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THE SPLIT COMMON FIXED POINT PROBLEM AND STRONG
CONVERGENCE THEOREMS BY HYBRID METHODS FOR
NEW DEMIMETRIC MAPPINGS IN HILBERT SPACES

SAUD M. ALSULAMI, ABDUL LATIF, AND WATARU TAKAHASHI

ABSTRACT. In this paper, we consider the split common fixed point problem
in Hilbert spaces. Then using the hybrid method and the shrinking projection
method, we prove strong convergence theorems for new demimetric mappings
in Hilbert spaces. Using these theorems, we obtain well-known and new strong
convergence theorems in Hilbert spaces.

1. INTRODUCTION

Let E be a smooth Banach space, let C' be a nonempty, closed and convex subset
of £ and let n be a real number with n € (—oo,1). A mapping U : C — E with
F(U) # 0 is called n-demimetric [30] if, for any = € C and g € F(U),

2a — g, J (¢ — Uz)) > (1 — )|z — Uz|>

Then we have from [30] that the set F'(U) of fixed points of U is nonempty, closed
and convex. Using this property, we proved weak and strong convergence theorems
in Hilbert spaces and Banach spaces; see [15, 26, 30, 33]. Very recently, Kawasaki
and Takahashi [11] generalized the concept of demimetric mappings as follows: Let
6 be a real number with # # 0. Then a mapping U : C — E with F(U) # 0 is
called generalized demimetric [11] if

(1.1) 0lx —q,J(x —Uzx)) > ||a:—Ua:H2

forall x € C and ¢ € F(U). This mapping U is called 6-generalized demimetric. We
can also prove that the set F'(U) of fixed points of such a mapping U is nonempty,
closed and convex; see [11].

Let Hy and Hs be two real Hilbert spaces. Let D and ) be nonempty, closed
and convex subsets of Hy and Hs, respectively. Let A : Hi — Hy be a bounded
linear operator. Then the split feasibility problem [7] is to find z € H; such that
z € DN A7'Q. Byrne, Censor, Gibali and Reich [6] considered the following
problem: Given two set-valued mappings G : H; — 21 and B : Hy, — 22,
and a bounded linear operator A : Hy — Hs, the split common null point problem
[6] is to find a point z € Hy such that
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where G710 and B~!0 are null point sets of G and B, respectively. Given two
mappings T : Hy — Hy and U : Hy — H,, and a bounded linear operator A :
Hy — Hs, the split common fized point problem [8, 19] is to find a point z € H;
such that z € F(T)NA™IF(U), where F(T) and F(U) are fixed point sets of T' and
U, respectively.

Defining U = A*(I — Pg)A in the split feasibility problem, we have that U : H; —
H; is an inverse strongly monotone operator [3], where A* is the adjoint operator
of A and Py is the metric projection of Hs onto Q. Furthermore, if D N A71Q is
nonempty, then z € DN A~1Q is equivalent to

(1.2) z = Pp(I — AA*(I — Po)A)z,

where A > 0 and Pp is the metric projection of H; onto D. Using such results
regarding nonlinear operators and fixed points, many authors have studied the split
feasibility problem in Hilbert spaces; see, for instance, [1, 3, 6, 8, 19, 35].

On the other hand, by using the hybrid method by Nakajo and Takahashi [20]
and the shrinking projection method by Takahashi, Takeuchi and Kubota [31], many
authors have obtained strong convergence theorems in Hilbert spaces and Banach
spaces; see, for instance, [2, 9, 21, 26, 27, 28, 29, 32].

In this paper, motivated by these problems and results in Hilbert spaces and
Banach spaces, we consider the split common fixed point problem for generalized
demimetric mappings in Hilbert spaces. Then using the hybrid method and the
shrinking projection method, we prove two strong convergence theorems for finding a
solution of the split common point problem in Hilbert spaces. Using these theorems,
we obtain well-known and new strong convergence theorems in Hilbert spaces.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product (- -) and

norm || - ||, respectively. For z,y € H and A € R, we have from [22, 24] that
(2.1) lz +yl1* < ll2ll* + 2{y, @ + y);
(2.2) Az + (1= Nyll* = Alz* + (1 = Vlyl* = A1 = Nz -yl

Furthermore we have that for x,y,u,v € H,
(2.3) 2(z —y,u—v) = llo =0l + [ly = ul* = |z —ul* — |y —o|*

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C is denoted by Pg, that is, ||x — Pox| < ||z — y|| for
all x € H and y € C. Such Py is called the metric projection of H onto C'. We
know that the metric projection Pg is firmly nonexpansive, i.e.,

(2.4) |Pca — Peyl|” < (Pox — Poy, — y)

for all x,y € H. Furthermore (x — Pox,y — Pox) < 0 holds for all x € H and y € C;
see [22]. Using this inequality and (2.3), we have that

(2.5) |Pox —y|)? + ||Pea — 2> < |z —y|%, VzeH, yeC.
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Let E be a Banach space and let B be a mapping of E into 2", The effective
domain of B is denoted by dom(B), that is, dom(B) = {z € E : Bz # 0}. A
multi-valued mapping B on F is said to be monotone if (x — y,u* — v*) > 0 for all
z,y € dom(B), u* € Bz, and v* € By. A monotone operator A on FE is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to Browder [4]; see also [23, Theorem
3.5.4].

Theorem 2.1 ([4]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E*. Let B be a monotone operator of E into
2F"  Then B is mazimal if and only if for any r > 0,

R(J+rB) = E*,
where R(J + rB) is the range of J + rB.

Let F be a uniformly convex Banach space with a Gateaux differentiable norm
and let B be a maximal monotone operator of E into 2€". For all € E and r > 0,
we consider the following equation

0 € J(z, — x) + rBax,.

This equation has a unique solution x,.. We define J, by z, = J.x. Such J.,r > 0
are called the metric resolvents of B.

Let B be a maximal monotone operator on a Hilbert space H. In a Hilbert space
H, the metric resolvent J, of B is called the resolvent of A simply. It is known that
the resolvent J, of B for r > 0 is firmly nonexpansive, i.e.,

| Jrx — er||2 <(x-—vy,Jrx—Jyy), Vr,y€ H.

The set of null points of B is defined by B~10 = {z € E : 0 € Bz}. We know that
B710 is closed and convex; see [23].

Let E be a smooth Banach space, let C be a nonempty, closed and convex subset
of F and let 6 be a real number with # # 0. Then a mapping U : C' — E with
F(U) # 0 was called generalized demimetric [11] if it satisfies (1.1), i.e.,

O(x —q,J(x —Uz)) > ||z — Uz|?
for all z € C and ¢ € F(U), where J is the duality mapping on E.
Examples 2.2. We know examples of generalized demimetric mappings.

(1) Let H be a Hilbert space, let C' be a nonempty, closed and convex subset of
H and let k be a real number with 0 < k < 1. A mapping U : C — H is called a
k-strict pseudo-contraction [5] if

[Uz = Uyl|* < |z = ylI? + kllz — Uz — (y — Uy)|?
for all z,y € C. If U is a k-strict pseudo-contraction and F(U) # 0, then U is
—2--generalized demimetric; see [11].
(2) Let H be a Hilbert space and let C' be a nonempty, closed and convex subset

of H. A mapping U : C — H is called generalized hybrid [12] if there exist «, 5 € R
such that

(26)  a|Uz—Uy|*+ (1~ a)llz = Uyl* < B|Uz — y|* + (1 - B)llz — y]”
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for all ,y € C. Such a mapping U is called («, f)-generalized hybrid. If U is
generalized hybrid and F(U) # (), then U is 2-generalized demimetric; see [11]. In
fact, setting x =u € F(U) and y = = € C in (2.6), we have that

allu = Uz|* + (1 = a)|Ju = Uz|* < Bllu —z[* + (1 = B)|Ju — 2|
and hence
Uz —ul® < o —ul
From |[Uz — z + 2 — ul|? < ||z — u||?, we have that
20z —u,x —Uz) > ||z — Uz|?

for all x € C' and v € F(U). This means that U is 2-generalized demimetric.

Notice that the class of generalized hybrid mappings covers several well-known
mappings. For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is
nonspreading [13, 14] for « =2 and § =1, i.e.,

2| T — Ty||* < |Ta —yl* + | Ty — |, Va,yeC.
It is also hybrid [25] for a = % and 8 = %, ie.,
3| Ta — Tyll* < |z — yl|* + Tz — ylI* + 1Ty — 2|, Va,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [10].

(3) Let E be a mooth, strictly convex and reflexive Banach space and let C' be
a nonempty, closed and convex subset of E. Let Po be the metric projection of E
onto C. Then P¢ is 1-generalized demimetric; see [11].

(4) Let E be a uniformly convex and smooth Banach space and let B be a maximal
monotone operator with B~10 # (. Let A > 0. Then the metric resolvent .Jy for
A > 0 is 1-generalized demimetric; see [11].

(5) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of
H and let T be a mapping from C into H. Suppose that T is Lipschitzian, that is,
there exists L > 0 such that

[Tz — Tyl < Lijz -y

for all z,y € C. Let S = (L +1)I —T. If F(£) # 0, then S is (—2L)-generalized
demimetric; see [11].

(6) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of
H and let a > 0. If B be an a-inverse strongly monotone mapping from C into H
with B~10 # (), then T =1 + B is (—é)—generalized demimetric; see [11].

The following lemmas are important and crucial in the proofs of our main results.

Lemma 2.3 ([11]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E. If a mappingU : C — E
is 0-generalized demimetric and 8 > 0, then U 1is (1 — %)—demimetm’c.

Lemma 2.4 ([11]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E£. Let 6 be a real number
with @ # 0. Let T be a 0-generalized demimetric mapping of C into E. Then F(T)
s closed and convez.
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Lemma 2.5 ([11]). Let E be a smooth Banach space, let C' be a nonempty, closed
and convex subset of E and let 0 be a real number with 8 # 0. Let T be a 0-
generalized demimetric mapping from C into E and let k € R with k # 0. Then
(1 — k)I + kT is Ok-generalized demimetric from C into E.

We also know the following lemma from [33]:

Lemma 2.6 ([33]). Let H be a Hilbert space and let C' be a nonempty, closed and
convez subset of H. Let k € (—o0,1) and let T be a k-demimetric mapping of C
into H such that F(T') is nonempty. Let A be a real number with 0 < X < 1—Fk and
define S = (1 — A\)I + AT. Then S is a quasi-nonexpansive mapping of C' into H.

3. MAIN RESULTS

In this section, using the hybrid method by Nakajo and Takahashi [20], we first
prove a strong convergence theorem for finding a solution of the split common fixed
point problem in Hilbert spaces.

Theorem 3.1. Let Hi and Hy be Hilbert spaces. Let 0 and T be real numbers with
0,7 #0. Let S: H — Hi be a 0-generalized demimetric and demiclosed mapping
with F(S) # 0 and let T : Hy — Hs be a T-generalized demimetric and demiclosed
mapping with F(T) # (. Let k and h be real numbers with 0k > 0 and Th > 0,
respectively. Let A : Hi — Hs be a bounded linear operator such that A # 0 and let
A* be the adjoint operator of A. Suppose that F(S)N AYF(T) # (. Let x1 € Hy
and let {x,} be a sequence generated by

zn:«1—M1+A&Q%—mMMQMn—TA%D,
Yn = (1 — an)xn + apnzp,

Co= {2 € Hy : llgn— 2| < an — 211},

D, ={z€ Hy : (xyp — 2,21 —xp) > 0},

(Znt1 = Pc,np, 71, Vn €N,

where {a,} C [0,1], r € (0,00) and A € R satisfy the following:

2 A 2
~f  amdo<l< 2
AR USRS ok

for some a € R. Then {x,} converges strongly to a point zg € F(S) N A™'F(T),
where 2o = Pp(s)na-1p(T)%1-

Proof. We first show that {x,} is well defined. Since

lyn = 2]l < llzn = 2ll = llyn — 211* < l|lz0 — 2|

0<a<a,<1,0<r<

— ”ynHZ - HanQ = 2(Yn — T, 2) <0,

it follows that C,, is closed and convex for all n € N. It is obvious that D, is
closed and convex. Then C,, N D, are closed and convex for all n € N. Let us
show that F'(S)N A™F(T) c C, for all n € N. Let z € F(S)N A™'F(T). Then
z = Sz and Az = TAz. Since T : Hy — H is 7-generalized demimetric, we
have from Lemma 2.5 that (1 — h)I + hT is Th-generalized demimetric. Since
S : Hi — H; is 0-generalized demimetric, we also have from Lemma 2.5 that
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(1 — k)I + kS is Ok-generalized demimetric. Furthermore, from Lemma 2.3 and
0k > 0, we have that (1—k)I + kS is (1 — 2 )-demimetric in the sense of [30]. Since
0<p<g=1-(1-%)and
(1= MI+AS = (1 - 2) I+ %((1 ~ k)T 4 kS),
we have from Lemma 2.6 that (1—\)I+\S is quasi-nonexpansive. Since (1—A)I+\S
is quasi-nonexpansive, we have that for z € F(S)N A~ F(T),
20 = 212 = (1 = NI+ AS) (20 — rhA* (Awy — TAz,) ) = (1= NI+ AS)z|]
< ||lzn — rhA*(Az, — TAz,) — 2||?
= ||lzn — 2 — ThA* (A, — T Azy)|?
= |lzn — 2||? = 2(z, — 2z, 7hA*(Az, — T Ax,))
+ |rhA*(Az,, — T Az,)|)?
<||zn — 2||* = 2rh(Az, — Az, Az, — T Ax,)
(3.1) + r2h?||A||?|| Az, — T Axy|?
= ||lzn — 2||* = 2r(Az, — Az, Az, — (1 — h)I + hT)Ax,,)
+ r2h?||A||2|| Az, — T Axy|?

1
< |@n — zH2 — 27’—h||Aa:n —((1=h)I+ hT)A:EnH2
T
+ 202 A|)?|| Az, — T Az, ||?

1
< |ln — zH2 — 27’h2E||Awn — TAaan2 + 7’2h2HAH2HAxn — TAa:nH2

2
= llan = 27 + 702 (|| A2 = = )| Az — T A
<l — 2|2
and hence
lyn — 2l = [lanzn + (1 — an)zn — 2||
< apllzn — 2[| + (1 — an)llzn — 2|
< apllzn — 2[| + (1 — an)llzn — 2|
< [l — 2]
Therefore, F(S)YNA=LF(T) c C,, for all n € N. Let us show that F(S)NA~1F(T) C
D, for all n € N. It is obvious that F(S) N A~'F(T) C D;y. Suppose that F(S) N
A™F(T) c Dy for some j € N. Then F(S)N A™'F(T) Cc C; N D;. From zj11 =
Pc;np;x1, we have that
(xj_H —Z,T1 — $j+1> >0, Vze Cj N Dj

and hence
<.1‘j+1 —Z,X1 — ZCj_H) >0, Vze F(S) N A_IF(T).
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Then F(S)NA™YF(T) C Dj11. We have by induction that F(S)N A~ F(T) C D,
for all n € N. Thus, we have that F(S) N A~'F(T) c C,, N D,, for all n € N. This
implies that {x,} is well defined.

Since F(S) N A~LF(T) is nonempty, closed and convex, there exists zg € F(S) N
A~'F(T) such that zy = Pp(g)na-1p(r)21. From 2,41 = Po,np,*1, we have that

[21 = @ngall < flz1 =y
for all y € C,, N D,,. Since zg € F(S)N A~'F(T) C C,, N D,,, we have that

(3.2) 21 = Znpa ]l < flz1 = 20l
This means that {z,} is bounded.
Next we show that lim,, o ||2y, — Zpn+1]| = 0. From the definition of D,,, we have

that x,, = Pp,x1. From z,11 = Pc,np, 1 we have x,,41 € D,,. Thus
|2 — z1]| < (|21 — 24|

for all n € N. This implies that {|[z1 — ||} is bounded and nondecreasing. Then
there exists the limit of {||x1 — z,||}. From x,41 € D,, we have that

(xn — Tpy1,x1 — xn) > 0.
This implies from (2.3) that
0 < [|lzns1 = z1l* = lon — 21)® ~ 2041 — za®

and hence
|04t = 2l < llznsr = 21l* = |2 — 1%
Since there exists the limit of {||z; — 2|/}, we have that

(3.3) nh_g)lo |zn, — zpta] = 0.

From z,11 € C,, we also have that ||y, — zp4+1]| < ||£n — Tn+1]]. Then we get from
(3.3) that ||y, — zp+1]| — 0. Using this, we have that

(3-4) 1yn = znll < llyn = ngall + 12041 — znll = 0.
We have from (3.1) that for any 2 € F(S) N A~LF(T),

lyn — Z||2 = (1 — an)wpn + anzn — Z||2
<(1—ap)l|zn — Z||2 + an |20 — Z||2
< (1= ap)llzn — ZHZ + an [|zn — ZHQ

2
+ anrh? (7| Al = ) [ Azy — T A,

Th

2
< llzn = 21 + awrh? (r AP = = ) [ Azy — T Az, |
T
Thus we have that
2
rh? (= =1 A )| Az = TAwal? < 1@ = 21> = llga - 2|

= (lzn = 2ll + llyn = 2D ([l2n = 2] = llyn — =)
< (lzn = 2l + llyn = 21) ll2n = yall -
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2

=5,» we have that

From ||y, — zn]| 2 0,0 <a<a,<1land 0<r|A|? <
(3.5) lim ||Az, — TAz,|> = 0.
n— oo
We also have that
lyn = anll = |(1 — an)@n + onzn — anl| = anllzn — anl| 2 allzn — @al|.
From ||y, — 2| — 0, we have that
(3.6) nh_{rgo |xn, — zn|| = 0.

Since {z,} is bounded, there exists a subsequence {zp,} of {z,} converging
weakly to w. From (3.4) {yn, } converges weakly to w. Furthermore, from (3.6) {zy, }
converges weakly to w. Since A is bounded and linear, we also have that {Az,,}
converges weakly to Aw. Using this and lim,_,« || Az, — T Az,|| = 0, we have from
the demiclosedness of T' that Aw = T'Aw. This implies that Aw € F(T') and hence

w € AYF(T). We also prove w € F(S). Putting t,, = z, — rhA*(Az,, — TAx,),
we have that

th - Zn“ = th - ((1 - A)I + )‘S)th = H/\(tn - Stn)” = ’)"”tn - Stn”

Furthemore, we have that ||t, — z,|| = ||rhA*(Ax, — T Az,)|| — 0. We have from
ltn — 2znll < ||tn — Znll + ||2n — 2| that ||t, — 2z, || — 0. This implies that
(3.7) lim (¢, — St,| = 0.

n—oo

Since ||t, — x| — 0, we also have that {¢,,} converges weakly to w. From the
demiclosedness of S, we have that w = Sw and hence w € F(S). This implies that
we F(S)NA-LF(T).
From zy = Pp(g)na-1p(ry21, w € F(S) N AT F(T) and (3.2), we have that
a1 = 2oll < 12 — w] < limin 21 — 2,
11— 00
<limsup |21 — @, || < [l21 = 20]|-

1—00

Then we get that

lim 1 = 2p,[| = |21 — w[| = [[z1 = 20|
1—00

and hence w = zy. Furthermore, from the Kadec-Klee property of Hy, we have that
1 — Zp, — 1 — w and hence
Ty, — W = 20.

(3

Therefore, we have x,, — z9. This completes the proof. O

Next, using the shrinking projection method introduced by Takahashi, Takeuchi
and Kubota [31], we prove a strong convergence theorem for finding a solution of
the split common fixed point problem in Hilbert spaces.

Theorem 3.2. Let Hy and Hy be Hilbert spaces. Let 0 and T be real numbers with
0,7 #0. Let S : H — Hjp be a 0-generalized demimetric and demiclosed mapping
with F(S) # 0 and let T : Hy — Ho be a T-generalized demimetric and demiclosed
mapping with F(T) # (0. Let k and h be real numbers with 0k > 0 and Th > 0,
respectively. Let A : Hi — Hs be a bounded linear operator such that A # 0 and
let A* be the adjoint operator of A. Suppose that F(S)NATYF(T) # 0. Let {uy,}



THE SPLIT COMMON FIXED POINT PROBLEM IN HILBERT SPACES 19

be a sequence in Hy such that u, — u. Let ©1 € Hy and C1 = Hy. Let {x,} be a
sequence generated by

20 = (1= NI + AS) (a:n — rhA*(Azy — TAxn)),
Yn = (1 - an)xn + anzp,

Cnp1 ={z € Hy:[lyn — 2l < [lzn — 2]} N Gy,
Tn+1 = PC'n+1un+17 Vn € N)

where {an} C [0,1], r € (0,00) and A € R satisfy the following:

2

A
— <<
and 0<l<:_0k

2
0<a< <1, 0<r< —rs
R ETE

for some a € R. Then {x,} converges strongly to a point wy € F(S)N A~1F(T),
where wo = Pp(g)na—1p(T)U-

Proof. We first show that the sequence {x,} is well defined. Let z1y € H;. We
have that C; = H; is closed and convex and F(S)N A~'F(T) C C;. Suppose that
F(S)NA7'F(T) C Cj, C; is closed and convex and z; is defined for some j € N.

Let z; = ((1 = A\)I+AS) ($j —rhA*(Ax; —TA:Ej)) and let y; = (1 — oy)x; + a2,
Since
{zeHi:ly—zll < llzj = 2ll} = {= € Hi: |lyy — 21 < Jlay — =)}
= {z € H: |lyjlI* = lal* < 2(y; —2;,2)},

it is closed and convex. We show that FI(S) N A~ F(T) C Cj4q for all n € N. Tt is
obvious that From 0 < r||A||? < 2., we have that for z € F(S) N A™1F(T),

2 = 22 = (1 = M+ A8) (= — rhA*(Az; — TAz;)) = (1= NI +A8)z|
< ||lzj — rhA*(Az; — T Az;) — 2|?
= ||zj — 2 — rhA*(Ax; — T Ax;)|?
=||z; — 2|2 - 2(x; — z,rhA*(Axj — T Az;)) + ||[rhA* (Az; — TAl’j)H2
< lzj — 2)|* — 2r{Ax; — Az, Az — (1 — h)I + hT)Az;)
(3.8) + r2h%|| A||? || Az, — T Azy)|?
1
<l — 2] - 2r — | Az; = (1 = )T + hT)Ax;||?
+ 202 AP || Az, — T Azy)|?
1
= ||lz; — 2||* - QT%hQHA:Ej — TAz;||* + r2h?||A|?|| Az — T Az;)|*
2
= llj = 2l + rR* (|| A = =)l Az; — TAzg)*

< Jlzj — 2|



20 SAUD M. ALSULAMI, ABDUL LATIF, AND WATARU TAKAHASHI

and hence
ly; = 217 = (1 = ) + ajzy — 2|
< (L=ay)llz; —z)* + ajllz; — 2|
< (L= ay)lz; — 2] + ajfle; — |
< llaj — 2|

Therefore, F(S) N A7'F(T) C Cj11. Applying these facts inductively, we obtain
that C,, are nonempty, closed and convex for all n € N, and hence {z,} is well
defined.

Since F(S)N A~LF(T) is nonempty, closed and convex, there exists wg € F(S)N
A~YF(T) such that wg = Pp(s)na-1r(ryu- From wy, = Pc,u, we have that

[ = wnl| < flu -yl
for all y € C,,. Since wo € F(S) N A™1F(T) C C,, we have that
(3.9) [l = wnl| < [Ju = wol-

This means that {w,} is bounded. From w,, = P, u and w41 € Cpi1 C Cy, we
have that

[ = wnl| < flu — wn gl
Thus {||u — wy]|} is bounded and nondecreasing. Then there exists the limit of
{|lu — wy||}. Put lim, o ||wy, — u|| = ¢. For any m,n € N with m > n, we have
Cy, C Cy. From wy, = Pe, u € Cy, C C,, and (2.5), we have that

[Zm — Pe,ull® + || Pe, u — ul|® < [lu— wp ).
This implies that
(3.10) l|wm — wn||2 <|lu— me2 — Jlwn — UH2 < - [|wn — u||2

Since ¢ — ||w, — ul|? = 0 as n — oo, we have that {w,} is a Caushy sequence. By
the completeness of Hi, there exists a point zg € H;y such that lim, . w, = zj.
Since the metric projection Pg, is nonexpansive, it follows that

[n — 20/l < l|lzn — wnll + [Jwn — 20
= |l Pe,un — Pe,ull + [Jwn — 20
< un —ull + [[wn — 2ol
and hence
(3.11) Tp —> 20

From x,,11 € Cyt1, we have that ||y, — zp41] < ||2n — Tnt1]]- We also get from
Ty — 20 that |[zn41 — 2|l — 0. Then ||y, — zn11]] — 0. Using this, we have that

lyn = znll < llyn = Tl + [Zns1 — 2l = 0.

From y, — &, = apxn + (1 — an)zn — xn = (1 — ap) (20 — ), we also have that
[yn — znll = (1 — an)lzn — 2n|l > allzn — zn|

and hence

(3.12) |z, — xn|| — 0.
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We have that for any z € F(S)N A~ F(T),
|yn — Z||2 = |1 — an)xpn + anzn — Z||2
< (1 —an)llzn — 2”2 + ap ||z — Z||2

< (1—ap)llan — Z”2 + an |lzn — Z||2
2
+ anrh? (1 | A* = = )| Az, — T A, |

2
< llzn = 217 + awrh? (r A = = ) [ Aza — T Az, |

Thus we have that
2

anrh? (2~ r A1 )| Ay — T Al < [z — 2l — [l — I
= ([len = 2l + [lyn = 2D (lzn = 2[l = llyn = 2[)
< (lzn = 2l + llyn = 21 llzn = yall -
From |y, — 25| = 0,0 < a < a, <1and 0 < r[|4]? < 2, we have that
(3.13) lim | Aw, — T Az, |* = 0.

Since x, — 2z and A is continuous, Az, — Azy and hence Ax, — Azy. Since T
is demiclosed and lim,_, || Az, — T Az, || = 0, we have Azy = T'Azy. We show that
20 € F(S). Putting t,, = x, — rhA*(Ax,, — T Ax,), we have that

”tn - Zn” = ”tn - ((1 - )‘)I + )‘S)th = ”)‘(tn - Stn)H = |>“th - Stn”'
Furthemore, we have that ||t, — x| = ||[rhA*(Az, — T Az,)|| — 0. We have from
ltn — znll < ||tn — xn|| + ||Tn — 2n|| and (3.12) that ||¢, — 2| — 0. This implies that
(3.14) tn — St,|| = 0.

lim
n—o0
Since ||tn, — x| — 0, we also have that {t,,} converges strongly to zyp and hence
{tn,} converges weakly to zp. From the demiclosedness of S, we have that zp = Sz
and hence zy € F(S). This implies that zg € F(S) N A~1F(T).

From wo = Pp(syna-1rm)U: 20 € F(S) N A7LF(T) and (3.9), we have that

Ju —woll < [lu— 20l = lim [lu— | = lm [ju—wyl < [lu—wol|
n—oo n—oo
Then we get that ||lu — wg|| = [Ju — 20| and hence zg = wy. Therefore, we have
Tn — 20 = wg. This completes the proof. O

4. APPLICATIONS

In this section, using Theorems 3.1 and 3.2, we get new strong convergence the-
orems which are connected with the split common fixed point problem in Hilbert
spaces. We know the following result obtained by Marino and Xu [18]; see also [34].

Lemma 4.1 ([18]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let k be a real number with 0 <k <1 and let U : C — H be a
k-strict pseudo-contraction. If x,, = z and x,, — Uz, — 0, then z € F(U).

We also know the following result from Kocourek, Takahashi and Yao [12]; see
also [36].
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Lemma 4.2 ([12]). Let H be a Hilbert space, let C' be a nonempty, closed and
convex subset of H and let U : C — H be generalized hybrid. If x, — z and
xp —Uxy — 0, then z € F(U).

Theorem 4.3. Let Hy and Hy be Hilbert spaces. Let t be a real number with
t €10,1). Let S: Hy — Hy be a generalized hybrid mapping with F(S) # 0 and
let T : Hy — Hy be a t-strict pseud-contraction with F(T) # (. Let A : Hy — Ho
be a bounded linear operator such that A # 0 and let A* be the adjoint operator of
A. Suppose that F(S) N A=YF(T) # (. Let x1 € Hy and let {x,} be a sequence
generated by

(20 = 5 (o0 — rA*(Azy — TAsy)),

Yn = (1 - O‘n)inn + anzn,

Co = {2 € Hy : g — 2] < llzn — 2]},

D, ={z€ Hy:{(x, — 2,1 —x,) >0},

(Tn+1 = Po,np,z1, Vn €N,

where {an} C [0,1] and r € (0,00) satisfy the conditions:
0<a<a,<1 and 0<r||A|*<1—t

for some a € R. Then {x,} converges strongly to zy € F(S) N A~LF(T), where
20 = PF(S)mA—lF(T)iUL

Proof. Since S is a generalized mapping with F'(S) # ), from (2) in Examples, S
is 2-generalized demimetric. We also have from Lemma 4.2 that S is demiclosed.
On the other hand, since T is a t-strict pseud-contraction with F(T') # 0, from (1)
in Examples, T is ﬁ—generalized demimetric. It follows from Lemma 4.1 that T is
demiclosed. Therefore, we have the desired result from Theorem 3.1. O

Using Theorem 3.1, we have the following strong convergence theorem for the
split common null point problem in Hilbert spaces.

Theorem 4.4. Let Hi and Ho be Hilbert spaces. Let G and B be maximal monotone
operators of Hy and Ha, respectively. Let Js and Qi be the resolvents of G for
s > 0 and B for t > 0, respectively. Let A : Hy — Hy be a bounded linear
operator such that A # 0 and let A* be the adjoint operator of A. Suppose that
G0N A Y (B710) # 0. Let vy € H and let {x,} be a sequence generated by

2n = Js (xn —rA*(Ax, — QtAxn)),
Cn={z€ H:|yn — 2[| < [lzy — 2]},
D, ={z€ H: (zxy, —z,x1 —x,) > 0},
Tnt1 = Po,np,71, Vn €N,

where 0 < r||A||?> < 1 and s,t > 0. Then the sequence {x,} converges strongly to a
point zo € G0N A~Y(B710), where 2o = Pa-10na-1(B-10)Z1-

Proof. Since @, is the resolvent of B for ¢t > 0, from (4) in Examples, @Q; is 1-
generalized demimetric. We also have that if {u,} is a sequence in Hy such that
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up, — z and u, — Quu, — 0, then z € F(T) = B~'0. In fact, since Q; is the
resolvent of B, we have that

Un — Qtun)/t € BQtun
for all n € N; see [23]. From the monotonicity of B, we have

Up — Qtun>
t

for all (u,v) € B and ¢ € N. Taking n — oo, we get that (u — z,v*) > 0 for all
(u,v*) € B. Since B is a maximal monotone operator, we have

z€ B7'0=F(Q).

0 S <U—Qtun,7)—

This means that @)y is demiclosed. Similarly, since J; is the resolvent of G, it is 1-
generalized demimetric and demiclosed. Therefore, we have the desired result from
Theorem 3.1. O

Using Theorem 3.1, we obtain the following strong convergence theorem for demi-
metric mappings in Hilbert spaces.

Theorem 4.5. Let Hy and Hy be Hilbert spaces. Let & and n be real numbers with
&n € (—oo,1). Let S: Hy — Hp be a §-demimetric and demiclosed mapping with
F(S) # 0 and let T : Hy — Hy be an n-demimetric and demiclosed mapping with
F(T)#0. Let A: Hy — Hy be a bounded linear operator such that A # 0 and let
A* be the adjoint operator of A. Suppose that F(S)NA™F(T) # 0. Let x1 € Hy
and let {x,} be a sequence generated by

20 = ((1 = )T + \S) (:cn A (Azn — TAxn)),
Yn = (1 — ap)xy + anzp,

Cn={z€ Hi:|lyn — 2| < |lzn — 2[l},

D, ={z€ Hy: (xy, —z,21 — xy) > 0},

ZTny1 = Po,np,z1, Vn €N,

where {an} C [0,1], r € (0,00) and A € R satisfy the following:
0<a<a, <1, 0<r|A|?<1—n and 0<A<1-¢

for some a € R. Then {x,} converges strongly to a point zo € F(S) N A~1F(T),
where zo = Pp(s)na-1p(T)%1-

Proof. Since S is a {-demimetric mapping of Hy into Hj such that F(S) # 0, S

is 1Eé—generalized demimetric. Take & = 1 in Theorem 3.1. Then we get that

% = 1— ¢ in Theorem 3.1. Furthermore, since 7" is an n-demimetric mapping of
H, into Hs such that F(T) # 0, T is %—generalized demimetric. Take h = 1 in

Theorem 3.1. Then we get that % = 1—mnin Theorem 3.1. Therefore, we have the
desired result from Theorem 3.1. O

Similarly, using Theorem 3.2, we have the following results.



24 SAUD M. ALSULAMI, ABDUL LATIF, AND WATARU TAKAHASHI

Theorem 4.6. Let H, and Ho be Hilbert spaces. Let t be a real number with
t €[0,1). Let S: Hy — Hy be a generalized hybrid mapping and let T : Hy — Ho
be a t-strict pseud-contraction such that F(T) # (). Let A : Hy — Hy be a bounded
linear operator such that A # 0 and let A* be the adjoint operator of A. Suppose
that F(S)N A=YF(T) # 0. Let {u,} be a sequence in H such that u, — u. For
x1 € Hy and Cy = Hy, let {x,} be a sequence generated by

Zp = S(a?n —rA*(Az, — TAa:n)>,

yn = (1 — an)zn + anzn,

Cusr = {2 € Hy + llyn — 2]l < llzw — 2} 0 G
Tny1 = Po,y Ung1, Yn€EN,

where {an} C [0,1] and r € (0,00) satisfy the conditions:
0<a<a,<1 and 0<r||A|><1—t

for some a € R. Then {z,} converges strongly to zg € F(S) N A7LF(T), where
z0 = Pp(syna-1r(T)T1-

Theorem 4.7. Let Hi and Hy be Hilbert spaces. Let G and B be maximal monotone
operators of H1 and Ha, respectively. Let Js and Qy be the resolvents of G for s > 0
and B fort > 0, respectively. Let A: H — F be a bounded linear operator such that
A #0 and let A* be the adjoint operator of A. Suppose that G0N A~ (B~10) # 0.

Let {u,} be a sequence in H such that u, — u. For x1 € Hy and C, = Hy, let {z,}
be a sequence generated by

Zn = Js (azn — M A (Ax,, — QtA:cn)),

Yn = (1 — ap)xy + apzp,

Cnp1={z € H :[lyn — 2[| < [lon — 2]} N Cy,
Tny1 = Po,  Unt1, Vn €N,

where 0 < a < a, < 1, 0 < r||A||? < 1 and s,t > 0 for some a € R. Then
the sequence {x,} converges strongly to a point zg € G~10 N A~Y(B710), where
20 = PGfl()ﬂAfl(Bfl())ml-

Theorem 4.8. Let Hy and Ho be Hilbert spaces. Let & and n be real numbers with
&n € (—oo,1). Let S: Hy — Hy be a {-demimetric and demiclosed mapping with
F(S) # 0 and let T : Hy — Hy be an n-demimetric and demiclosed mapping with
F(T)# 0. Let A: Hy — Hy be a bounded linear operator such that A # 0 and let
A* be the adjoint operator of A. Suppose that F(S) N ATYF(T) # 0. Let {u,} be
a sequence in Hy such that u, — u. Let ¥y € Hy and C1 = Hy. Let {x,} be a
sequence generated by

2 = (1= NI+ A8) (w0 — rA*(Azy — TAz,) ),
Yn = (1 — ap) Ty + anzn,

Cny1={z€ Hy: |lyn — 2|| < ||z — 2|} Ny,
Tne1 = Po, U1, Y €N,
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where {ayp} C [0,1], r € (0,00) and A € R satisfy the following:

0<a<a, <1, 0<r|A|?<1-n and 0<A<1-¢

for some a € R. Then {x,} converges strongly to a point wy € F(S) N A~ F(T),
where wo = Pp(s)na-1p(T)U-
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