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Let ∆0 be the SubLaplacian operator defined in (2.8). Let GΩ be the Green’s
function of ∆0 on Ω, i.e. a continuous function GΩ : (Ω̄× Ω̄) \ diag(Ω) → R which
satisfies GΩ(x, y) = GΩ(y, x) = 0 for x ∈ Ω, y ∈ ∂Ω, and∫

Ω
GΩ(x, y)∆0u(y)θ0 ∧ (dθ0)

n = u(x) for all u ∈ C∞
0 (Ω),(1.1)

where θ0 ∧ (dθ0)
n is the volume form with θ0 the standard contact form on H n

defined in (2.7). Here, Ω̄ = Ω ∪ ∂Ω is the closure of Ω. To promise the existence of
Green’s function, we assume domain Ω is bounded and regular. There exists some
continuous function H(x, ·) for each x ∈ Ω, such that

GΩ(x, ·) = Γ(x, ·)−H(x, ·), x ∈ Ω,(1.2)

where Γ(x, ·) is a fundamental solution of ∆0 with pole at x. So the limit

(1.3) AΩ(x) := lim
y→x

|H(x, y)|
1

Q−2 = lim
y→x

|GΩ(x, y)− Γ(x, y)|
1

Q−2

exists. We define

θΩ := A2
Ωθ0.(1.4)

Then θΩ is an invariant.

Theorem 1.1. θΩ is a C∞ conformally invariant contact form, i.e. for any con-
formal diffeomorphism f : Ω → Ω′ between two bounded regular domains Ω,Ω′ in
H n, we have

f∗θΩ′ = θΩ.

θΩ induces a Carnot-Carathéodory metric on Ω :

gΩ(X,Y ) := dθΩ(X, JY ),

for any X,Y ∈ H. See section 4 for details. The Carnot-Carathéodory distance
dcc associated to a Carnot-Carathéodory metric on Ω is defined by dcc(x, y) = infγ∫ 1
0 |γ′(t)|dt for any x, y ∈ Ω, where γ : [0, 1] → Ω are Lipschitzian horizontal curves,
i.e. γ′(t) ∈ Hγ(t) almost everywhere. Let dx = dcc(x, ∂Ω) denote the Carnot-
Carathéodory distance from x ∈ Ω to ∂Ω.

Let Ω be a bounded subdomain of H n and set

kΩ(x) =
1

d
2

Q−2
x

,(1.5)

for x ∈ Ω. Then

gk|x = k2Ω(x)g0|x(1.6)

defines a quasi-hyperbolic Carnot-Carathéodory metric which is not conformally
invariant. We have the following comparison theorem.

Theorem 1.2. Let Ω be a smooth regular domain in H n, we have

c1gk ≤ gΩ ≤ c2gk,

for some constant c1, c2 > 0. Moreover,

lim
x→∂Ω

gΩ|x
gk|x

= 1.(1.7)
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This domain version invariant was generalized to compact locally conformally flat
manifolds in [4]. It also generalized to compact spherical CR manifolds in [10] and
compact spherical qc manifolds in [9].

2. Some basic facts

The norm of the Heisenberg group H n is defined by

∥(z, t)∥ := (|z|4 + |t|2)
1
4 .(2.1)

We have the following automorphisms of H n :
(1) dilations:

Dδ : (y, t) −→ (δz, δ2t), δ > 0;(2.2)

(2) left translations:

τ(z′,t′) : (z, t) −→ (z′, t′) · (z, t);(2.3)

(3) unitary transformations:

UA : (z, t) −→ (Az, t), for A ∈ U(n),(2.4)

where

U(n) = {A ∈ GL(n,C)|AĀt = In};

(4) The inversion:

R : (z, t) −→
(
− z

|z|2 − t
,

−t

|z|4 + |t|2

)
.(2.5)

SU(n+ 1, 1) is generated by these automorphisms.
The vector fields

Zj =
∂

∂zj
+ iz̄j

∂

∂t
,(2.6)

j = 1, . . . , n, are left invariant vector fields on H n. The subbundle T1,0 is
span{Z1, . . . , Zn}. Let

θ0 = dt+

n∑
j=1

i(zjdz̄j − z̄jdzj)(2.7)

be the standard contact form on H n. The SubLaplacian on H n is

∆0 = −1

2

n∑
j=1

(ZjZ̄j + Z̄jZj).(2.8)

We also have the real left invariant vector fields:

Xj =
1

2

∂

∂xj
+ yj

∂

∂t
, Xn+j =

1

2

∂

∂yj
− xj

∂

∂t
, T =

∂

∂t
.
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It is easy to verify that {X1 . . . , X2n, T} is a basis for the left invariant vector fields
on H n and span{Zj , Z̄j}nj=1 = span{Xj}2nj=1. Then we can write the SubLaplacian
as

∆0 = −
2n∑
j=1

X2
j .(2.9)

We know the explicit form of the fundamental solution of the SubLaplacian of
Heisenberg groups.

Proposition 2.1 (cf. p.180 in [6]). The fundamental solution of ∆0 on the Heisen-
berg group H n with the pole at x is

Γ(x, y) :=
CQ

∥x−1y∥Q−2
,

for x ̸= y, x, y ∈ H n, where ∥ · ∥ is the norm on H n defined by (2.1) and

CQ =
22−2nπn+1

Γ
(
n
2

)2 .(2.10)

Theorem 2.2 (Liouville type theorem) (cf. Theorem 2.5 in [10])). If f is a
local CR diffeomorphism form an open set Ω ⊂ H n to another open set V ∈ H n,
then f is the restriction to Ω of an element in SU(n + 1, 1).

A conformal mapping is either CR or anti-CR.

3. A canonical contact form on Heisenberg group domain

A domain Ω is called regular if for ϕ in C(∂Ω), the Dirichlet problem ∆0u = 0 in
Ω, u = ϕ in ∂Ω has a classical solution u ∈ L2(Ω) ∩ C(Ω̄). H(x, ·) defined in (1.2)
is the classical solution of the Dirichlet problem:

(3.1)

{
∆0H(x, ·) = 0, in Ω

H(x, ·) = Γ(x, ·), on ∂Ω.

Theorem 3.1 (The maximum principle) (cf. Lemma 3.1 in [3]). Let Ω ⊂ H n be a

bounded open set. For every u ∈ C2(Ω) ∩ C(Ω̄) with
∑2n

j X2
j u ≥ 0 (or ≤ 0) in Ω,

we have
sup
Ω̄

u = sup
∂Ω

u (or inf
Ω̄

u = inf
∂Ω

u)

Then we have the following corollary.

Corollary 3.2. AΩ(x) > 0, for any x ∈ Ω.

Proof. By the Dirichlet problem in (3.1), we have{ ∑2n
j X2

jH(x, ·) = 0, in Ω

H(x, ·) = Γ(x, ·), on ∂Ω,

By the maximum principle (Theorem 3.1), we have

H(x, y) ≥ min
y∈∂Ω

(Γ(x, y)) = min
y∈∂Ω

CQ

∥x−1y∥Q−2
> 0.

Thus AΩ(x) > 0. The corollary is proved. �
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Proposition 3.3. Let Ω and Ω′ be bounded regular domains in H n, and let f :
Ω → Ω′ be a conformal diffeomorphism. Then for all u ∈ C∞(H ), we have

ϕ
Q+2
Q−2 ∆̃0u = ∆0(ϕu),(3.2)

if we write f∗θ0 = ϕ
4

Q−2 θ0 for smooth function ϕ on Ω, where ∆̃0 is the SubLaplacian
with respect to the contact form f∗θ0.

Proof. By (3.6) in [11], we have

ϕ
Q+2
Q−2 ∆̃0u = ∆0(ϕu)−∆0(ϕ)u.

By Liouville type theorem 2.2, f or f ∈ SU(n+1, 1), and is generated by dilations,
left translations, unitary transformations and the inversion defined by (2.2)-(2.4).
Recall the definition of θ0 in (2.7), we have

D∗
δθ0 =δ2θ0, for δ > 0,

τ∗(z′,t′)θ0 =θ0, for (z′, t′) ∈ H n,

U∗
Aθ0 =θ0, for A ∈ U(n),

by directly calculation. So, if f is generated by dilations, left translations and
unitary transformations, (3.2) follows. If we choose f to be the inversion R, we
have

(R∗θ0) (z, t) = ϕ
4

Q−2 θ0(z, t) with ϕ =
1

∥(z, t)∥Q−2
,

for (z, t) ̸= (0, 0). (cf. p.192 in [6]). We have

(3.3)

Zj
1

∥(z, t)∥Q−2
= −Q− 2

4

Zj∥(z, t)∥4

∥(z, t)∥Q+2
,

Z̄j
1

∥(z, t)∥Q−2
= −Q− 2

4

Z̄j∥(z, t)∥4

∥(z, t)∥Q+2
,

with

(3.4) Zj∥(z, t)∥4 = 2|z|2z̄j + 2iz̄jt, Z̄j∥(z, t)∥4 = 2|z|2zj − 2izjt,

by using the expression of the vector field Zj in (2.6). Then we get
(3.5)

∆0ϕ = −Q− 2

4

[
∆0∥(z, t)∥4∥(z, t)∥4 + Q+2

4 ∥(z, t)∥4Zj∥(z, t)∥4Z̄j∥(z, t)∥4

∥(z, t)∥Q+6

]
,

where

(3.6)

n∑
j=1

Zj∥(z, t)∥4Z̄j∥(z, t)∥4 = 4|z|2∥(z, t)∥4.

By (3.4), we get

(3.7) ∆0∥(z, t)∥4 = −1

2

n∑
j=1

(ZjZ̄j + Z̄jZj)∥(z, t)∥4 = −(Q+ 2)|z|2.
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Then apply (3.6) and (3.7) to (3.5) to get

∆0ϕ = ∆0
1

∥(z, t)∥Q−2
= 0,

for (z, t) ̸= (0, 0). Thus we have (3.2) holds for any conformal diffeomorphism f. �
Proposition 3.4. Let Ω and Ω′ be bounded regular domains in H n, and let f :
Ω → Ω′ be a conformal mapping. Let GΩ : (Ω̄ × Ω̄) \ diag(Ω) → R be a Green’s
function of the SubLaplacian ∆0 for the domain Ω. Then the Green’s function for
the domain Ω′ satisfies

GΩ′(f(x), f(y)) =
1

ϕ(x)ϕ(y)
GΩ(x, y),(3.8)

for x, y ∈ Ω, if we write the contact form f∗θ0 = ϕ
4

Q−2 θ0.

Proof. Recall that the definition of the SubLaplacian ∆θ for a contact form θ on a
CR manifold is independent of the choice of local coordinates, i.e.

f∗(∆θu) = ∆f∗θf
∗u.(3.9)

Let θ̃0 := f∗θ0 = ϕ
4

Q−2 θ0, we have

dθ̃0 = d(ϕ
4

Q−2 θ0) =
4

Q− 2
ϕ

6−Q
Q−2dϕ ∧ θ0 + ϕ

4
Q−2dθ0.(3.10)

So we get

θ̃0 ∧ (dθ̃0)
n = ϕ

2Q
Q−2 θ0 ∧ (dθ0)

n.(3.11)

Therefore, by the transformation law (3.2) and (3.9), we find that for x′ ∈ Ω′,∫
Ω′

1

ϕ (f−1(x′))ϕ (f−1(y′))
GΩ(f

−1(x′), f−1(y′))∆0u(y
′)θ0 ∧ (dθ0)

n

=

∫
Ω

1

ϕ (f−1(x′))ϕ (y)
GΩ(f

−1(x′), y)f∗(∆0u)(y)f
∗ (θ0 ∧ (dθ0)

n)

=

∫
Ω

1

ϕ (f−1(x′))ϕ (y)
GΩ(f

−1(x′), y)∆̃0(f
∗u)(y)θ̃0 ∧ (dθ̃0)

n

=
1

ϕ (f−1(x′))

∫
Ω
GΩ(f

−1(x′), y)∆0(ϕf
∗u)(y)θ0 ∧ (dθ0)

n

= f∗u
(
f−1(x′)

)
= u(x′)

for any u ∈ C∞
0 (Ω′). Here we take transform y = f−1(y′) in the first identity. The

proposition follows form the uniqueness of the Green’s function. �
By the Liouville type theorem 2.2, any local conformal diffeomorphism f is the

restriction of a conformal transformation of H n. Then we have the following propo-
sition.

Proposition 3.5. Let Ω and Ω′ be bounded regular domains in H n, and let f :
Ω → Ω′ be a conformal diffeomorphism. We have

∥f(x)−1f(y)∥ = ϕ
1

Q−2 (x)ϕ
1

Q−2 (y)∥x−1y∥.(3.12)



A CONFORMAL INVARIANT FOR DOMAINS IN THE HEISENBERG GROUP 143

Proof. By (3.11) and taking transformation f(y) → y′, we find that for any u ∈
C∞
0 (Ω) ∫

Ω

CQϕ(x)ϕ(y)

∥f(x)−1f(y)∥Q−2
∆0u(y)θ0 ∧ (dθ0)

n

=

∫
Ω

CQϕ(x)

∥f(x)−1f(y)∥Q−2
∆̃0

(
ϕ−1u

)∣∣∣
f(y)

θ̃0 ∧ (dθ̃0)
n

=

∫
Ω′

CQϕ(x)

∥f(x)−1y′∥Q−2
∆0

(
ϕ−1u

)∣∣
y′
θ0 ∧ (dθ0)

n = u(x).

Now by the uniqueness of the fundamental solution of ∆0 as before, we find that
Γ(x, y) = CQϕ(x)ϕ(y)∥f(x)f(y)−1∥2−Q. Thus the proposition is proved. �

See [8] for this proposition on the Euclidean space.
Proof of Theorem 1.1. Assume that

f∗θ0 = ϕ
4

Q−2 θ0,

for some positive function ϕ ∈ C∞(Ω). Then we have

(3.13) f∗θΩ′ =(AΩ′ ◦ f)2 f∗θ0 = (AΩ′ ◦ f)2 ϕ
4

Q−2 θ0,

where θΩ is defined in (1.4). Then, by (3.12), we have

AΩ′(f(x)) = lim
y→x

|Γ(f(x), f(y))−GΩ′(f(x), f(y))|
1

Q−2

= lim
y→x

∣∣∣∣ CQ

ϕ(x)ϕ(y)∥x−1y∥Q−2
− GΩ(x, y)

ϕ(x)ϕ(y)

∣∣∣∣ 1
Q−2

= ϕ
− 2

Q−2 (ξ)AΩ(x).

Consequently, we have

A2
Ω′(f(x))f∗θ0

∣∣
x
= A2

Ω(x)θ0|x.
Since Corollary 3.2 ensures that AΩ is non-vanishing, θΩ is a contact form.

We can prove the Green’s function symmetric in a way similar to the Euclidean
case (cf. e.g. [1], Chapter 4)). Note that∫

Ω
Γ(x, y)∆0u(y)θ0 ∧ (dθ0)

n(y) = u(x)

for each u ∈ C2
0 (Ω), and

∆0φ(y) = ∆y

∫
Ω
GΩ(x, y)∆0φ(x)θ0 ∧ (dθ0)

n(x)

for φ ∈ C2
0 (Ω), where ∆y means that the SubLaplacian is applied with respect to

the variable y. Thus

φ(y) =

∫
Ω
GΩ(x, y)∆0φ(x)θ0 ∧ (dθ0)

n(x) + Const,

which yields ∫
Ω
(GΩ(x, y)−GΩ(y, x))∆0φ(y)θ0 ∧ (dθ0)

n(y) = Const.(3.14)
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for all φ ∈ C2
0 (Ω). Integrating (3.14) proves that the constant is zero. Since∫

GΩ(y, x)θ0 ∧ (dθ0)
n(x) = 0 and

∫
GΩ(x, y)θ0 ∧ (dθ0)

n(x) = Const.

ThusGΩ(x, y)−GΩ(y, x) = Const. Interchanging x and y implies the second member
is zero. Thus the Green’s function GΩ is symmetric. It follows that∫

Ω×Ω
H(x, y)(∆x +∆y)w(x, y)dV (x, y) = 0,

for each w ∈ C∞
0 (Ω × Ω), where the dV is the associate volume form and ∆x,∆y

mean the SubLaplacian is applied with respect to the variables x and y. As for any
weak solution u of ∆0u = 0 on an open set Ω × Ω, we have u ∈ C∞(Ω × Ω). Cf.
Corollary 1.2.3 in [5] for the Euclidean case. So H(x, x) is smooth in Ω. Then we
obtain the limit

AΩ(x) := lim
y→x

|H(x, y)|
1

Q−2 = lim
y→x

|GΩ(x, y)− ΓΩ(x, y)|
1

Q−2

exists for each x ∈ Ω. The theorem is proved.

4. The quasi-hyperbolic Carnot-Carathéodory metric

Let J : H → H be the standard CR structure satisfying J2 = −idH . Recall that
g0 satisfies the compatibility condition

g0(JX, Y ) = dθ0(X,Y ),(4.1)

for any X,Y ∈ H. We have

dθΩ = A2
Ωdθ0 + d(A2

Ω) ∧ θ0.

So the associated Carnot-Carathéodory metric of θΩ is

gΩ(X,Y ) = dθΩ(X, JY ) = A2
Ωg0(X,Y )

for any X,Y ∈ H. We can easily verify that gΩ is a conformally invariant Carnot-
Carathéodory metric.

We have following comparison proposition about this Carnot-Carathéodory met-
ric.

Proposition 4.1. Let Ω1,Ω2 be bounded regular domains in H n. If Ω1 ⊂ Ω2, we
have

AΩ1(x) ≥ AΩ2(x)(4.2)

on Ω1.

Proof. DenoteHΩ1(x, ·) andHΩ2(x, ·) be the regular part of Green’s functionGΩ1(x, ·)
and GΩ2(x, ·), respectively. Since(

X2
1 + · · ·+X2

2n

)
(−Γ(x, ·)) = δx,

−Γ(x, ·) is subharmonic with respect to the SubLaplacain X2
1 + · · ·+X2

2n (cf. [2]).
Thus

−HΩ2(x, ·)|∂Ω2 = −Γ(x, ·)|∂Ω2

implies that
−HΩ2(x, ·) ≥ −Γ(x, ·) on Ω2.
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On the other hand, we have

−HΩ1(x, ·)|∂Ω1 = −Γ(x, ·)|∂Ω1 .

Hence
−HΩ2(x, ·)|∂Ω1 ≥ −HΩ1(x, ·)|∂Ω1 .

Then the maximum principle implies

−HΩ2(x, ·) ≥ −HΩ1(x, ·) on Ω1.

The proposition is proved. �
Theorem 4.2. (cf. Theorem 1.1 in [3]) For x, y ∈ Ω, x near the boundary ∂Ω, and
H the regular part of Green’s function at this point. We have

H(x, x) =
CQ

d2x
+ o(d−2

x ).(4.3)

There is a difference of factor 1
4 from that in [3] because our definition of ∆0 is

different from that with a factor −1
4 .

Proof of the Theorem 1.2. By Theorem 4.2, we have

AΩ(x) = lim
y→x

∣∣∣H 1
Q−2 (x, y)

∣∣∣ = ∣∣∣∣CQ

d2x
+ o(d−2

x )

∣∣∣∣ 1
Q−2

Then

c1k
2
Ω(x) ≤ A2

Ω(x) ≤ c2k
2
Ω(x)(4.4)

for x near the boundary, for some constant c1, c2 > 0, where kΩ is defined in (1.5).
On a compact subset of Ω, (4.4) holds for some constant c1, c2 > 0, since A2

Ω/k
2
Ω is

positive and bounded. (1.7) follows directly by the definition of H(·, ·). The theorem
is proved.
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