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A CONFORMAL INVARIANT FOR DOMAINS IN THE
HEISENBERG GROUP

YUN SHI AND WEI WANG

ABSTRACT. We construct a conformally invariant contact form g for domains
on the Heisenberg group 7", i.e. for a conformal diffecomorphism f : Q — Q’
between bounded regular domains Q and Q’, we have

fOq = 0q.

0q induces a quasi-hyperbolic Carnot-Carathéodory invariant metric on €.

1. INTRODUCTION

By the well known uniformization theorem, any simply connected domain in C
is biholomorphic equivalence to the unit disc in C or C. So when such a domain
is equivalence to the unit disc, there exists an biholomorphic invariant hyperbolic
metric on it. Its higher dimension generalization is to construct a conformally
invariant metric on a domain in R™, which was given by Leutwiler [7]. But by
Liouville’s theorem, any conformal mapping restricted to some open set in R™ is an
element of SO(n 4 1,1). So these metrics are invariant under SO(n + 1, 1). In this
paper we will consider its CR version.

The simplest CR manifold, which plays the same role of Euclidean space in
Riemannian geometry, is the Heisenberg group 5™ = C" @ R. Its multiplication is
given by

(z,t) - (¢/,t) = (2 + 2/, t + ' + 2Im(22)),
where 2,2’ € C" and t,t' € R. The neutral element is (0,0) and the inverse of (z,t)
is (—z,—t). Let Xi,..., X2, be the standard left invariant vector fields on .7".

H = span {Xi,...,Xo,} is the horizontal space of J#". The standard Carnot-
Carathéodory metric on " is given by

90(X, X) = | X]* = Zaj,

for X = Z;L:1 a;jX; € H. Let Q,Q be domains in ", f : Q@ — Q' is called
conformal at point £ € Q if

XN = Y,
for any X,Y € H, with || X|| = ||Y].
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Let Ag be the SubLaplacian operator defined in (2.8). Let Ggq be the Green’s
function of A on €2, i.e. a continuous function Ggq : (2 x Q) \ diag(£2) — R which
satisfies Go(z,y) = Ga(y,x) =0 for x € Q, y € 01, and

(1.1) /QGQ(:B,y)Aou(y)HO A (dOp)" = u(z) for all u € C5°(Q),

where 6y A (dfp)™ is the volume form with 6y the standard contact form on 2"

defined in (2.7). Here, = QU 0N is the closure of €. To promise the existence of
Green’s function, we assume domain 2 is bounded and regular. There exists some
continuous function H(z,-) for each x € €, such that

(1.2) Gao(z,:) =T(z,") — H(z,"), © € Q,

where I'(z, -) is a fundamental solution of Ay with pole at z. So the limit
o3 1 o
(13)  Ale) = lim [H(r,)[7 = lim [Ga(e,y) — T(e,y)[7

exists. We define
(1.4) Oq == Ad0,.
Then 0, is an invariant.

Theorem 1.1. O is a C* conformally invariant contact form, i.e. for any con-
formal diffeomorphism f : Q — Q' between two bounded reqular domains Q,Q in
JC", we have

[l = 0q.
fq induces a Carnot-Carathéodory metric on 2 :
9o(X,Y) :=dlq(X,JY),
for any X,Y € H. See section 4 for details. The Carnot-Carathéodory distance
dc. associated to a Carnot-Carathéodory metric on  is defined by d..(z,y) = inf,
fol |7/ (t)|dt for any x,y € Q, where 7 : [0,1] — Q are Lipschitzian horizontal curves,
ie. 7(t) € Hyy almost everywhere. Let d, = dec(w,09) denote the Carnot-
Carathéodory distance from z € Q to 0f).

Let Q be a bounded subdomain of J#" and set

1
(1.5) ko(z) = ——,
di~?

for x € Q. Then

(1.6) 9kl = k& (x) g0l
defines a quasi-hyperbolic Carnot-Carathéodory metric which is not conformally
invariant. We have the following comparison theorem.

Theorem 1.2. Let ) be a smooth reqular domain in J€", we have

19k < ga < Cag,

for some constant cq,co > 0. Moreover,

gole _ 4

1.7 =
( ) :v—1>8§2 gk’x
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This domain version invariant was generalized to compact locally conformally flat
manifolds in [4]. It also generalized to compact spherical CR manifolds in [10] and
compact spherical qc manifolds in [9].

2. SOME BASIC FACTS
The norm of the Heisenberg group 2" is defined by
1
(2.1) Gzt == (=" + 1)

We have the following automorphisms of J#" :
1) dilations:

2.2) Ds : (y,t) — (82,6°t), 6 > 0;

2) left translations:

\V)

(
(
(
(2.3) Ty : (z,t) — (2,1) - (2,1);
(3) unitary transformations:

(2.4) Ua:(2,t) — (Az,t), for A € U(n),
U(n) = {A € GL(n,C)|AA" = I, };

(4) The inversion:

(2.5) R:(z,t)—>< : ! )

IEEETRFEEATE

SU(n + 1,1) is generated by these automorphisms.
The vector fields

0 0
2.6 Zi=—+1Z;—,
( ) J aZj + Y% ot
j = 1,...,n, are left invariant vector fields on #". The subbundle 77 is

span{Zi,...,Z,}. Let

n
(2.7) Oy = dt + Zi(Zdej — Zdej)
j=1

be the standard contact form on s". The SubLaplacian on F™ is

I, - -
(2.8) No=—3 > (225 + Z,7).
j=1

We also have the real left invariant vector fields:

19 9 1o 9 0

X+ 9%, 9 x -9 9 5 9
I 290 Yiar T 25y, Mg ot
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It is easy to verify thati {X7...,Xop, T} is a basis for the left invariant vector fields
on " and span{Z;, Zj}?zl = span{Xj}?Zl. Then we can write the SubLaplacian
as

2n
(2.9) Ag=-) X7
j=1

We know the explicit form of the fundamental solution of the SubLaplacian of
Heisenberg groups.

Proposition 2.1 (cf. p.180 in [6]). The fundamental solution of Ao on the Heisen-
berg group €™ with the pole at x is

Cq
Nzx,y) = ————,
(#.9) = e

forxz #y, x,y € A", where || -|| is the norm on F™ defined by (2.1) and

2—2n_n+1
(2.10) Co=2—T"
L)
Theorem 2.2 (Liouville type theorem) (cf. Theorem 2.5 in [10])). If f is a
local CR diffeomorphism form an open set Q C " to another open set V € 7",
then f is the restriction to Q of an element in SU(n + 1,1).

A conformal mapping is either CR or anti-CR.

3. A CANONICAL CONTACT FORM ON HEISENBERG GROUP DOMAIN

A domain Q is called regular if for ¢ in C'(92), the Dirichlet problem Agu = 0 in
Q, u = ¢ in O has a classical solution u € L?(Q) N C(Q). H(x,-) defined in (1.2)
is the classical solution of the Dirichlet problem:

AoH(z,-) = 0, in Q

H(z,-)= I(x,-), on 0Q.

Theorem 3.1 (The maximum principle) (cf. Lemma 3.1 in [3]). Let Q C 7" be a
bounded open set. For every u € C%(Q) N C(Q) with Z?” iju >0 (or <0) in €,
we have

(3.1)

supu =supu (or infu = infu)
Q 80 Q o0

Then we have the following corollary.
Corollary 3.2. Aq(z) > 0, for any x € Q.
Proof. By the Dirichlet problem in (3.1), we have
{ S X2H(z, )= 0, in 0
H(z,-)= I(z,-), on 0Q,

By the maximum principle (Theorem 3.1), we have

H(z,y) > min(I'(z,y)) = min Co > 0.

yeN yeo) Hl‘_lg/HQ_z
Thus Agq(z) > 0. The corollary is proved. O
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Proposition 3.3. Let Q and Q' be bounded regular domains in J", and let f :
Q — Q be a conformal diffeomorphism. Then for all u € C°(), we have

(3.2) 6 @2 Agu = Ag(ou),

4 ~
if we write f*0y = ¢pR—20y for smooth function ¢ on ), where Ag is the SubLaplacian
with respect to the contact form f*0y.

Proof. By (3.6) in [11], we have
637 Agu = Ao(6u) — Ao(9)u.

By Liouville type theorem 2.2, f or f € SU(n+ 1,1), and is generated by dilations,
left translations, unitary transformations and the inversion defined by (2.2)-(2.4).
Recall the definition of #y in (2.7), we have

D36y =626y, for § > 0,
(w00 =00, for (2, t) e ",
U}Wo =0y, for Ae U(n),

by directly calculation. So, if f is generated by dilations, left translations and
unitary transformations, (3.2) follows. If we choose f to be the inversion R, we
have

* o N
(R760) (2,1) = 627200 (2,1) - with ¢ = 1o,

for (z,t) # (0,0). (cf. p.192 in [6]). We have

, 1 Q=27
NGEple= 4 iz )@
(3.3) ’ o A
s 1 Q-2Z|1)]
g [EDI 4 Iz, )9
with
34)  ZilEnlt =201z + 205t Zill(z 0l =202 - 2izt,

by using the expression of the vector field Z; in (2.6). Then we get
(3.5)

Agp= 92 Aol| (2 )11 Gz I + L2211z, )1 Z5 1 (=, D)1 25 (=, )

4 Iz, )]|@+6 ’

where

(3.6) Y Zill 01 Z) (= 01 = 4P (=, )1

j=1
By (3.4), we get

61 A0l =3 %2+ 42D = ~(@+ )P
j=1
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Then apply (3.6) and (3.7) to (3.5) to get

-
1(z,1)]|9~2
for (z,t) # (0,0). Thus we have (3.2) holds for any conformal diffecomorphism f. O

AO¢ = A0 = 07

Proposition 3.4. Let Q and Q' be bounded regular domains in ", and let f :
Q —  be a conformal mapping. Let Ggq : (Q x Q) \ diag(2) — R be a Green’s
function of the SubLaplacian Aq for the domain €. Then the Green’s function for
the domain Q' satisfies

(3.8) Gor(f(2). () = ——

o(x)o(y)
for x,y € Q, if we write the contact form f*0y = gbﬁHo.

GQ($ay)a

Proof. Recall that the definition of the SubLaplacian Ay for a contact form 6 on a
CR manifold is independent of the choice of local coordinates, i.e.

Let 6 := 00 = qﬁﬁeo, we have

- 4 4 6-Q _4
(3.10) dfy = d(¢p@—26p) = 0- 2({5@*2 do A Oy + p@-2d6y.
So we get
(3.11) é() VAN (dé())n = ¢%90 AN (d&o)”

Therefore, by the transformation law (3.2) and (3.9), we find that for 2’ € 0/,

Ga(f (), 7 (y)Aou(y)bo A (dbo)"

1
/'¢( Ha)) o (f~1 ()
/mb(f I Ga(f (@), 9).f"(Dou)(y) f* (6o A (d6o)")

/Q o1
/ Gal(f~1(x"), 1) Do(6fu)(y)fo A (d0p)"

—fU(f (’) u(z')

for any u € C§°(£Y'). Here we take transform y = f~1(y/) in the first identity. The
proposition follows form the uniqueness of the Green’s function. O

)¢ (y)

1
Gl @) Bl ) ) A (30"

/

By the Liouville type theorem 2.2, any local conformal diffeomorphism f is the
restriction of a conformal transformation of 7". Then we have the following propo-
sition.

Proposition 3.5. Let Q and ' be bounded regular domains in F", and let f :
Q — Q' be a conformal diffeomorphism. We have

(3.12) 1f(z) " )] = 672 ()6 @2 () ]l2 ]|
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Proof. By (3.11) and taking transformation f(y) — %/, we find that for any u €
5o (Q)

Coo(x
/Q If (:cc)%—bl( fz;b)( ﬁ%—zAOU(y)Ho A (dfp)™

- Coo(x) - o
= 7 e 0 67, o

Co9(z) -1
Jy T e 2o
Now by the uniqueness of the fundamental solution of Ag as before, we find that
[(z,y) = Coo(x)o(y) | f(x)f(y) 1> . Thus the proposition is proved. O

y Oo N (d@o)n = u(x)

See [8] for this proposition on the Euclidean space.
Proof of Theorem 1.1. Assume that

f*00 = 62260,
for some positive function ¢ € C*°(Q2). Then we have
(3.13) f*0or = (Aa 0 ) F*09 = (Aay o )2 6720,
where 0q is defined in (1.4). Then, by (3.12), we have

A (f(2)) = lim [T(f(2), [(y) — Gor (f(2), f(®))]

— lim Co _ Galz,y) |27
v=a | @)yl Y1972 d(z)e(y)

— 7272 (¢) Ao (2).

=
‘H v

Consequently, we have
Ay (f(2)) f*00], = A& ()80l
Since Corollary 3.2 ensures that Aq is non-vanishing, fq is a contact form.

We can prove the Green’s function symmetric in a way similar to the Euclidean
case (cf. e.g. [1], Chapter 4)). Note that

/Q Iz, y) Aou(y)fo A (d60)"(y) = ulx)
for each u € C2(12), and
Aop(y) = A, /Q Gal, ) Dop()60 A (d0y)" (x)

for ¢ € CZ(€2), where A, means that the SubLaplacian is applied with respect to
the variable y. Thus

oly) = /Q G, y) Do()fo A (d6)" () + Const,

which yields

(3.14) /Q (Gal.y) — Galy. 7)) Mow(y)bo A (d6)"(y) = Const.



144 Y. SHI AND W. WANG

for all p € C2(12). Integrating (3.14) proves that the constant is zero. Since

/Gg(y, x)0p A (dbp)"(z) =0 and /Gg(x, y)0o A (dp)" () = Const.

Thus Gq(z,y)—Gaq(y, z) = Const. Interchanging x and y implies the second member
is zero. Thus the Green’s function G is symmetric. It follows that

H(z,y)(Ay + Ayw(z,y)dV(z,y) =0,
QxQ

for each w € C§°(2 x ), where the dV is the associate volume form and A;, A,
mean the SubLaplacian is applied with respect to the variables z and y. As for any
weak solution u of Apu = 0 on an open set 2 x Q, we have u € C*(2 x Q). Cf.
Corollary 1.2.3 in [5] for the Euclidean case. So H(z,z) is smooth in Q. Then we

obtain the limit
1 1

Ag(z) := lim |H(z,y)|9-2 = lim |Go(z,y) — Ta(z, y)| 22
Yy—x Yy—x
exists for each x € ). The theorem is proved.

4. THE QUASI-HYPERBOLIC CARNOT-CARATHEODORY METRIC
Let J : H — H be the standard CR structure satisfying J2 = —id. Recall that

go satisfies the compatibility condition
(4.1) 0(JX,Y) = dbo(X,Y),
for any X,Y € H. We have

dfg = AZdfy + d(A3) A bp.
So the associated Carnot-Carathéodory metric of g is

go(X,Y) = dba(X, JY) = Abgo(X, V)

for any X,Y € H. We can easily verify that gq is a conformally invariant Carnot-
Carathéodory metric.

We have following comparison proposition about this Carnot-Carathéodory met-
ric.

Proposition 4.1. Let Q1,9 be bounded regular domains in J€™. If Q1 C Qo, we
have

(4.2) Ag, (z) > Ag, (2)
on .
Proof. Denote Hq, (z,-) and Hg,(z, -) be the regular part of Green’s function G, (z, )
and Gq,(z, ), respectively. Since

(X7 +-+X3,) (-T'(x,") = 0a,
—T'(z,-) is subharmonic with respect to the SubLaplacain X7 + - -- + X3, (cf. [2]).
Thus

—Hq, (z, ')’392 = —I'(z, ')‘392

implies that
—Hgq,(z,-) > —I'(z,) on Qo.
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On the other hand, we have

—Hg, (z,")|o0, = —I'(z, )]0,
Hence
—Hgq, (xv ')|891 > —Hq, (l'v ')’691'
Then the maximum principle implies

—Hq,(z,-) > —Hq,(x,) on Q.
The proposition is proved. O

Theorem 4.2. (cf. Theorem 1.1 in [3]) For z,y € Q, x near the boundary 0L, and
H the regular part of Green’s function at this point. We have
Co

(4.3) H(z,z) = 2

o(d;”).
There is a difference of factor % from that in [3] because our definition of Ag is

different from that with a factor —i.
Proof of the Theorem 1.2. By Theorem 4.2, we have

1
. 1 C o |e—=
Aq(r) = lim |H@2 (w,y)‘ = ‘de +o(d;?)
Then
(4.4) clk:?)(x) < .»4?2($) < CQké(x)

for « near the boundary, for some constant c1,cy > 0, where kq is defined in (1.5).
On a compact subset of {2, (4.4) holds for some constant ¢y, cy > 0, since A3 /k3 is
positive and bounded. (1.7) follows directly by the definition of H(-,-). The theorem
is proved.
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