2) is the classical solution of the Dirichlet problem:

(3.1)
$$\begin{cases} \Delta_0 H(x, \cdot) = 0, & \text{in } \Omega \\ H(x, \cdot) = \Gamma(x, \cdot), & \text{on } \partial \Omega \end{cases}$$

Theorem 3.1 (The maximum principle) (cf. Lemma 3.1 in [3]). Let $\Omega \subset \mathscr{H}^n$ be a bounded open set. For every $u \in C^2(\Omega) \cap C(\overline{\Omega})$ with $\sum_j^{2n} X_j^2 u \ge 0$ (or ≤ 0) in Ω , we have

$$\sup_{\bar{\Omega}} u = \sup_{\partial \Omega} u \quad (\text{or } \inf_{\bar{\Omega}} u = \inf_{\partial \Omega} u)$$

Then we have the following corollary.

Corollary 3.2. $\mathcal{A}_{\Omega}(x) > 0$, for any $x \in \Omega$.

Proof. By the Dirichlet problem in (3.1), we have

$$\begin{cases} \sum_{j=1}^{2n} X_{j}^{2} H(x, \cdot) = 0, & \text{in } \Omega\\ H(x, \cdot) = \Gamma(x, \cdot), & \text{on } \partial \Omega, \end{cases}$$

By the maximum principle (Theorem 3.1), we have

$$H(x,y) \ge \min_{y \in \partial \Omega} (\Gamma(x,y)) = \min_{y \in \partial \Omega} \frac{C_Q}{\|x^{-1}y\|^{Q-2}} > 0.$$

Thus $\mathcal{A}_{\Omega}(x) > 0$. The corollary is proved.

Proposition 3.3. Let Ω and Ω' be bounded regular domains in \mathscr{H}^n , and let $f : \Omega \to \Omega'$ be a conformal diffeomorphism. Then for all $u \in C^{\infty}(\mathscr{H})$, we have

(3.2)
$$\phi^{\frac{Q+2}{Q-2}}\tilde{\Delta}_0 u = \Delta_0(\phi u),$$

if we write $f^*\theta_0 = \phi^{\frac{4}{Q-2}}\theta_0$ for smooth function ϕ on Ω , where $\tilde{\Delta}_0$ is the SubLaplacian with respect to the contact form $f^*\theta_0$.

Proof. By (3.6) in [11], we have

$$\phi^{\frac{Q+2}{Q-2}}\tilde{\Delta}_0 u = \Delta_0(\phi u) - \Delta_0(\phi)u.$$

By Liouville type theorem 2.2, f or $\overline{f} \in SU(n+1,1)$, and is generated by dilations, left translations, unitary transformations and the inversion defined by (2.2)-(2.4). Recall the definition of θ_0 in (2.7), we have

$$D^*_{\delta}\theta_0 = \delta^2 \theta_0, \quad \text{for } \delta > 0,$$

$$\tau^*_{(z',t')}\theta_0 = \theta_0, \quad \text{for } (z',t') \in \mathscr{H}^n,$$

$$U^*_A\theta_0 = \theta_0, \quad \text{for } A \in \mathcal{U}(n),$$

by directly calculation. So, if f is generated by dilations, left translations and unitary transformations, (3.2) follows. If we choose f to be the inversion R, we have

$$(R^*\theta_0)(z,t) = \phi^{\frac{4}{Q-2}}\theta_0(z,t) \text{ with } \phi = \frac{1}{\|(z,t)\|^{Q-2}},$$

for $(z, t) \neq (0, 0)$. (cf. p.192 in [6]). We have

(3.3)
$$Z_{j}\frac{1}{\|(z,t)\|^{Q-2}} = -\frac{Q-2}{4}\frac{Z_{j}\|(z,t)\|^{4}}{\|(z,t)\|^{Q+2}},$$
$$\bar{Z}_{j}\frac{1}{\|(z,t)\|^{Q-2}} = -\frac{Q-2}{4}\frac{\bar{Z}_{j}\|(z,t)\|^{4}}{\|(z,t)\|^{Q+2}},$$

with

(3.4)
$$Z_j \|(z,t)\|^4 = 2|z|^2 \bar{z}_j + 2i\bar{z}_j t, \qquad \bar{Z}_j \|(z,t)\|^4 = 2|z|^2 z_j - 2iz_j t,$$

by using the expression of the vector field Z_j in (2.6). Then we get (3.5)

$$\Delta_0 \phi = -\frac{Q-2}{4} \left[\frac{\Delta_0 \|(z,t)\|^4 \|(z,t)\|^4 + \frac{Q+2}{4} \|(z,t)\|^4 Z_j \|(z,t)\|^4 \bar{Z}_j \|(z,t)\|^4}{\|(z,t)\|^{Q+6}} \right],$$

where

(3.6)
$$\sum_{j=1}^{n} Z_{j} \|(z,t)\|^{4} \bar{Z}_{j} \|(z,t)\|^{4} = 4|z|^{2} \|(z,t)\|^{4}.$$

By (3.4), we get

(3.7)
$$\Delta_0 \|(z,t)\|^4 = -\frac{1}{2} \sum_{j=1}^n (Z_j \bar{Z}_j + \bar{Z}_j Z_j) \|(z,t)\|^4 = -(Q+2)|z|^2.$$

Then apply (3.6) and (3.7) to (3.5) to get

$$\Delta_0 \phi = \Delta_0 \frac{1}{\|(z,t)\|^{Q-2}} = 0,$$

for $(z,t) \neq (0,0)$. Thus we have (3.2) holds for any conformal diffeomorphism f. \Box

Proposition 3.4. Let Ω and Ω' be bounded regular domains in \mathscr{H}^n , and let $f : \Omega \to \Omega'$ be a conformal mapping. Let $G_{\Omega} : (\bar{\Omega} \times \bar{\Omega}) \setminus \operatorname{diag}(\Omega) \to \mathbb{R}$ be a Green's function of the SubLaplacian Δ_0 for the domain Ω . Then the Green's function for the domain Ω' satisfies

(3.8)
$$G_{\Omega'}(f(x), f(y)) = \frac{1}{\phi(x)\phi(y)}G_{\Omega}(x, y),$$

for $x, y \in \Omega$, if we write the contact form $f^*\theta_0 = \phi^{\frac{4}{Q-2}}\theta_0$.

Proof. Recall that the definition of the SubLaplacian Δ_{θ} for a contact form θ on a CR manifold is independent of the choice of local coordinates, i.e.

(3.9)
$$f^*(\Delta_\theta u) = \Delta_{f^*\theta} f^* u.$$

Let $\tilde{\theta}_0 := f^* \theta_0 = \phi^{\frac{4}{Q-2}} \theta_0$, we have

(3.10)
$$\mathrm{d}\tilde{\theta}_0 = \mathrm{d}(\phi^{\frac{4}{Q-2}}\theta_0) = \frac{4}{Q-2}\phi^{\frac{6-Q}{Q-2}}\mathrm{d}\phi \wedge \theta_0 + \phi^{\frac{4}{Q-2}}\mathrm{d}\theta_0.$$

So we get

(3.11)
$$\tilde{\theta}_0 \wedge (\mathrm{d}\tilde{\theta}_0)^n = \phi^{\frac{2Q}{Q-2}} \theta_0 \wedge (\mathrm{d}\theta_0)^n.$$

Therefore, by the transformation law (3.2) and (3.9), we find that for $x' \in \Omega'$,

$$\int_{\Omega'} \frac{1}{\phi(f^{-1}(x'))\phi(f^{-1}(y'))} G_{\Omega}(f^{-1}(x'), f^{-1}(y')) \Delta_{0}u(y')\theta_{0} \wedge (\mathrm{d}\theta_{0})^{n}$$

$$= \int_{\Omega} \frac{1}{\phi(f^{-1}(x'))\phi(y)} G_{\Omega}(f^{-1}(x'), y) f^{*}(\Delta_{0}u)(y) f^{*}(\theta_{0} \wedge (\mathrm{d}\theta_{0})^{n})$$

$$= \int_{\Omega} \frac{1}{\phi(f^{-1}(x'))\phi(y)} G_{\Omega}(f^{-1}(x'), y) \tilde{\Delta}_{0}(f^{*}u)(y) \tilde{\theta}_{0} \wedge (\mathrm{d}\tilde{\theta}_{0})^{n}$$

$$= \frac{1}{\phi(f^{-1}(x'))} \int_{\Omega} G_{\Omega}(f^{-1}(x'), y) \Delta_{0}(\phi f^{*}u)(y) \theta_{0} \wedge (\mathrm{d}\theta_{0})^{n}$$

$$= f^{*}u(f^{-1}(x')) = u(x')$$

for any $u \in C_0^{\infty}(\Omega')$. Here we take transform $y = f^{-1}(y')$ in the first identity. The proposition follows form the uniqueness of the Green's function.

By the Liouville type theorem 2.2, any local conformal diffeomorphism f is the restriction of a conformal transformation of \mathscr{H}^n . Then we have the following proposition.

Proposition 3.5. Let Ω and Ω' be bounded regular domains in \mathscr{H}^n , and let $f : \Omega \to \Omega'$ be a conformal diffeomorphism. We have

(3.12)
$$||f(x)^{-1}f(y)|| = \phi^{\frac{1}{Q-2}}(x)\phi^{\frac{1}{Q-2}}(y)||x^{-1}y||.$$

143

Proof. By (3.11) and taking transformation $f(y) \to y'$, we find that for any $u \in C_0^{\infty}(\Omega)$

$$\int_{\Omega} \frac{C_Q \phi(x) \phi(y)}{\|f(x)^{-1} f(y)\|^{Q-2}} \Delta_0 u(y) \theta_0 \wedge (\mathrm{d}\theta_0)^n$$

=
$$\int_{\Omega} \frac{C_Q \phi(x)}{\|f(x)^{-1} f(y)\|^{Q-2}} \tilde{\Delta}_0 \left(\phi^{-1} u\right)\Big|_{f(y)} \tilde{\theta}_0 \wedge (\mathrm{d}\tilde{\theta}_0)^n$$

=
$$\int_{\Omega'} \frac{C_Q \phi(x)}{\|f(x)^{-1} y'\|^{Q-2}} \Delta_0 \left(\phi^{-1} u\right)\Big|_{y'} \theta_0 \wedge (\mathrm{d}\theta_0)^n = u(x)$$

Now by the uniqueness of the fundamental solution of Δ_0 as before, we find that $\Gamma(x,y) = C_Q \phi(x) \phi(y) ||f(x)f(y)^{-1}||^{2-Q}$. Thus the proposition is proved. \Box

See [8] for this proposition on the Euclidean space.

Proof of Theorem 1.1. Assume that

$$f^*\theta_0 = \phi^{\frac{4}{Q-2}}\theta_0$$

for some positive function $\phi \in C^{\infty}(\Omega)$. Then we have

(3.13)
$$f^*\theta_{\Omega'} = \left(\mathcal{A}_{\Omega'} \circ f\right)^2 f^*\theta_0 = \left(\mathcal{A}_{\Omega'} \circ f\right)^2 \phi^{\frac{4}{Q-2}}\theta_0,$$

where θ_{Ω} is defined in (1.4). Then, by (3.12), we have

$$\begin{aligned} \mathcal{A}_{\Omega'}(f(x)) &= \lim_{y \to x} |\Gamma(f(x), f(y)) - G_{\Omega'}(f(x), f(y))|^{\frac{1}{Q-2}} \\ &= \lim_{y \to x} \left| \frac{C_Q}{\phi(x)\phi(y) ||x^{-1}y||^{Q-2}} - \frac{G_\Omega(x, y)}{\phi(x)\phi(y)} \right|^{\frac{1}{Q-2}} \\ &= \phi^{-\frac{2}{Q-2}}(\xi) \mathcal{A}_\Omega(x). \end{aligned}$$

Consequently, we have

$$\mathcal{A}^2_{\Omega'}(f(x))f^*\theta_0\big|_x = \mathcal{A}^2_{\Omega}(x)\theta_0\big|_x.$$

Since Corollary 3.2 ensures that \mathcal{A}_{Ω} is non-vanishing, θ_{Ω} is a contact form.

We can prove the Green's function symmetric in a way similar to the Euclidean case (cf. e.g. [1], Chapter 4)). Note that

$$\int_{\Omega} \Gamma(x, y) \Delta_0 u(y) \theta_0 \wedge (\mathrm{d}\theta_0)^n(y) = u(x)$$

for each $u \in C_0^2(\Omega)$, and

$$\Delta_0\varphi(y) = \Delta_y \int_{\Omega} G_{\Omega}(x, y) \Delta_0\varphi(x) \theta_0 \wedge (\mathrm{d}\theta_0)^n(x)$$

for $\varphi \in C_0^2(\Omega)$, where Δ_y means that the SubLaplacian is applied with respect to the variable y. Thus

$$\varphi(y) = \int_{\Omega} G_{\Omega}(x, y) \Delta_0 \varphi(x) \theta_0 \wedge (\mathrm{d}\theta_0)^n(x) + \mathrm{Const},$$

which yields

(3.14)
$$\int_{\Omega} \left(G_{\Omega}(x,y) - G_{\Omega}(y,x) \right) \Delta_{0} \varphi(y) \theta_{0} \wedge (\mathrm{d}\theta_{0})^{n}(y) = \mathrm{Const.}$$

Y. SHI AND W. WANG

for all $\varphi \in C_0^2(\Omega)$. Integrating (3.14) proves that the constant is zero. Since

$$\int G_{\Omega}(y,x)\theta_0 \wedge (\mathrm{d}\theta_0)^n(x) = 0 \quad \text{and} \quad \int G_{\Omega}(x,y)\theta_0 \wedge (\mathrm{d}\theta_0)^n(x) = \mathrm{Const.}$$

Thus $G_{\Omega}(x, y) - G_{\Omega}(y, x) = \text{Const.}$ Interchanging x and y implies the second member is zero. Thus the Green's function G_{Ω} is symmetric. It follows that

$$\int_{\Omega \times \Omega} H(x, y) (\Delta_x + \Delta_y) w(x, y) dV(x, y) = 0,$$

for each $w \in C_0^{\infty}(\Omega \times \Omega)$, where the dV is the associate volume form and Δ_x, Δ_y mean the SubLaplacian is applied with respect to the variables x and y. As for any weak solution u of $\Delta_0 u = 0$ on an open set $\Omega \times \Omega$, we have $u \in C^{\infty}(\Omega \times \Omega)$. Cf. Corollary 1.2.3 in [5] for the Euclidean case. So H(x, x) is smooth in Ω . Then we obtain the limit

$$\mathcal{A}_{\Omega}(x) := \lim_{y \to x} |H(x,y)|^{\frac{1}{Q-2}} = \lim_{y \to x} |G_{\Omega}(x,y) - \Gamma_{\Omega}(x,y)|^{\frac{1}{Q-2}}$$

exists for each $x \in \Omega$. The theorem is proved.

4. The quasi-hyperbolic Carnot-Carathéodory metric

Let $J: H \to H$ be the standard CR structure satisfying $J^2 = -id_H$. Recall that g_0 satisfies the compatibility condition

(4.1)
$$g_0(JX,Y) = \mathrm{d}\theta_0(X,Y),$$

for any $X, Y \in H$. We have

$$\mathrm{d}\theta_{\Omega} = \mathcal{A}_{\Omega}^2 \mathrm{d}\theta_0 + \mathrm{d}(\mathcal{A}_{\Omega}^2) \wedge \theta_0.$$

So the associated Carnot-Carathéodory metric of θ_{Ω} is

$$g_{\Omega}(X,Y) = \mathrm{d}\theta_{\Omega}(X,JY) = \mathcal{A}_{\Omega}^2 g_0(X,Y)$$

for any $X, Y \in H$. We can easily verify that g_{Ω} is a conformally invariant Carnot-Carathéodory metric.

We have following comparison proposition about this Carnot-Carathéodory metric.

Proposition 4.1. Let Ω_1, Ω_2 be bounded regular domains in \mathscr{H}^n . If $\Omega_1 \subset \Omega_2$, we have

(4.2)
$$\mathcal{A}_{\Omega_1}(x) \ge \mathcal{A}_{\Omega_2}(x)$$

on Ω_1 .

Proof. Denote $H_{\Omega_1}(x, \cdot)$ and $H_{\Omega_2}(x, \cdot)$ be the regular part of Green's function $G_{\Omega_1}(x, \cdot)$ and $G_{\Omega_2}(x, \cdot)$, respectively. Since

$$\left(X_1^2 + \dots + X_{2n}^2\right)\left(-\Gamma(x,\cdot)\right) = \delta_x,$$

 $-\Gamma(x,\cdot)$ is subharmonic with respect to the SubLaplacain $X_1^2 + \cdots + X_{2n}^2$ (cf. [2]). Thus

$$-H_{\Omega_2}(x,\cdot)|_{\partial\Omega_2} = -\Gamma(x,\cdot)|_{\partial\Omega_2}$$

implies that

$$-H_{\Omega_2}(x,\cdot) \ge -\Gamma(x,\cdot) \quad \text{on } \Omega_2.$$

On the other hand, we have

$$-H_{\Omega_1}(x,\cdot)|_{\partial\Omega_1} = -\Gamma(x,\cdot)|_{\partial\Omega_1}$$

Hence

$$-H_{\Omega_2}(x,\cdot)|_{\partial\Omega_1} \ge -H_{\Omega_1}(x,\cdot)|_{\partial\Omega_1}$$

Then the maximum principle implies

$$-H_{\Omega_2}(x,\cdot) \ge -H_{\Omega_1}(x,\cdot) \quad \text{on } \Omega_1$$

The proposition is proved.

Theorem 4.2. (cf. Theorem 1.1 in [3]) For $x, y \in \Omega$, x near the boundary $\partial\Omega$, and H the regular part of Green's function at this point. We have

(4.3)
$$H(x,x) = \frac{C_Q}{d_x^2} + o(d_x^{-2})$$

There is a difference of factor $\frac{1}{4}$ from that in [3] because our definition of Δ_0 is different from that with a factor $-\frac{1}{4}$.

Proof of the Theorem 1.2. By Theorem 4.2, we have

$$\mathcal{A}_{\Omega}(x) = \lim_{y \to x} \left| H^{\frac{1}{Q-2}}(x,y) \right| = \left| \frac{C_Q}{d_x^2} + o(d_x^{-2}) \right|^{\frac{1}{Q-2}}$$

Then

(4.4)
$$c_1 k_{\Omega}^2(x) \le \mathcal{A}_{\Omega}^2(x) \le c_2 k_{\Omega}^2(x)$$

for x near the boundary, for some constant $c_1, c_2 > 0$, where k_{Ω} is defined in (1.5). On a compact subset of Ω , (4.4) holds for some constant $c_1, c_2 > 0$, since $\mathcal{A}_{\Omega}^2/k_{\Omega}^2$ is positive and bounded. (1.7) follows directly by the definition of $H(\cdot, \cdot)$. The theorem is proved.

References

- [1] T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Springer Science and Business Media, vol. 252, Springer, 1982.
- [2] A. Bonfiglioli, and E. Lanconelli, Subharmonic functions on Carnot groups, Math. Ann. 325 (2003), 97-122.
- [3] N. Gamara, and H. Guemri, Estimates of the Green's function and its regular part on Heisenberg group domains, Adv. Nonlinear Stud. 11 (2011), 593–612.
- [4] L. Habermann and J. Jost, Green functions and conformal geometry, J. Diff. Geom. 53 (1999), 405 - 442.
- [5] L. Habermann, Riemannian metrics of constant mass and moduli spaces of conformal structures, Lect. Notes Math. vol. 1743, Berlin, Springer, 2000.
- [6] D. Jerison and J. M. Lee, The Yamabe problem on CR manifolds. J. Diff. Geom. 25 (1987), 167 - 197.
- [7] H. Leutwiler, On a distance invariant under Möbius transformations in \mathbb{R}^n , Ann. acad. sci. fenn. Ser. A I Math. 12 (1987), 3-17.
- [8] H. Leutwiler, A Riemannian metric invariant under Möbius transformations in \mathbb{R}^n , Lect. Notes in Math. vol.1351, Berlin, Springer, Berlin, 1988, pp. 223–235.
- [9] Y. Shi and W. Wang, On conformal qc geometry, spherical qc manifolds and convex cocompact subgroups of Sp(n + 1, 1), Ann. Global Anal. Geom. **49** (2016), 271–307.
- [10] W. Wang, Canonical contact forms on spherical CR manifolds, J. Eur. Math. soc. 5 (2003), 245 - 273.

Y. SHI AND W. WANG

[11] W. Wang, Representations of SU(p,q) and CR geometry I, J. Math. Kyoto Univ. 45 (2005), 759–780.

Manuscript received February 5 2018 revised April 2 2018

Y. Shi

Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou 310023, China

E-mail address: hzxjhs1987@163.com

W. WANG

Department of Mathematics, Zhejiang University, Hangzhou 310027, China *E-mail address:* wwang@zju.edu.cn