A CONFORMAL INVARIANT FOR DOMAINS IN THE HEISENBERG GROUP

YUN SHI AND WEI WANG

$$
\begin{aligned}
& \text { AbSTRACT. We construct a conformally invariant contact form } \theta_{\Omega} \text { for domains } \\
& \text { on the Heisenberg group } \mathscr{H}^{n} \text {, i.e. for a conformal diffeomorphism } f: \Omega \rightarrow \Omega^{\prime} \\
& \text { between bounded regular domains } \Omega \text { and } \Omega^{\prime} \text {, we have } \\
& \qquad f^{*} \theta_{\Omega^{\prime}}=\theta_{\Omega} .
\end{aligned}
$$

θ_{Ω} induces a quasi-hyperbolic Carnot-Carathéodory invariant metric on Ω.

1. Introduction

By the well known uniformization theorem, any simply connected domain in \mathbb{C} is biholomorphic equivalence to the unit disc in \mathbb{C} or \mathbb{C}. So when such a domain is equivalence to the unit disc, there exists an biholomorphic invariant hyperbolic metric on it. Its higher dimension generalization is to construct a conformally invariant metric on a domain in \mathbb{R}^{n}, which was given by Leutwiler [7]. But by Liouville's theorem, any conformal mapping restricted to some open set in \mathbb{R}^{n} is an element of $\mathrm{SO}(n+1,1)$. So these metrics are invariant under $\mathrm{SO}(n+1,1)$. In this paper we will consider its CR version.

The simplest CR manifold, which plays the same role of Euclidean space in Riemannian geometry, is the Heisenberg group $\mathscr{H}^{n}=\mathbb{C}^{n} \oplus \mathbb{R}$. Its multiplication is given by

$$
(z, t) \cdot\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}+2 \operatorname{Im}\left(z \overline{z^{\prime}}\right)\right)
$$

where $z, z^{\prime} \in \mathbb{C}^{n}$ and $t, t^{\prime} \in \mathbb{R}$. The neutral element is $(0,0)$ and the inverse of (z, t) is $(-z,-t)$. Let $X_{1}, \ldots, X_{2 n}$ be the standard left invariant vector fields on \mathscr{H}^{n}. $H=\operatorname{span}\left\{X_{1}, \ldots, X_{2 n}\right\}$ is the horizontal space of \mathscr{H}^{n}. The standard CarnotCarathéodory metric on \mathscr{H}^{n} is given by

$$
g_{0}(X, X)=\|X\|^{2}=\sum_{j=1}^{n} a_{j}^{2},
$$

for $X=\sum_{j=1}^{n} a_{j} X_{j} \in H$. Let Ω, Ω^{\prime} be domains in $\mathscr{H}^{n}, f: \Omega \rightarrow \Omega^{\prime}$ is called conformal at point $\xi \in \Omega$ if

$$
\left\|f_{*} X\right\|=\left\|f_{*} Y\right\|,
$$

for any $X, Y \in H_{\xi}$ with $\|X\|=\|Y\|$.

Let Δ_{0} be the SubLaplacian operator defined in (2.8). Let G_{Ω} be the Green's function of Δ_{0} on Ω, i.e. a continuous function $G_{\Omega}:(\bar{\Omega} \times \bar{\Omega}) \backslash \operatorname{diag}(\Omega) \rightarrow \mathbb{R}$ which satisfies $G_{\Omega}(x, y)=G_{\Omega}(y, x)=0$ for $x \in \Omega, y \in \partial \Omega$, and

$$
\begin{equation*}
\int_{\Omega} G_{\Omega}(x, y) \Delta_{0} u(y) \theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n}=u(x) \quad \text { for all } u \in C_{0}^{\infty}(\Omega) \tag{1.1}
\end{equation*}
$$

where $\theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n}$ is the volume form with θ_{0} the standard contact form on \mathscr{H}^{n} defined in (2.7). Here, $\bar{\Omega}=\Omega \cup \partial \Omega$ is the closure of Ω. To promise the existence of Green's function, we assume domain Ω is bounded and regular. There exists some continuous function $H(x, \cdot)$ for each $x \in \Omega$, such that

$$
\begin{equation*}
G_{\Omega}(x, \cdot)=\Gamma(x, \cdot)-H(x, \cdot), x \in \Omega \tag{1.2}
\end{equation*}
$$

where $\Gamma(x, \cdot)$ is a fundamental solution of Δ_{0} with pole at x. So the limit

$$
\begin{equation*}
\mathcal{A}_{\Omega}(x):=\lim _{y \rightarrow x}|H(x, y)|^{\frac{1}{Q-2}}=\lim _{y \rightarrow x}\left|G_{\Omega}(x, y)-\Gamma(x, y)\right|^{\frac{1}{Q-2}} \tag{1.3}
\end{equation*}
$$

exists. We define

$$
\begin{equation*}
\theta_{\Omega}:=\mathcal{A}_{\Omega}^{2} \theta_{0} \tag{1.4}
\end{equation*}
$$

Then θ_{Ω} is an invariant.
Theorem 1.1. θ_{Ω} is a C^{∞} conformally invariant contact form, i.e. for any conformal diffeomorphism $f: \Omega \rightarrow \Omega^{\prime}$ between two bounded regular domains Ω, Ω^{\prime} in \mathscr{H}^{n}, we have

$$
f^{*} \theta_{\Omega^{\prime}}=\theta_{\Omega} .
$$

θ_{Ω} induces a Carnot-Carathéodory metric on Ω :

$$
g_{\Omega}(X, Y):=\mathrm{d} \theta_{\Omega}(X, J Y)
$$

for any $X, Y \in H$. See section 4 for details. The Carnot-Carathéodory distance $d_{c c}$ associated to a Carnot-Carathéodory metric on Ω is defined by $d_{c c}(x, y)=\inf _{\gamma}$ $\int_{0}^{1}\left|\gamma^{\prime}(t)\right| d t$ for any $x, y \in \Omega$, where $\gamma:[0,1] \rightarrow \Omega$ are Lipschitzian horizontal curves, i.e. $\quad \gamma^{\prime}(t) \in H_{\gamma(t)}$ almost everywhere. Let $d_{x}=d_{c c}(x, \partial \Omega)$ denote the CarnotCarathéodory distance from $x \in \Omega$ to $\partial \Omega$.

Let Ω be a bounded subdomain of \mathscr{H}^{n} and set

$$
\begin{equation*}
k_{\Omega}(x)=\frac{1}{d_{x}^{\frac{2}{Q-2}}} \tag{1.5}
\end{equation*}
$$

for $x \in \Omega$. Then

$$
\begin{equation*}
\left.g_{k}\right|_{x}=\left.k_{\Omega}^{2}(x) g_{0}\right|_{x} \tag{1.6}
\end{equation*}
$$

defines a quasi-hyperbolic Carnot-Carathéodory metric which is not conformally invariant. We have the following comparison theorem.
Theorem 1.2. Let Ω be a smooth regular domain in \mathscr{H}^{n}, we have

$$
c_{1} g_{k} \leq g_{\Omega} \leq c_{2} g_{k}
$$

for some constant $c_{1}, c_{2}>0$. Moreover,

$$
\begin{equation*}
\lim _{x \rightarrow \partial \Omega} \frac{\left.g_{\Omega}\right|_{x}}{\left.g_{k}\right|_{x}}=1 \tag{1.7}
\end{equation*}
$$

This domain version invariant was generalized to compact locally conformally flat manifolds in [4]. It also generalized to compact spherical CR manifolds in [10] and compact spherical qc manifolds in [9].

2. Some basic facts

The norm of the Heisenberg group \mathscr{H}^{n} is defined by

$$
\begin{equation*}
\|(z, t)\|:=\left(|z|^{4}+|t|^{2}\right)^{\frac{1}{4}} \tag{2.1}
\end{equation*}
$$

We have the following automorphisms of \mathscr{H}^{n} :
(1) dilations:

$$
\begin{equation*}
D_{\delta}:(y, t) \longrightarrow\left(\delta z, \delta^{2} t\right), \delta>0 \tag{2.2}
\end{equation*}
$$

(2) left translations:

$$
\begin{equation*}
\tau_{\left(z^{\prime}, t^{\prime}\right)}:(z, t) \longrightarrow\left(z^{\prime}, t^{\prime}\right) \cdot(z, t) \tag{2.3}
\end{equation*}
$$

(3) unitary transformations:

$$
\begin{equation*}
U_{A}:(z, t) \longrightarrow(A z, t), \text { for } A \in \mathrm{U}(n) \tag{2.4}
\end{equation*}
$$

where

$$
\mathrm{U}(n)=\left\{A \in \mathrm{GL}(n, \mathbb{C}) \mid A \bar{A}^{t}=I_{n}\right\}
$$

(4) The inversion:

$$
\begin{equation*}
R:(z, t) \longrightarrow\left(-\frac{z}{|z|^{2}-t}, \frac{-t}{|z|^{4}+|t|^{2}}\right) \tag{2.5}
\end{equation*}
$$

$\mathrm{SU}(n+1,1)$ is generated by these automorphisms.
The vector fields

$$
\begin{equation*}
Z_{j}=\frac{\partial}{\partial z_{j}}+i \bar{z}_{j} \frac{\partial}{\partial t} \tag{2.6}
\end{equation*}
$$

$j=1, \ldots, n$, are left invariant vector fields on \mathscr{H}^{n}. The subbundle $T_{1,0}$ is $\operatorname{span}\left\{Z_{1}, \ldots, Z_{n}\right\}$. Let

$$
\begin{equation*}
\theta_{0}=\mathrm{d} t+\sum_{j=1}^{n} i\left(z_{j} \mathrm{~d} \bar{z}_{j}-\bar{z}_{j} \mathrm{~d} z_{j}\right) \tag{2.7}
\end{equation*}
$$

be the standard contact form on \mathscr{H}^{n}. The SubLaplacian on \mathscr{H}^{n} is

$$
\begin{equation*}
\Delta_{0}=-\frac{1}{2} \sum_{j=1}^{n}\left(Z_{j} \bar{Z}_{j}+\bar{Z}_{j} Z_{j}\right) \tag{2.8}
\end{equation*}
$$

We also have the real left invariant vector fields:

$$
X_{j}=\frac{1}{2} \frac{\partial}{\partial x_{j}}+y_{j} \frac{\partial}{\partial t}, \quad X_{n+j}=\frac{1}{2} \frac{\partial}{\partial y_{j}}-x_{j} \frac{\partial}{\partial t}, \quad T=\frac{\partial}{\partial t}
$$

It is easy to verify that $\left\{X_{1} \ldots, X_{2 n}, T\right\}$ is a basis for the left invariant vector fields on \mathscr{H}^{n} and $\operatorname{span}\left\{Z_{j}, \bar{Z}_{j}\right\}_{j=1}^{n}=\operatorname{span}\left\{X_{j}\right\}_{j=1}^{2 n}$. Then we can write the SubLaplacian as

$$
\begin{equation*}
\Delta_{0}=-\sum_{j=1}^{2 n} X_{j}^{2} \tag{2.9}
\end{equation*}
$$

We know the explicit form of the fundamental solution of the SubLaplacian of Heisenberg groups.

Proposition 2.1 (cf. p. 180 in [6]). The fundamental solution of Δ_{0} on the Heisenberg group \mathscr{H}^{n} with the pole at x is

$$
\Gamma(x, y):=\frac{C_{Q}}{\left\|x^{-1} y\right\|^{Q-2}}
$$

for $x \neq y, x, y \in \mathscr{H}^{n}$, where $\|\cdot\|$ is the norm on \mathscr{H}^{n} defined by (2.1) and

$$
\begin{equation*}
C_{Q}=\frac{2^{2-2 n} \pi^{n+1}}{\Gamma\left(\frac{n}{2}\right)^{2}} \tag{2.10}
\end{equation*}
$$

Theorem 2.2 (Liouville type theorem) (cf. Theorem 2.5 in [10])). If f is a local $C R$ diffeomorphism form an open set $\Omega \subset \mathscr{H}^{n}$ to another open set $V \in \mathscr{H}^{n}$, then f is the restriction to Ω of an element in $\mathrm{SU}(\mathrm{n}+1,1)$.

A conformal mapping is either CR or anti-CR.

3. A canonical contact form on Heisenberg group domain

A domain Ω is called regular if for ϕ in $C(\partial \Omega)$, the Dirichlet problem $\Delta_{0} u=0$ in $\Omega, u=\phi$ in $\partial \Omega$ has a classical solution $u \in L^{2}(\Omega) \cap C(\bar{\Omega}) . H(x, \cdot)$ defined in (1.2) is the classical solution of the Dirichlet problem:

$$
\left\{\begin{array}{rlrl}
\Delta_{0} H(x, \cdot) & = & 0, & \tag{3.1}\\
\text { in } \Omega \\
H(x, \cdot) & =\Gamma(x, \cdot), & & \text { on } \partial \Omega .
\end{array}\right.
$$

Theorem 3.1 (The maximum principle) (cf. Lemma 3.1 in [3]). Let $\Omega \subset \mathscr{H}^{n}$ be a bounded open set. For every $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ with $\sum_{j}^{2 n} X_{j}^{2} u \geq 0($ or $\leq 0)$ in Ω, we have

$$
\sup _{\bar{\Omega}} u=\sup _{\partial \Omega} u \quad\left(\text { or } \inf _{\bar{\Omega}} u=\inf _{\partial \Omega} u\right)
$$

Then we have the following corollary.
Corollary 3.2. $\mathcal{A}_{\Omega}(x)>0$, for any $x \in \Omega$.
Proof. By the Dirichlet problem in (3.1), we have

$$
\left\{\begin{array}{rlrl}
\sum_{j}^{2 n} X_{j}^{2} H(x, \cdot) & = & 0, & \\
H(x, \cdot) & = & & \Gamma(x, \cdot), \\
& & \text { on } \partial \Omega
\end{array}\right.
$$

By the maximum principle (Theorem 3.1), we have

$$
H(x, y) \geq \min _{y \in \partial \Omega}(\Gamma(x, y))=\min _{y \in \partial \Omega} \frac{C_{Q}}{\left\|x^{-1} y\right\|^{Q-2}}>0
$$

Thus $\mathcal{A}_{\Omega}(x)>0$. The corollary is proved.

Proposition 3.3. Let Ω and Ω^{\prime} be bounded regular domains in \mathscr{H}^{n}, and let f : $\Omega \rightarrow \Omega^{\prime}$ be a conformal diffeomorphism. Then for all $u \in C^{\infty}(\mathscr{H})$, we have

$$
\begin{equation*}
\phi^{\frac{Q+2}{Q-2}} \tilde{\Delta}_{0} u=\Delta_{0}(\phi u) \tag{3.2}
\end{equation*}
$$

if we write $f^{*} \theta_{0}=\phi^{\frac{4}{Q-2}} \theta_{0}$ for smooth function ϕ on Ω, where $\tilde{\Delta}_{0}$ is the SubLaplacian with respect to the contact form $f^{*} \theta_{0}$.

Proof. By (3.6) in [11], we have

$$
\phi^{\frac{Q+2}{Q-2}} \tilde{\Delta}_{0} u=\Delta_{0}(\phi u)-\Delta_{0}(\phi) u
$$

By Liouville type theorem $2.2, f$ or $\bar{f} \in \mathrm{SU}(n+1,1)$, and is generated by dilations, left translations, unitary transformations and the inversion defined by (2.2)-(2.4). Recall the definition of θ_{0} in (2.7), we have

$$
\begin{aligned}
D_{\delta}^{*} \theta_{0} & =\delta^{2} \theta_{0}, \quad \text { for } \delta>0 \\
\tau_{\left(z^{\prime}, t^{\prime}\right)}^{*} \theta_{0} & =\theta_{0}, \quad \text { for }\left(z^{\prime}, t^{\prime}\right) \in \mathscr{H}^{n}, \\
U_{A}^{*} \theta_{0} & =\theta_{0}, \quad \text { for } A \in \mathrm{U}(n)
\end{aligned}
$$

by directly calculation. So, if f is generated by dilations, left translations and unitary transformations, (3.2) follows. If we choose f to be the inversion R, we have

$$
\left(R^{*} \theta_{0}\right)(z, t)=\phi^{\frac{4}{Q-2}} \theta_{0}(z, t) \quad \text { with } \phi=\frac{1}{\|(z, t)\|^{Q-2}}
$$

for $(z, t) \neq(0,0)$. (cf. p. 192 in [6]). We have

$$
\begin{align*}
& Z_{j} \frac{1}{\|(z, t)\|^{Q-2}}=-\frac{Q-2}{4} \frac{Z_{j}\|(z, t)\|^{4}}{\|(z, t)\|^{Q+2}} \tag{3.3}\\
& \bar{Z}_{j} \frac{1}{\|(z, t)\|^{Q-2}}=-\frac{Q-2}{4} \frac{\bar{Z}_{j}\|(z, t)\|^{4}}{\|(z, t)\|^{Q+2}}
\end{align*}
$$

with

$$
\begin{equation*}
Z_{j}\|(z, t)\|^{4}=2|z|^{2} \bar{z}_{j}+2 i \bar{z}_{j} t, \quad \bar{Z}_{j}\|(z, t)\|^{4}=2|z|^{2} z_{j}-2 i z_{j} t \tag{3.4}
\end{equation*}
$$

by using the expression of the vector field Z_{j} in (2.6). Then we get

$$
\begin{equation*}
\Delta_{0} \phi=-\frac{Q-2}{4}\left[\frac{\Delta_{0}\|(z, t)\|^{4}\|(z, t)\|^{4}+\frac{Q+2}{4}\|(z, t)\|^{4} Z_{j}\|(z, t)\|^{4} \bar{Z}_{j}\|(z, t)\|^{4}}{\|(z, t)\|^{Q+6}}\right] \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{j=1}^{n} Z_{j}\|(z, t)\|^{4} \bar{Z}_{j}\|(z, t)\|^{4}=4|z|^{2}\|(z, t)\|^{4} \tag{3.6}
\end{equation*}
$$

By (3.4), we get

$$
\begin{equation*}
\Delta_{0}\|(z, t)\|^{4}=-\frac{1}{2} \sum_{j=1}^{n}\left(Z_{j} \bar{Z}_{j}+\bar{Z}_{j} Z_{j}\right)\|(z, t)\|^{4}=-(Q+2)|z|^{2} \tag{3.7}
\end{equation*}
$$

Then apply (3.6) and (3.7) to (3.5) to get

$$
\Delta_{0} \phi=\Delta_{0} \frac{1}{\|(z, t)\|^{Q-2}}=0
$$

for $(z, t) \neq(0,0)$. Thus we have (3.2) holds for any conformal diffeomorphism f.
Proposition 3.4. Let Ω and Ω^{\prime} be bounded regular domains in \mathscr{H}^{n}, and let f : $\Omega \rightarrow \Omega^{\prime}$ be a conformal mapping. Let $G_{\Omega}:(\bar{\Omega} \times \bar{\Omega}) \backslash \operatorname{diag}(\Omega) \rightarrow \mathbb{R}$ be a Green's function of the SubLaplacian Δ_{0} for the domain Ω. Then the Green's function for the domain Ω^{\prime} satisfies

$$
\begin{equation*}
G_{\Omega^{\prime}}(f(x), f(y))=\frac{1}{\phi(x) \phi(y)} G_{\Omega}(x, y) \tag{3.8}
\end{equation*}
$$

for $x, y \in \Omega$, if we write the contact form $f^{*} \theta_{0}=\phi^{\frac{4}{Q-2}} \theta_{0}$.
Proof. Recall that the definition of the SubLaplacian Δ_{θ} for a contact form θ on a CR manifold is independent of the choice of local coordinates, i.e.

$$
\begin{equation*}
f^{*}\left(\Delta_{\theta} u\right)=\Delta_{f^{*} \theta} f^{*} u \tag{3.9}
\end{equation*}
$$

Let $\tilde{\theta}_{0}:=f^{*} \theta_{0}=\phi^{\frac{4}{Q-2}} \theta_{0}$, we have

$$
\begin{equation*}
\mathrm{d} \tilde{\theta}_{0}=\mathrm{d}\left(\phi^{\frac{4}{Q-2}} \theta_{0}\right)=\frac{4}{Q-2} \phi^{\frac{6-Q}{Q-2}} \mathrm{~d} \phi \wedge \theta_{0}+\phi^{\frac{4}{Q-2}} \mathrm{~d} \theta_{0} \tag{3.10}
\end{equation*}
$$

So we get

$$
\begin{equation*}
\tilde{\theta}_{0} \wedge\left(\mathrm{~d} \tilde{\theta}_{0}\right)^{n}=\phi^{\frac{2 Q}{Q-2}} \theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n} \tag{3.11}
\end{equation*}
$$

Therefore, by the transformation law (3.2) and (3.9), we find that for $x^{\prime} \in \Omega^{\prime}$,

$$
\begin{aligned}
& \int_{\Omega^{\prime}} \frac{1}{\phi\left(f^{-1}\left(x^{\prime}\right)\right) \phi\left(f^{-1}\left(y^{\prime}\right)\right)} G_{\Omega}\left(f^{-1}\left(x^{\prime}\right), f^{-1}\left(y^{\prime}\right)\right) \Delta_{0} u\left(y^{\prime}\right) \theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n} \\
& =\int_{\Omega} \frac{1}{\phi\left(f^{-1}\left(x^{\prime}\right)\right) \phi(y)} G_{\Omega}\left(f^{-1}\left(x^{\prime}\right), y\right) f^{*}\left(\Delta_{0} u\right)(y) f^{*}\left(\theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n}\right) \\
& =\int_{\Omega} \frac{1}{\phi\left(f^{-1}\left(x^{\prime}\right)\right) \phi(y)} G_{\Omega}\left(f^{-1}\left(x^{\prime}\right), y\right) \tilde{\Delta}_{0}\left(f^{*} u\right)(y) \tilde{\theta}_{0} \wedge\left(\mathrm{~d} \tilde{\theta}_{0}\right)^{n} \\
& =\frac{1}{\phi\left(f^{-1}\left(x^{\prime}\right)\right)} \int_{\Omega} G_{\Omega}\left(f^{-1}\left(x^{\prime}\right), y\right) \Delta_{0}\left(\phi f^{*} u\right)(y) \theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n} \\
& =f^{*} u\left(f^{-1}\left(x^{\prime}\right)\right)=u\left(x^{\prime}\right)
\end{aligned}
$$

for any $u \in C_{0}^{\infty}\left(\Omega^{\prime}\right)$. Here we take transform $y=f^{-1}\left(y^{\prime}\right)$ in the first identity. The proposition follows form the uniqueness of the Green's function.

By the Liouville type theorem 2.2, any local conformal diffeomorphism f is the restriction of a conformal transformation of \mathscr{H}^{n}. Then we have the following proposition.

Proposition 3.5. Let Ω and Ω^{\prime} be bounded regular domains in \mathscr{H}^{n}, and let f : $\Omega \rightarrow \Omega^{\prime}$ be a conformal diffeomorphism. We have

$$
\begin{equation*}
\left\|f(x)^{-1} f(y)\right\|=\phi^{\frac{1}{Q-2}}(x) \phi^{\frac{1}{Q-2}}(y)\left\|x^{-1} y\right\| \tag{3.12}
\end{equation*}
$$

Proof. By (3.11) and taking transformation $f(y) \rightarrow y^{\prime}$, we find that for any $u \in$ $C_{0}^{\infty}(\Omega)$

$$
\begin{aligned}
& \int_{\Omega} \frac{C_{Q} \phi(x) \phi(y)}{\left\|f(x)^{-1} f(y)\right\|^{Q-2}} \Delta_{0} u(y) \theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n} \\
& =\left.\int_{\Omega} \frac{C_{Q} \phi(x)}{\left\|f(x)^{-1} f(y)\right\|^{Q-2}} \tilde{\Delta}_{0}\left(\phi^{-1} u\right)\right|_{f(y)} \tilde{\theta}_{0} \wedge\left(\mathrm{~d} \tilde{\theta}_{0}\right)^{n} \\
& =\left.\int_{\Omega^{\prime}} \frac{C_{Q} \phi(x)}{\left\|f(x)^{-1} y^{\prime}\right\|^{Q-2}} \Delta_{0}\left(\phi^{-1} u\right)\right|_{y^{\prime}} \theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n}=u(x) .
\end{aligned}
$$

Now by the uniqueness of the fundamental solution of Δ_{0} as before, we find that $\Gamma(x, y)=C_{Q} \phi(x) \phi(y)\left\|f(x) f(y)^{-1}\right\|^{2-Q}$. Thus the proposition is proved.

See [8] for this proposition on the Euclidean space.
Proof of Theorem 1.1. Assume that

$$
f^{*} \theta_{0}=\phi^{\frac{4}{Q-2}} \theta_{0}
$$

for some positive function $\phi \in C^{\infty}(\Omega)$. Then we have

$$
\begin{equation*}
f^{*} \theta_{\Omega^{\prime}}=\left(\mathcal{A}_{\Omega^{\prime}} \circ f\right)^{2} f^{*} \theta_{0}=\left(\mathcal{A}_{\Omega^{\prime}} \circ f\right)^{2} \phi^{\frac{4}{Q-2}} \theta_{0} \tag{3.13}
\end{equation*}
$$

where θ_{Ω} is defined in (1.4). Then, by (3.12), we have

$$
\begin{aligned}
\mathcal{A}_{\Omega^{\prime}}(f(x)) & =\lim _{y \rightarrow x}\left|\Gamma(f(x), f(y))-G_{\Omega^{\prime}}(f(x), f(y))\right|^{\frac{1}{Q-2}} \\
& =\lim _{y \rightarrow x}\left|\frac{C_{Q}}{\phi(x) \phi(y)\left\|x^{-1} y\right\|^{Q-2}}-\frac{G_{\Omega}(x, y)}{\phi(x) \phi(y)}\right|^{\frac{1}{Q-2}} \\
& =\phi^{-\frac{2}{Q-2}}(\xi) \mathcal{A}_{\Omega}(x)
\end{aligned}
$$

Consequently, we have

$$
\left.\mathcal{A}_{\Omega^{\prime}}^{2}(f(x)) f^{*} \theta_{0}\right|_{x}=\left.\mathcal{A}_{\Omega}^{2}(x) \theta_{0}\right|_{x}
$$

Since Corollary 3.2 ensures that \mathcal{A}_{Ω} is non-vanishing, θ_{Ω} is a contact form.
We can prove the Green's function symmetric in a way similar to the Euclidean case (cf. e.g. [1], Chapter 4)). Note that

$$
\int_{\Omega} \Gamma(x, y) \Delta_{0} u(y) \theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n}(y)=u(x)
$$

for each $u \in C_{0}^{2}(\Omega)$, and

$$
\Delta_{0} \varphi(y)=\Delta_{y} \int_{\Omega} G_{\Omega}(x, y) \Delta_{0} \varphi(x) \theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n}(x)
$$

for $\varphi \in C_{0}^{2}(\Omega)$, where Δ_{y} means that the SubLaplacian is applied with respect to the variable y. Thus

$$
\varphi(y)=\int_{\Omega} G_{\Omega}(x, y) \Delta_{0} \varphi(x) \theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n}(x)+\text { Const }
$$

which yields

$$
\begin{equation*}
\int_{\Omega}\left(G_{\Omega}(x, y)-G_{\Omega}(y, x)\right) \Delta_{0} \varphi(y) \theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n}(y)=\text { Const. } \tag{3.14}
\end{equation*}
$$

for all $\varphi \in C_{0}^{2}(\Omega)$. Integrating (3.14) proves that the constant is zero. Since

$$
\int G_{\Omega}(y, x) \theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n}(x)=0 \quad \text { and } \quad \int G_{\Omega}(x, y) \theta_{0} \wedge\left(\mathrm{~d} \theta_{0}\right)^{n}(x)=\text { Const. }
$$

Thus $G_{\Omega}(x, y)-G_{\Omega}(y, x)=$ Const. Interchanging x and y implies the second member is zero. Thus the Green's function G_{Ω} is symmetric. It follows that

$$
\int_{\Omega \times \Omega} H(x, y)\left(\Delta_{x}+\Delta_{y}\right) w(x, y) \mathrm{d} V(x, y)=0
$$

for each $w \in C_{0}^{\infty}(\Omega \times \Omega)$, where the $\mathrm{d} V$ is the associate volume form and Δ_{x}, Δ_{y} mean the SubLaplacian is applied with respect to the variables x and y. As for any weak solution u of $\Delta_{0} u=0$ on an open set $\Omega \times \Omega$, we have $u \in C^{\infty}(\Omega \times \Omega)$. Cf. Corollary 1.2.3 in [5] for the Euclidean case. So $H(x, x)$ is smooth in Ω. Then we obtain the limit

$$
\mathcal{A}_{\Omega}(x):=\lim _{y \rightarrow x}|H(x, y)|^{\frac{1}{Q-2}}=\lim _{y \rightarrow x}\left|G_{\Omega}(x, y)-\Gamma_{\Omega}(x, y)\right|^{\frac{1}{Q-2}}
$$

exists for each $x \in \Omega$. The theorem is proved.

4. The quasi-hyperbolic Carnot-Carathéodory metric

Let $J: H \rightarrow H$ be the standard CR structure satisfying $J^{2}=-i d_{H}$. Recall that g_{0} satisfies the compatibility condition

$$
\begin{equation*}
g_{0}(J X, Y)=\mathrm{d} \theta_{0}(X, Y), \tag{4.1}
\end{equation*}
$$

for any $X, Y \in H$. We have

$$
\mathrm{d} \theta_{\Omega}=\mathcal{A}_{\Omega}^{2} \mathrm{~d} \theta_{0}+\mathrm{d}\left(\mathcal{A}_{\Omega}^{2}\right) \wedge \theta_{0} .
$$

So the associated Carnot-Carathéodory metric of θ_{Ω} is

$$
g_{\Omega}(X, Y)=\mathrm{d} \theta_{\Omega}(X, J Y)=\mathcal{A}_{\Omega}^{2} g_{0}(X, Y)
$$

for any $X, Y \in H$. We can easily verify that g_{Ω} is a conformally invariant CarnotCarathéodory metric.

We have following comparison proposition about this Carnot-Carathéodory metric.

Proposition 4.1. Let Ω_{1}, Ω_{2} be bounded regular domains in \mathscr{H}^{n}. If $\Omega_{1} \subset \Omega_{2}$, we have

$$
\begin{equation*}
\mathcal{A}_{\Omega_{1}}(x) \geq \mathcal{A}_{\Omega_{2}}(x) \tag{4.2}
\end{equation*}
$$

on Ω_{1}.
Proof. Denote $H_{\Omega_{1}}(x, \cdot)$ and $H_{\Omega_{2}}(x, \cdot)$ be the regular part of Green's function $G_{\Omega_{1}}(x, \cdot)$ and $G_{\Omega_{2}}(x, \cdot)$, respectively. Since

$$
\left(X_{1}^{2}+\cdots+X_{2 n}^{2}\right)(-\Gamma(x, \cdot))=\delta_{x},
$$

$-\Gamma(x, \cdot)$ is subharmonic with respect to the SubLaplacain $X_{1}^{2}+\cdots+X_{2 n}^{2}$ (cf. [2]). Thus

$$
-\left.H_{\Omega_{2}}(x, \cdot)\right|_{\partial \Omega_{2}}=-\left.\Gamma(x, \cdot)\right|_{\partial \Omega_{2}}
$$

implies that

$$
-H_{\Omega_{2}}(x, \cdot) \geq-\Gamma(x, \cdot) \quad \text { on } \Omega_{2} .
$$

On the other hand, we have

$$
-\left.H_{\Omega_{1}}(x, \cdot)\right|_{\partial \Omega_{1}}=-\left.\Gamma(x, \cdot)\right|_{\partial \Omega_{1}}
$$

Hence

$$
-\left.H_{\Omega_{2}}(x, \cdot)\right|_{\partial \Omega_{1}} \geq-\left.H_{\Omega_{1}}(x, \cdot)\right|_{\partial \Omega_{1}}
$$

Then the maximum principle implies

$$
-H_{\Omega_{2}}(x, \cdot) \geq-H_{\Omega_{1}}(x, \cdot) \quad \text { on } \Omega_{1} .
$$

The proposition is proved.
Theorem 4.2. (cf. Theorem 1.1 in [3]) For $x, y \in \Omega, x$ near the boundary $\partial \Omega$, and H the regular part of Green's function at this point. We have

$$
\begin{equation*}
H(x, x)=\frac{C_{Q}}{d_{x}^{2}}+o\left(d_{x}^{-2}\right) \tag{4.3}
\end{equation*}
$$

There is a difference of factor $\frac{1}{4}$ from that in [3] because our definition of Δ_{0} is different from that with a factor $-\frac{1}{4}$.

Proof of the Theorem 1.2. By Theorem 4.2, we have

$$
\mathcal{A}_{\Omega}(x)=\lim _{y \rightarrow x}\left|H^{\frac{1}{Q-2}}(x, y)\right|=\left|\frac{C_{Q}}{d_{x}^{2}}+o\left(d_{x}^{-2}\right)\right|^{\frac{1}{Q-2}}
$$

Then

$$
\begin{equation*}
c_{1} k_{\Omega}^{2}(x) \leq \mathcal{A}_{\Omega}^{2}(x) \leq c_{2} k_{\Omega}^{2}(x) \tag{4.4}
\end{equation*}
$$

for x near the boundary, for some constant $c_{1}, c_{2}>0$, where k_{Ω} is defined in (1.5). On a compact subset of Ω, (4.4) holds for some constant $c_{1}, c_{2}>0$, since $\mathcal{A}_{\Omega}^{2} / k_{\Omega}^{2}$ is positive and bounded. (1.7) follows directly by the definition of $H(\cdot, \cdot)$. The theorem is proved.

References

[1] T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Springer Science and Business Media, vol. 252, Springer, 1982.
[2] A. Bonfiglioli, and E. Lanconelli, Subharmonic functions on Carnot groups, Math. Ann. 325 (2003), 97-122.
[3] N. Gamara, and H. Guemri, Estimates of the Green's function and its regular part on Heisenberg group domains, Adv. Nonlinear Stud. 11 (2011), 593-612.
[4] L. Habermann and J. Jost, Green functions and conformal geometry, J. Diff. Geom. 53 (1999), 405-442.
[5] L. Habermann, Riemannian metrics of constant mass and moduli spaces of conformal structures, Lect. Notes Math. vol. 1743, Berlin, Springer, 2000.
[6] D. Jerison and J. M. Lee, The Yamabe problem on CR manifolds. J. Diff. Geom. 25 (1987), 167-197.
[7] H. Leutwiler, On a distance invariant under Möbius transformations in \mathbb{R}^{n}, Ann. acad. sci. fenn. Ser. A I Math. 12 (1987), 3-17.
[8] H. Leutwiler, A Riemannian metric invariant under Möbius transformations in \mathbb{R}^{n}, Lect. Notes in Math. vol.1351, Berlin, Springer, Berlin, 1988, pp. 223-235.
[9] Y. Shi and W. Wang, On conformal qc geometry, spherical qc manifolds and convex cocompact subgroups of $\operatorname{Sp}(n+1,1)$, Ann. Global Anal. Geom. 49 (2016), 271-307.
[10] W. Wang, Canonical contact forms on spherical CR manifolds, J. Eur. Math. soc. 5 (2003), 245-273.
[11] W. Wang, Representations of $\mathrm{SU}(p, q)$ and CR geometry I, J. Math. Kyoto Univ. 45 (2005), 759-780.

Manuscript received February 52018
revised April 22018
Y. Shi

Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou 310023, China

E-mail address: hzxjhs1987@163.com
W. Wang

Department of Mathematics, Zhejiang University, Hangzhou 310027, China E-mail address: wwang@zju.edu.cn

