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details. In addition, there are studies addressing why pairs trading works. For
related in-depth discussions in connection with the cause of the price divergence
and subsequent convergence, we refer the reader to the books by Vidyamurthy [17]
and Whistler [18].

Empirical studies and related considerations can be found in papers by Do and
Faff [3, 4], Gatev et al. [6], and books by Vidyamurthy [17] and Whistler [18]. Issues
involved include statistical characterization of the spreading process, performance
of pairs trading with various trading thresholds, and impact of trading costs in
connection with pairs trading.

Following these empirical developments, increasing efforts were made addressing
theoretical aspects of pairs trading. The main focus was devoted to develop math-
ematical models that capture the spread movements, filtering techniques, optimal
entry and exit timings, and money management and risk control. For example, in
Elliott et al. [5], the price spread is assumed to be a mean reversion process with
additive noise. Several filtering techniques were explored to identify entry points.
One exit rule with a fixed holding period was discussed in details. In Deshpande
and Barmish [2], a general (mean-reversion based) framework was developed. Using
a ‘spread’ function, they were able to determine the numbers of shares of each stock
every moment and how to adjust them over time. They showed that such algorithm
leads to a positive expected growth.

In this paper, we focus on optimal buying and selling rules for pairs trading. First,
we consider an optimal selling rule. Assuming one entered a position based either
on certain spread condition or on fundamental analysis, our goal is to determine
when to exit the position in order to maximize an expected return or to cut losses
short. Such decision making was treated in Kuo et al. [10]. In particular, given a
fixed cut-loss level, the optimal target level can be determined by a mean reversion
model. This approach will be presented in details in this survey.

Of course, from a trading system development point of view, a complete system
with both entry and exit signals is more desirable. In Song and Zhang [15], advanced
mathematical tools were developed to address such needs. In particular, under a
mean reversion model, it is shown that the optimal trading rule can be determined
by threshold levels. The calculation of these levels is shown in [15] only involves
algebraic equations.

We would like to point out that almost all literature on pairs trading is mean
reversion based one way or the other. This makes the trading more intuitive. In
the meantime, such constraint adds a severe limitation on its potential applications.
In order to meet the mean-reversion requirement, tradable pairs are typically se-
lected among stocks from the same industrial sector. From a practical viewpoint,
it is highly desirable to have a broad range of stock selections for pairs trading.
Mathematically speaking, this amounts to the possibility of treating pairs trading
under models other than mean reversion. In Tie et al. [16], they have developed a
new method to treat the pairs-trading problem under general geometric Brownian
motions.

In this paper, we mainly involve stocks. Nevertheless, the idea of pairs trading
is not limited to stock trading. For example, the optimal timing of investments
in irreversible projects can also be considered as a pairs-trading problem. Back
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in 1986, McDonald and Siegel [13] considered the optimal timing of investment
in an irreversible project. Two factors are included in their model: The growth
of the investment capital and the change in project cost. Greater capital growth
potential and lesser future project cost will postpone the transaction. See also
Hu and Øksendal [8] for more rigorous mathematical treatment. In terms of pairs
trading, their results are about a pairs trading selling rule.

Mathematical trading rules have been studied for many years. In addition to
the work by Hu and Øksendal [8] and Song and Zhang [15], Zhang [19] considered
a selling rule determined by two threshold levels, a target price and a stop-loss
limit. In [19], such optimal threshold levels are obtained by solving a set of two-
point boundary value problems. Guo and Zhang [7] studied the optimal selling
rule under a model with switching Geometric Brownian motion. Using a smooth-fit
technique, they obtained the optimal threshold levels by solving a set of algebraic
equations. These papers are concerned with the selling side of trading in which
the underlying price models are of GBM type. Recently, Dai et al. [1] developed
a trend following rule based on a conditional probability indicator. They showed
that the optimal trading rule can be determined by two threshold curves which can
be obtained by solving the associated Hamilton-Jacobi-Bellman (HJB) equations.
A similar idea was developed following a confidence interval approach by Iwarere
and Barmish [9]. In addition, Merhi and Zervos [14] studied an investment capacity
expansion/reduction problem following a dynamic programming approach under a
geometric Brownian motion market model. In connection with mean reversion trad-
ing, Zhang and Zhang [20] obtained a buy-low and sell-high policy by characterizing
the ‘low’ and ‘high’ levels in terms of the mean reversion parameters.

In this paper, we focus on the mathematical aspects of pairs trading. In §2, we
discuss pairs trading selling rule. Assuming one has an open pairs position, she
needs to close it to maximize an expected return. In this section, the selling rule
consists of two thresholds: target level and cut-loss level. Given a cut-loss level,
the goal is to determine the best target to maximize an expected payoff function.
In §3, we consider a complete trading system under a mean reversion model. The
objective is to trade pairs over time to maximize a discounted reward function.
In §4, we study pairs trading under geometric Brownian motions. It can be seen
that pairs trading ideas are more general and they do not have to be cast under a
mean reversion framework. Proofs of these results are omitted and can be found in
[10, 15, 16]. Finally, some conclusion remarks are given in §5.

2. Mean Reversion Model: An Optimal Selling Rule

In this section, we consider pairs trading that involves two stocks X1 and X2.
The pairs position consists of a long position in X1 and short position in X2. Let
X1

t and X2
t denote their respective prices at time t ≥ 0. For simplicity, we allow

trading a fraction of a share and consider the pairs position consisting of K1 = 1/X1
0

shares of X1 in the long position and K2 = 1/X2
0 shares of X2 in the short position.

The corresponding price spread of the position is given by Zt = K1X
1
t −K2X

2
t .
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We assume that Zt is a mean-reverting (Ornstein-Uhlenbeck) process governed
by

(2.1) dZt = θ(µ− Zt)dt+ σdWt, Z0 = z,

where θ > 0 is the rate of reversion, µ the equilibrium level, σ > 0 the volatility,
and Wt a standard Brownian motion. In addition, the notation Z represents the
corresponding pairs position. One share long in Z means the combination of K1

shares of long position in X1 and K2 shares of short position in X2. Similarly, for
i = 1, 2, Xi

t represents the price of stock Xi. Lastly, Zt is the value of the pairs
position at time t (which in this paper is allowed to be negative).

Assuming a pairs position was in place, the objective is to decide when to close
the position. We consider the selling rule determined by two threshold levels: the
target and a cut-loss level. In particular, let z1 denote the cut-loss level and z2
the target. The selling time is given by the exit time τ of Zt from (z1, z2), i.e.,
τ = inf{t : Zt ̸∈ (z1, z2)}.

Here z1 is the cut-loss level, which represents the risk tolerance of the investor
per trade. It is determined by the investor. z2 is the target which varies with each
stock. In Gatev et al. [6], the threshold levels z1 = −∞ and z2 = µ are used to
determine when to close a pairs position. Note that in practice a cut-loss level is
often imposed to limit possible undesirable events in the marketplace. It is a typical
money management consideration. It can also be associated with a margin call due
to substantial losses.

Given (z1, z2) and the initial state Z0 = z, the corresponding reward function is

v(z) = v{z1,z2}(z) = E[e−ρτZτ |Z0 = z].

Here ρ > 0 is a given discount (impatience) factor.
Following a similar approach as in Zhang [19], we can show that the reward

function v(z) satisfies the two-point-boundary-value differential equation

(2.2)

 ρv(z) =
σ2

2

d2v(z)

dz2
+ θ(µ− z)

dv(z)

dz
,

v(z1) = z1, v(z2) = z2.

To solve the equation, let κ =
√
2θ/σ and η(t) = t(ρ/θ)−1e−t2/2. Then the general

solution of (2) can be given in terms of a linear combination of independent solutions:

v(z) = C1

∫ ∞

0
η(t)e−κ(µ−z)tdt+ C2

∫ ∞

0
η(t)eκ(µ−z)tdt,

for some constants C1 and C2. Note that these constants are (z1, z2) dependent,
i.e., C1 = C1(z1, z2) and C2 = C2(z1, z2).

Taking z = z1 and z = z2 respectively, we have

(
v(z1)
v(z2)

)
=


∫ ∞

0
η(t)e−κ(µ−z1)tdt

∫ ∞

0
η(t)eκ(µ−z1)tdt∫ ∞

0
η(t)e−κ(µ−z2)tdt

∫ ∞

0
η(t)eκ(µ−z2)tdt

( C1

C2

)
.
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Let Φ(z1, z2) denote the above 2 × 2 matrix. It can be shown to be non-singular.
Using the boundary conditions in (2), the constants C1 and C2 can be expressed in
terms of z1 and z2 as follows:(

C1

C2

)
= Φ−1(z1, z2)

(
v(z1)
v(z2)

)
= Φ−1(z1, z2)

(
z1
z2

)
.

Given the initial value Z0 = z0, the corresponding reward function

v(z0) = C1

∫ ∞

0
η(t)e−κ(µ−z0)tdt+ C2

∫ ∞

0
η(t)eκ(µ−z0)tdt.

With z1 fixed, the optimization problem is to choose z2 ≥ z0 to maximize v(z0).
Let γ(z) = exp

(
θ(z − µ)2/σ2

)
. Then, the expected holding time is given by

E[τ0|Z0 = z0] = − 2

σ2

∫ t

z1

(
γ(t)

∫ t

0

du

γ(u)

)
dt+ T0

∫ z0

z1

(
γ(t)

γ(0)

)
dt,

where

T0 =

2

∫ z2

z1

(
γ(t)

∫ t

0

du

γ(u)

)
dt

σ2

∫ z2

z1

(
γ(t)

γ(0)

)
dt

.

Finally, the corresponding profit probability

P (Zτ0 = z2|Z0 = z0) =

∫ z0

z1

exp

(
θ

σ2
(u− µ)2

)
du∫ z2

z1

exp

(
θ

σ2
(u− µ)2

)
du

.

3. Mean Reversion Model: An Optimal Trading Rule

In this section, we consider a pairs trading system with both buying and selling
signals. Let Zt be the price of the pairs position satisfying (1). In addition, we
impose a state constraint and require Zt ≥ M . Here M is a given constant and it
represents a stop-loss level. It is common in practice to limit losses to an acceptable
level to account for unforeseeable events in the marketplace. A stop-loss limit is
often enforced as part of money management. It can also be associated with a
margin call due to substantial losses.

To accommodate such state constraint in our model, let τM denote the exit time
of Zt from (M,∞), i.e., τM = inf{t : Zt ̸∈ (M,∞)}.

Let

(3.1) 0 ≤ τ b1 ≤ τ s1 ≤ τ b2 ≤ τ s2 ≤ · · · ≤ τM

denote a sequence of stopping times. A buying decision is made at τ bn and a selling
decision at τ sn, n = 1, 2, . . ..

We consider the case that the net position at any time can be either long (with
one share of Z) or flat (no stock position of either X1 or X2). Let i = 0, 1 denote
the initial net position. If initially the net position is long (i = 1), then one should
sell Z before acquiring any future shares. The corresponding sequence of stopping
times is denoted by Λ1 = (τ s1 , τ

b
2 , τ

s
2 , τ

b
3 , . . .). Likewise, if initially the net position is
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flat (i = 0), then one should start to buy a share of Z. The corresponding sequence
of stopping times is denoted by Λ0 = (τ b1 , τ

s
1 , τ

b
2 , τ

s
2 , . . .).

Let K > 0 denote the fixed transaction cost (e.g., slippage and/or commission)
associated with buying or selling of Z. Given the initial state Z0 = x and initial net
position i = 0, 1, and the decision sequences, Λ0 and Λ1, the corresponding reward
functions

Ji(x,Λi) =



E

{ ∞∑
n=1

[
e−ρτsn(Zτsn −K)− e−ρτbn(Zτbn

+K)
]
I{τbn<τM}

}
, if i = 0,

E

{
e−ρτs1 (Zτs1

−K)

+

∞∑
n=2

[
e−ρτsn(Zτsn −K)− e−ρτbn(Zτbn

+K)
]
I{τbn<τM}

}
, if i = 1,

where ρ > 0 is a given discount factor.
In the reward function Ji, a buying decision has to be made before Zt reaches

M . When t = τM (or Zt = M), only a selling can be done if i = 1.
For i = 0, 1, let Vi(x) denote the value functions with the initial state Z0 = x

and initial net positions i = 0, 1. That is,

(3.2) Vi(x) = sup
Λi

Ji(x,Λi).

Note that

(3.3) V0(M) = 0 and V1(M) = M −K.

Remark 3.1. Note that we imposed the conditions τ bn ≤ τM and τ sn ≤ τM , n =
1, 2, . . .. If one has a share position of Z and τ sn = τM for some n, then one has to
sell the share to cut losses. On the other hand, if τ bn = τM , then one should not buy
because she has to sell it right away, which only cause the round trip transaction
fees.

Remark 3.2. In addition, we only consider the ‘long’ side trading in this paper.
Actually, one can trade the ‘short’ side by simply reversing the trading rule obtained
in this paper. For example, if the equilibrium µ = 0, then we can trade both Zt

and (−Zt) simultaneously because they satisfy the same system equation (1).

Example 3.3. Typically a highly correlated pair can be found from the same
industry sector. In this example, we choose Wal-Mart Stores Inc. (WMT) and
Target Corp. (TGT). Both companies are from the retail industry and they have
shared similar dips and highs. If the price of WMT were to go up a large amount
while TGT stayed the same, a pairs trader would buy TGT and sell short WMT
betting on the convergence of their prices. In Figure 1, the ’normalized’ (dividing
each price by its long term moving average) difference of WMT and TGT is plotted.
In addition, the data (1992-2012) is divided into two sections. The first section
(1992-2000) is used to calibrate the model and the second section (2001-2012) to
backtest the performance of our results. Our construction of Zt determines that
the equilibrium level µ = 0. By measuring the standard derivation of Zt, we obtain



PAIRS TRADING 123

-1.5

-1

-0.5

0

0.5

1

1.5

0 1000 2000 3000 4000 5000

Z
t

t

1992/05/08--2000/12/29 2001/01/02--2012/12/31

Figure 1. The normalized difference Zt is based on WMT and TGT

daily closing prices from 1992 to 2012. (Parameters: θ = 1.0, µ = 0, and

σ = 0.56).

the historical volatility σ = 0.56. Finally, following the traditional least squares
method, we obtain θ = 1.00.

We can show that, for x ≥ M , the following inequalities hold:

V0(x) ≥ V1(x)− x−K, V1(x) ≥ V0(x) + x−K,

0 ≤ V0(x) ≤ C0, x−K ≤ V1(x) ≤ x+K + C0,

where C0 = (θ|µ|+ (ρ+ θ)|M |)/ρ and ρ is the discount factor.

Let A denote the generator of Zt, i.e.,

A = θ(µ− x)
∂

∂x
+

σ2

2

∂2

∂x2
.

Formally, the associated HJB equations should have the form:

(3.4)
min

{
ρv0(x)−Av0(x), v0(x)− v1(x) + x+K

}
= 0,

min
{
ρv1(x)−Av1(x), v1(x)− v0(x)− x+K

}
= 0,

for x ∈ (M,∞), with the boundary conditions v0(M) = 0 and v1(M) = M −K.
If i = 0, then one should only buy when the price is low (say less than or equal

to x1). In this case, v0(x) = v1(x)− x−K. The corresponding continuation region
(given by ρv0(x)−Av0(x) = 0) should include (x1,∞). In addition, one should not
establish any new position if Zt is close to the stop-loss level M . In view of this,
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-
M x0 x1

v0=v1−x−K ρv0 −Av0 = 0ρv0 −Av0 = 0

-
M x2ρv1 −Av1 = 0 v1 = v0+x−K

Figure 2. M is the stop-loss limit, x0, x1, and x2 are transaction thresh-

olds, and the continuation regions are bolded.

the continuation region should also include (M,x0) for some x0 < x1. On the other
hand, if i = 1, then one should only sell when the price is high (greater than or
equal to x2 > x1), which implies v1(x) = v0(x)+x−K and the continuation region
(given by ρv1(x)−Av1(x) = 0) should be (M,x2). These continuation regions are
highlighted in Figure 2.

To solve the HJB equations in (6), we first solve the equations ρvi(x)−Avi(x) = 0
with i = 0, 1 on their continuation regions. Let

ϕ1(x) =

∫ ∞

0
η(t)e−κ(µ−x)tdt,

ϕ2(x) =

∫ ∞

0
η(t)eκ(µ−x)tdt,

where η(t) = t(ρ/θ)−1 exp
(
−t2/2

)
and κ =

√
2θ/σ. Then ϕ1(x) and ϕ2(x) are

independent and the general solution is given by a linear combination of these
functions.

First, consider the interval (x1,∞) and suppose the solution is given by A1ϕ1(x)+
A2ϕ2(x), for some A1 and A2. Recall the upper bound for V0(x), v0(∞) should be
bounded above. This implies that, A1 = 0 and v0(x) = A2ϕ2(x) on (x1,∞). Let
B1, B2, C1, and C2 be constants such that v0(x) = B1ϕ1(x) + B2ϕ2(x) on (M,x0)
and v1(x) = C1ϕ1(x) + C2ϕ2(x) on (M,x2).

It is easy to see that these functions are twice continuously differentiable on their
continuation regions. We follow the smooth-fit method which requires the solutions
to be continuously differentiable. In particular, it requires v0 to be continuously
differentiable at x0. Therefore,

(3.5)

{
B1ϕ1(x0) +B2ϕ2(x0) = C1ϕ1(x0) + C2ϕ2(x0)− x0 −K,
B1ϕ

′
1(x0) +B2ϕ

′
2(x0) = C1ϕ

′
1(x0) + C2ϕ

′
2(x0)− 1.

Similarly, the smooth-fit conditions at x1 and x2 yield

(3.6)

{
A2ϕ2(x1) = C1ϕ1(x1) + C2ϕ2(x1)− x1 −K,
A2ϕ

′
2(x1) = C1ϕ

′
1(x1) + C2ϕ

′
2(x1)− 1,

and

(3.7)

{
C1ϕ1(x2) + C2ϕ2(x2) = A2ϕ2(x2) + x2 −K,
C1ϕ

′
1(x2) + C2ϕ

′
2(x2) = A2ϕ

′
2(x2) + 1.
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Finally, the boundary conditions at x = M lead to

(3.8)

{
B1ϕ1(M) +B2ϕ2(M) = 0,
C1ϕ1(M) + C2ϕ2(M) = M −K.

For simplicity in notation, let

Φ(x) =

(
ϕ1(x) ϕ2(x)
ϕ′
1(x) ϕ′

2(x)

)
,

which can be shown invertible for all x.
Also, let

R(x) = Φ−1(x)

(
ϕ2(x)
ϕ′
2(x)

)
, P1(x) = Φ−1(x)

(
x+K
1

)
,

P2(x) = Φ−1(x)

(
x−K
1

)
,

Rewrite the equations (7)-(10) in terms of these vectors. We have

(3.9)

(
B1

B2

)
=

(
C1

C2

)
− P1(x0),

(3.10) A2R(x1) =

(
C1

C2

)
− P1(x1),

(3.11)

(
C1

C2

)
= A2R(x2) + P2(x2),

and

(3.12)


(ϕ1(M), ϕ2(M))

(
B1

B2

)
= 0,

(ϕ1(M), ϕ2(M))

(
C1

C2

)
= M −K.

Multiplying both sides of (11) from the left by (ϕ1(M), ϕ2(M)) and using (14),
we have

(3.13) (ϕ1(M), ϕ2(M))P1(x0) = M −K.

We can show

(3.14) A2 =
M −K − (ϕ1(M), ϕ2(M))P2(x2)

(ϕ1(M), ϕ2(M))R(x2)
,

and

(3.15) (R(x1)−R(x2))

(
M −K − (ϕ1(M), ϕ2(M))P2(x2)

(ϕ1(M), ϕ2(M))R(x2)

)
= P2(x2)− P1(x1).

Solving equations (15) and (17), we can obtain the triple (x0, x1, x2). Then solving
the equations (11), (12), and (16), to obtain A2, (B1, B2), and (C1, C2).
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Note that vi(x) has to satisfy the following inequalities for being solutions to the
HJB equations (6):

(3.16)


ρv0(x)−Av0(x) ≥ 0,
ρv1(x)−Av1(x) ≥ 0,
v0(x) ≥ v1(x)− x−K,
v1(x) ≥ v0(x) + x−K,

for all x ≥ M .
We can show that these inequalities are equivalent to the following inequalities:

(3.17) x1 ≤
θµ− ρK

ρ+ θ
, x2 ≥

θµ+ ρK

ρ+ θ
,

and

(3.18)

{
|(C1 −B1)ϕ1(x) + (C2 −B2)ϕ2(x)− x| ≤ K on (M,x0),
|C1ϕ1(x) + (C2 −A2)ϕ2(x)− x| ≤ K on (x1, x2).

Theorem 3.4. Let (x0, x1, x2) be a solution to (15) and (17) satisfying (19). Let
A2, B1, B2, C1, and C2 be constants given by (11), (13), and (16) satisfying the
inequalities in (20).

Let 
v0(x) =

 B1ϕ1(x) +B2ϕ2(x) if x ∈ [M,x0),
C1ϕ1(x) + C2ϕ2(x)− x−K if x ∈ [x0, x1),
A2ϕ2(x) if x ∈ [x1,∞),

v1(x) =

{
C1ϕ1(x) + C2ϕ2(x) if x ∈ [M,x2),
A2ϕ2(x) + x−K if x ∈ [x2,∞).

Assume v0(x) ≥ 0. Then, vi(x) = Vi(x), i = 0, 1. Moreover, if initially i = 0, let

Λ∗
0 = (τ b∗1 , τ s∗1 , τ b∗2 , τ s∗2 , . . .),

such that the stopping times τ b∗1 = inf{t ≥ 0 : Zt ∈ [x0, x1]} ∧ τM , τ s∗n = inf{t >
τ b∗n : Zt ̸∈ (M,x2)} ∧ τM , and τ b∗n+1 = inf{t > τ s∗n : Zt ∈ [x0, x1]} ∧ τM for n ≥ 1.
Similarly, if initially i = 1, let

Λ∗
1 = (τ s∗1 , τ b∗2 , τ s∗2 , τ b∗3 , . . .),

such that τ s∗1 = inf{t ≥ 0 : Zt ̸∈ (M,x2)} ∧ τM , τ b∗n = inf{t > τ s∗n−1 : Zt ∈
[x0, x1]} ∧ τM , and τ s∗n = inf{t > τ b∗n : Zt ̸∈ (M,x2)} ∧ τM for n ≥ 2. Then Λ∗

0 and
Λ∗
1 are optimal.

Next, we use the parameters of the WMT-TGT example, i.e.,

θ = 1.0, µ = 0, σ = 0.56, ρ = 0.10, K = 0.001,M = −0.2.

First, solving the equation (15), we have x0 = −0.142. Then using this x0 to
find all (x1, x2) that satisfy both (17) and the inequalities (20). We obtain the pair
(x1, x2) = (−0.077, 0.077).

We backtest the pairs trading rule using the stock prices of WMT and TGT from
2001 to 2012. Let X1

t be the WMT stock divided by its 1000 day moving average
and X2

t the TGT stock by its same period moving average. Taking Zt = X1
t −X2

t ,
a pairs trading is triggered when Zt gets inside the buying interval [x0, x1]. The
position is closed when Zt exits the interval (M,x2). Initially, we allocate trading
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Figure 3. Trading Zt: The threshold levels M,x0, x1, x2 and the corre-

sponding equity curve

the capital $100K. When the first long signal is triggered, buy $50K WMT stocks
and short the same amount TGT. Close the position either when Zt reaches the
target x2 or when it drops below the stop-loss level M . Such half-and-half capital
allocation between long and short applies to all trades. In addition, each pairs
transaction is charged $5 commission fee. Furthermore, two variations from the
assumptions prescribed in Theorem 3.4 in our ‘actual’ trading: (a) After the stop-
loss level M is reached, the trading continues and a buying order is entered when Zt

goes back to the trading range; (b) All available capital will be used (half long and
half short) for trading rather than following the ‘single’ share rule; Note that the
choice of stop-loss level M can depend on many factors including the trader’s risk
tolerance level and margin requirements. Here our choice M = −0.2 corresponds
to a 10% loss when WMT drops 10% and TGT stays the same.

In Figure 3, the corresponding Zt, the threshold triple, and the corresponding
equity curve are plotted. There are total 8 trades and the end balance is $126.602K.

Note that Zt is symmetric, i.e., (−Zt) satisfies the same equation (1). Naturally,
one can reverse the pair and trade (−Zt) the same way. The reversed Zt and equity
curve is given in Figure 4. Such trade leads to the end balance $114.935K. Note
that both types of trades have no overlap, i.e., they do not compete for the same
capital. The grand total profit is $41547 which is a 41.54% gain.

The main advantage of pairs trading is its risk neutral nature, i.e., it can be
profitable regardless the general market condition. In addition, there are only 2x8
trades in the eleven year period leaving the capital in cash most of the time. This
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is desirable because the cash sitting in the account can be used for other types of
shorter term trading in between, at least drawing interest over time.

4. GBM: An Optimal Trading Rule

In this section, we consider pairs trading under a geometric Brownian motion
model. A share of pairs position Z consists of one share long position in stocks X1

and one share short position in X2. Let (X1
t , X

2
t ) denote their prices at t satisfying

the following stochastic differential equation:

(4.1) d

(
X1

t

X2
t

)
=

(
X1

t

X2
t

)[(
µ1

µ2

)
dt+

(
σ11 σ12
σ21 σ22

)
d

(
W 1

t

W 2
t

)]
,

where µi, i = 1, 2, are the return rates, σij , i, j = 1, 2, the volatility constants, and
(W 1

t ,W
2
t ) a 2-dimensional standard Brownian motion.

We consider the case that the net position at any time can be either long (with
one share of Z) or flat (no stock position of either X1 or X2). Let i = 0, 1 denote the
initial net position and let τ0 ≤ τ1 ≤ τ2 ≤ · · · denote a sequence of stopping times.
If initially the net position is long (i = 1), then one should sell Z before acquiring
any future shares. That is, to first sell the pair at τ0, then buy at τ1, sell at τ2, buy
at τ3, etc. The corresponding trading sequence is denoted by Λ1 = (τ0, τ1, τ2, . . .).
Likewise, if initially the net position is flat (i = 0), then one should start to buy
a share of Z. That is, to first buy at τ1, sell at τ2, then buy at τ3, etc. The
corresponding sequence of stopping times is denoted by Λ0 = (τ1, τ2, . . .).
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Let K denote the fixed percentage of transaction costs associated with buying or
selling of stocks Xi, i = 1, 2. For example, the cost to establish the pairs position
Z at t = t1 is (1 + K)X1

t1 − (1 − K)X2
t2 and the proceeds to close it at a later

time t = t2 is (1 −K)X1
t2 − (1 +K)X2

t2 . For ease of notation, let βb = 1 +K and
βs = 1−K.

Given the initial state (x1, x2), net position i = 0, 1, and the decision sequences
Λ0 and Λ1, the corresponding reward functions
(4.2)

J0(x1, x2,Λ0) =

E

{
[e−ρτ2(βsX

1
τ2 − βbX

2
τ2)I{τ2<∞} − e−ρτ1(βbX

1
τ1 − βsX

2
τ1)I{τ1<∞}]

+[e−ρτ4(βsX
1
τ4 − βbX

2
τ4)I{τ4<∞} − e−ρτ3(βbX

1
τ3 − βsX

2
τ3)I{τ3<∞}] + · · ·

}
,

J1(x1, x2,Λ1) =

E

{
e−ρτ0(βsX

1
τ0 − βbX

2
τ0)I{τ0<∞}

+[e−ρτ2(βsX
1
τ2 − βbX

2
τ2)I{τ2<∞}−e−ρτ1(βbX

1
τ1 − βsX

2
τ1)I{τ1<∞}]

+[e−ρτ4(βsX
1
τ4 − βbX

2
τ4)I{τ4<∞}−e−ρτ3(βbX

1
τ3 − βsX

2
τ3)I{τ3<∞}] + · · ·

}
,

where ρ > 0 is a given discount factor and IA is the indicator function of an event
A.

For i = 0, 1, let Vi(x1, x2) denote the value functions with (X1
0 , X

2
0 ) = (x1, x2)

and initial net positions i = 0, 1. That is, Vi(x1, x2) = supΛi
Ji(x1, x2,Λi), i = 0, 1.

Remark 4.1. Note that the ‘one-share’ assumption can be easily relaxed. For
example, one can consider any pairs Z consisting of n1 shares of long position in
X1 and n2 shares of short position in X2. This case can be treated by changing
of the state variables (X1

t , X
2
t ) → (n1X

1
t , n2X

2
t ). Due to the nature of GBMs, the

corresponding system equation in (21) will stay the same. The new allocations will
only affect the reward function in (22) implicitly. In addition, we only focus on
the ‘long’ side of pairs trading and note that the ‘short’ side of trading can also be
treated by simply switching the roles of the two stocks X1 and X2.

Example 4.2. In this example, we consider stock prices of Target Corp. (TGT)
and Wal-Mart Stores Inc. (WMT). In Figure 5, daily closing prices of both stocks
from 1985 to 2014 are plotted. The data is divided into two parts. The first part
(1985-1999) will be used to calibrate the model and the second part (2000-2014) to
backtest the performance of our results. Using the prices (1985-1999) and following
the traditional least squares method, we obtain µ1 = 0.2059, µ2 = 0.2459, σ11 =
0.3112, σ12 = 0.0729, σ21 = 0.0729, σ22 = 0.2943.

In this section, we assume ρ > µ1 and ρ > µ2. Under these conditions, we can
show that, for all x1, x2 > 0,

0 ≤ V0(x1, x2) ≤ x2, and βsx1 − βbx2 ≤ V1(x1, x2) ≤ βbx1 +Kx2.
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Next, we consider the associated HJB equations. Let

A =
1

2

{
a11x

2
1

∂2

∂x21
+ 2a12x1x2

∂2

∂x1∂x2
+ a22x

2
2

∂2

∂x22

}
+ µ1x1

∂

∂x1
+ µ2x2

∂

∂x2
,

where a11 = σ2
11 + σ2

12, a12 = σ11σ21 + σ12σ22, and a22 = σ2
21 + σ2

22. Formally, the
associated HJB equations have the form: For x1, x2 > 0,
(4.3)

min
{
ρv0(x1, x2)−Av0(x1, x2), v0(x1, x2)− v1(x1, x2) + βbx1 − βsx2

}
= 0,

min
{
ρv1(x1, x2)−Av1(x1, x2), v1(x1, x2)− v0(x1, x2)− βsx1 + βbx2

}
= 0.

We divide the first quadrant P = {(x1, x2) : x1 > 0 and x2 > 0} into three
regions Γ1 = {(x1, x2) ∈ P : x2 ≤ k1x1}, Γ2 = {(x1, x2) ∈ P : k1x1 < x2 < k2x1},
and Γ3 = {(x1, x2) ∈ P : x2 ≥ k2x1}. This is illustrated in Figure 6.

We can also solve the HJB equations and show the following theorem.



PAIRS TRADING 131

-

6

�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

x1

x2

O

x2 = k1x1

x2 = k2x1

Γ1

Γ2

Γ3
(ρ−A)v0 = 0
v1 = v0 + βsx1 − βbx2

(ρ−A)v0 = 0
(ρ−A)v1 = 0

(ρ−A)v1 = 0
v0 = v1 − βbx1 + βsx2

Buy X1, Sell Short X2

Hold

Sell X1, Buy Back X2

Figure 6. Regions Γ1, Γ2, and Γ3

Theorem 4.3. The functions v0(x1, x2) = x1w0(x2/x1) and v1(x1, x2) = x1w1(x2/x1)
satisfy the original HJB equations (23) where

w0(y) =



(
βb(1− δ2)k

1−δ1
1 + βsδ2k

−δ1
1

δ1 − δ2

)
yδ1 , if 0 < y < k2,(

βb(1− δ1)k
1−δ2
1 + βsδ1k

−δ2
1

δ1 − δ2

)
yδ2 + βsy − βb, if y ≥ k2,

w1(y) =



(
βb(1− δ2)k

1−δ1
1 + βsδ2k

−δ1
1

δ1 − δ2

)
yδ1 + βs − βby, if 0 < y ≤ k1,(

βb(1− δ1)k
1−δ2
1 + βsδ1k

−δ2
1

δ1 − δ2

)
yδ2 , if y > k1,

(4.4)

δ1 =
1

2

(
1 +

µ1 − µ2

λ
+

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ

)
> 1,

δ2 =
1

2

(
1 +

µ1 − µ2

λ
−

√(
1 +

µ1 − µ2

λ

)2

+
4ρ− 4µ1

λ

)
< 0,
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(4.5) k1 =
δ2(βbr

−δ1
0 − βs)

(1− δ2)(βb − βsr
1−δ1
0 )

, k2 =
δ2(βbr

1−δ1
0 − βsr0)

(1− δ2)(βb − βsr
1−δ1
0 )

,

and r0 > (βb/βs)
2

0 = f(r0)

= δ1(1− δ2)(βbr
−δ2 − βs)(βb − βsr

1−δ1)− δ2(1− δ1)(βbr
−δ1 − βs)(βb − βsr

1−δ2).

The optimal trading rule can be determined by two threshold curves as follows:

Theorem 4.4. We have vi(x1, x2) = x1wi(x2/x1) = Vi(x1, x2), i = 0, 1. Moreover,
if initially i = 0, let Λ∗

0 = (τ∗1 , τ
∗
2 , τ

∗
3 , . . .) such that τ∗1 = inf{t ≥ 0 : (X1

t , X
2
t ) ∈ Γ3},

τ∗2 = inf{t ≥ τ∗1 : (X1
t , X

2
t ) ∈ Γ1}, τ∗3 = inf{t ≥ τ∗2 : (X1

t , X
2
t ) ∈ Γ3}, and so on.

Similarly, if initially i = 1, let Λ∗
1 = (τ∗0 , τ

∗
1 , τ

∗
2 , . . .) such that τ∗0 = inf{t ≥ 0 :

(X1
t , X

2
t ) ∈ Γ1}, τ∗1 = inf{t ≥ τ∗0 : (X1

t , X
2
t ) ∈ Γ3}, τ∗2 = inf{t ≥ τ∗1 : (X1

t , X
2
t ) ∈

Γ1}, and so on. Then Λ∗
0 and Λ∗

1 are optimal.

Next, we backtest our pairs trading rule using the stock prices of TGT and WMT
from 2000 to 2014. Using the parameters obtained in Example 4.2 based on the
historical prices from 1985 to 1999, we found the pair (k1, k2) = (1.03905, 1.28219).
A pairs trading (long X1 and short X2) is triggered when (X1

t , X
2
t ) enters Γ3. The

position is closed when (X1
t , X

2
t ) enters Γ1. Initially, we allocate trading the capital

$100K. When the first long signal is triggered, buy $50K TGT stocks and short the
same amount of WMT. Such half-and-half capital allocation between long and short
applies to all trades. In addition, each pairs transaction is charged $5 commission.
In Figure 8, the corresponding ratio X2

t /X
1
t , the threshold levels k1 and k2, and

the corresponding equity curve are plotted. There are total 3 trades and the end
balance is $155.914K.

We can also switch the roles of X1 and X2, i.e., to long WMT and short TGT
by taking X1=WMT and X2=TGT. In this case, the new (k̃1, k̃2)= (1/k2, 1/k1)=
(1/1.28219, 1/1.03905). These levels and the corresponding equity curve is given in
Figure 8. Such trade leads to the end balance $132.340K. Note that both types of
trades have no overlap, i.e., they do not compete for the same capital. The grand
total profit is $88254 which is a 88.25% gain.

Note also that there are only 5 trades in the fifteen year period leaving the capital
in cash most of the time. This is desirable because the cash sitting in the account
can be used for other types of shorter term trading in between, at least drawing
interest over time.

5. Conclusions

In this paper, we have studied the pairs trading problems under both mean rever-
sion and geometric Brownian motion models. We were able to obtain closed-form
solutions. The trading rules are given in terms of threshold levels and are extremely
simple in structure. The major advantage of pairs trading is its risk-neutral nature,
i.e., it can be profitable regardless general market directions. Some initial efforts
in connection with numerical computations and implementation have been done in
Luu [12]. In particular, stochastic approximation techniques (see Kushner and Yin
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[11]) can be used effectively to estimate these threshold levels directly. Finally, it
would be interesting to examine how these methods work through backtests for a
larger selection of stocks.
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