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respect to v and Lipschitz with respect to y with the following specific property:
F (t, v, .) is a concave multifunction, i.e. for every x1, x2 ∈ E, t ∈ [a, b], v ∈ V and
l ∈ [0, 1] we have

λF (t, v, x1) + (1− l)F (t, v, x2) ⊂ F (t, v, λx1 + (1− l)x2)

This property is equivalent to convexity of the graph of F (t, v, .). A particular case
of this property is satisfied by so called linear relations [17, 18]. All conditions on
F are given in Section 3. Then for any ε > 0 we can find a convex and smooth in
x perturbation ∆(v, x) of f such that the perturbed problem:

minimize f(v, x(b)) + ε∆(v, x(b)) for every v ∈ V

under constraints ẋ(t) ∈ F (t, v, x(t)) + εBRn

x(a) = c(v),

has a solution depending continuously of the parameter v. The proof is based on
the original non-parametric version introduced by F. Clarke [7] and on a parametric
version of the Borwein-Preiss smooth variational principle [14].

2. Parametric Borwein-Preiss variational principle with constarints

In this section we include, for completeness, the main results from [14], which
are essential for obtaining the main result concerning perturbed optimal control
problems.

Let (E, ∥.∥) be a Banach space, B the open unit ball in E and Y a convex subset
of E.

Recall that a function g : Y → R is quasi-convex if its sublevel sets L(g, α) :=
{x ∈ Y : g(x) ≤ α} are convex for every α ∈ R. Equivalently, g is quasi-convex
if g(lx + (1 − λ)y) ≤ max{g(x), g(y)}, for every x, y ∈ Y, λ ∈ [0, 1]. Recall that a
multuvalued mapping F : T → E, where T is a topological space, is lower semi-
continuous at x0, if for every open V with V ∩ F (x0) ̸= ∅ there exist an open
U ∋ x0 such that F (x) ∩ V ̸= ∅ for every x ∈ U . Denote by R+ the set of all
positive numbers and by 2Y the set of all non-empty subsets of the set Y .

In the sequel we will use the following lemma, which appears to be a powerful
instrument of variational analysis, since the parametric Borwein-Preiss variational
principle (see below) is based on it, and it gives simple proofs of: Ky Fan’s minimax
inequality [2], extension to quasi-convex functions of minimax equalities (see [2],
Theorems 6.3.2 and 6.3.4]), Sion’s minimax theorem [22], etc.

Lemma 2.1 ([15]). Suppose that X is a paracompact topological space, E is a
Banach space, Y ⊂ E is a closed, convex and nonempty subset, F : X → 2Y is lower
semicontinuous multivalued mapping with convex nonempty images, ε : X → R+ is
a continuous function and the functions f : X × Y → R, g : X → R satisfy the
conditions:

(i) the function f(x, .) is quasi-convex for every x ∈ X;
(ii) the function f(., y) is upper semicontinuous for every y ∈ Y ;
(iii) g is lower semicontinuous and g(x) ≥ inf

y∈(F (x)+ε(x)B)∩Y
f(x, y) > −∞ for

every x ∈ X.
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Then:

(a) there exists a continuous selection φε : X → Y of the mapping Fε (i.e.
φε(x) ∈ Fε(x) for every x ∈ X), where Fε(x) = (F (x) + ε(x)B) ∩ Y , and

(2.1) f(x, φε(x)) < g(x) + ε(x) ∀x ∈ X.

(b) If F (x) is open for every x ∈ X, then there exists a continuous selection φε

of F satisfying (2.1).

Below we present a particular case of a parametric Borwein-Preiss principle with
constrauns, proved in [15] (Theorem 4.2).

Suppose that the following conditions, denoted collectively by hypothesis (H) are
satisfied:

(Ha) P is a compact topological space,
(Hb) E is a Banach space, C ⊂ E is a closed, convex and nonempty set, ε0 > 0

is given, C0 = C + ε0B,
(Hc) the function f : P × E → R is convex and continuous with respect to the

second variable, and bounded on the bounded subsets of C0,
(Hd) the family of functions {f(., x) : x ∈ Y } is equi-continuous for any bounded

subset Y ⊂ C0,
(He) the multivalued mapping C : P → 2C has closed convex and nonempty values

and is lower semi-continuous and Hausdorff upper semi-continuous and ∪p∈PC(p) is
bounded.

Consider the following parameterized minimization problem P:

minimize f(p, x) with respect to x for every p ∈ P ,

under constraints: x ∈ C(p).
Denote distY (x) = infy∈Y ∥x− y∥ - the distance from a point x to a set Y .

Theorem 2.2 ([15]). Assume that the hypothesis (H) is satisfied, inf f(p, C0) > −∞
for every p ∈ P and the norm of the Banach space E is Fréchet differentiable on
E \ {0}. Let the continuous functions ε, l : X → R+, γ : X → R and the numbers
α > 0, q ≥ 1 be given, l be bounded,

(2.2) 0 ≤ γ(p) <
l(p)

2q5q−1
∀p ∈ P,

u : P → C is a continuous mapping satisfying

(2.3) u(p) ∈ C(p)+γ(p)B and f(p, u(p)) < inf
x∈C(p)+γ(p)B

f(p, x)+ε(p) ∀p ∈ P.

Then there exist a continuous selection v of C (solution set mapping) and a contin-
uous function K : P → R+ such that:

(i) ∥v(p)− u(p)∥ < l(p), ∀p ∈ P ,
(ii) the function f(p, x)+∆(p, x) attains its minimum over C(p) at v(p), ∀p ∈ P .
(iii) −∆′

x(p, v(p)) ∈ ∂xL
(
p, v(p),K(p)

)
,

where ∂xL(p, x,K) is the subdifferential of L with respect to the second variable, L
is the Lagrange function given by L(p, x,K) = f(p, x) +KdistC(p)(x),
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(2.4) ∆(p, x) =
∞∑
n=0

µn(p)∥x− xn(p)∥q,

(2.5) µi(p) =
ε(p) + α+K(p)γ(p)

l(p)q
νi(p), for i ≥ 0,

∞∑
i=0

νi(p) = 1,

νi, xi : P → C0 are continuous mappings, and xi(p) converges uniformly for p ∈ P
to v(p).

3. Parameterized optimal control problem for differential
inclusions

Denote by AC([a, b],Rn the space of all absolutely continuous functions from
[a, b] to Rn and define

G(v) =
{
x ∈ AC([a, b],Rn) : ẋ(t) ∈ F (t, v, x(t)), a.e., x(a) = c(v)

}
.

Consider the following parameterized minimization problem P(v):

minimize f(v, x(b)) for every v ∈ V (parameter space)

under constraints: x ∈ G(v).

The aim of this section is to show that under a small perturbation of the cost
function f , there exists a solution of this problem, which depends continuously on
the parameter v. Assume that:

(1) the function f : V × Rn → R, where V is a paracompact space has the
properties:
1.1. f(v, .) is convex and differentiable for every v ∈ V ,
1.2. the functions {f(., z) : z ∈ Y } are equi-continuous for every bounded

subset Y ⊂ Rn;
(2) the multimap F : V ×R×Rn → 2R

n \{∅} has convex compact images with
smooth boundaries (i.e. at any boundary point of any image of F there is
only one supporting hyperplane) and:
2.1. the multimap t 7→ F (v, t, x) is measurable for any x ∈ Rn, v ∈ V ,
2.2. F (t, v, .) is Lipschitz with a Lipschitz constant k(t, v), which is an in-

tegrable function with respect to t and the family {k(t, .) : t ∈ [a, b]} is
equi-continuous,

2.3. F (t, v, .) is a concave multifunction, i.e. for every x1, x2 ∈ E, t ∈
[a, b], v ∈ V and l ∈ [0, 1] we have

λF (t, v, x1) + (1− l)F (t, v, x2) ⊂ F (t, v, λx1 + (1− l)x2);

This property is equivalent to the convexity of the graph of F (t, v, .).
2.4. the mappings {F (t, ., y) : t ∈ [a, b], y ∈ Rn} are equi-Hausdorff contin-

uous,
2.5. there is a continuous function γ : V → R such that ∥z∥ ≤ γ(v)(∥y∥+1)

for all (t, y) ∈ [a, b]×Rn, z ∈ F (t, v, y) (linear growth condition).
(3) the mapping c : V → Rn is continuous.
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Denote by L2
∥.∥a,b the space L2([a, b],Rn) furnished with the following norm:

∥x∥a,b =
(
∥x∥2L2([a,b],Rn) + ||x(a)||2Rn + ||x(b)||2Rn

)1/2
,

which is Fréchet differentiable on L2([a, b],Rn) \ {0}, since the space L2([a, b],Rn)
is Hilbert.

By the above hypotheses and Theorem 1.11 of Chapter 4 in [8] it follows that
G(v) is nonempty compact and convex subset in L2([a, b],Rn), and therefore, in
L2
∥.∥a,b too.

Lemma 3.1. The multivalued mapping G : V → L2
∥.∥a,b is: (a) lower semi-

continuous and (b) Hausdorff upper semi-continuous.

Proof. (a). Let v0 ∈ V , x0 ∈ G(v0) and ε > 0 be given. Denote

K(v) = exp
(∫ b

a
k(t, v)dt

)
and ρF (v, x) =

∫ b

a
distF (t,v,x(t))(ẋ(t))dt.

Since the functions {k(t, .) : t ∈ [a, b]} are equi-continuous, the function K is con-
tinuous, so there exists an open set O1(v0) such that |K(v) − K(v0)| < 1 for ev-

ery v ∈ O1(v0). Take γ ∈
(
0, ε/

(
K(v0)|a− b|(|a− b|+ 1)1/2

))
. Since the map-

pings {F (t, ., y) : t ∈ [a, b], y ∈ Rn} are Hausdorff equi lower semi-continuous and
c : V → Rn is continuous, there exists an open set O2(v0) such that

F (t, v0, x0(t)) ⊂ F (t, v, x0(t)) + γB,

∥c(v)− c(v0)∥ < ε, ∀v ∈ O2(v0), ∀t ∈ [a, b],

hence ρF (v, x0) < γ|a− b|. Using Theorem 3.1.6 in [7], for any v ∈ O1(v0)∩O2(v0)
we obtain existence of a trajectory xv of F (., v, .) such that xv(a) = x0(a) and

∥xv − x0∥2a,b =

∫ b

a
|xv(t)− x0(t)|2dt+ ∥xv − x0∥2Rn

≤ (|a− b|+ 1) max
t∈[a,b]

|xv(t)− x0(t)|2

≤ (|a− b|+ 1)K(v)2ρF (v, x0)
2

≤ (|a− b|+ 1)K(v)2γ2|a− b|2

< ε2.

Defining x̃v = xv + c(v)− c(v0), we have

∥x̃v − x0∥a,b ≤ ∥x̃v − xv∥a,b + ∥xv − x0∥a,b
≤ ε

(
1 + (|a− b|+ 2)1/2

)
,

which proves the lower semi-continuity of G.
(b). Assume the contrary: G is not Hausdorff upper semi-continuous at some

v0. Then there exist ε > 0 and sequences {vi}∞i=1, {xi}∞i=1 such that vi → v0 and
xi ∈ G(vi)\(G(v0)+εB∥.∥a,b). Since the mappings {F (t, ., y) : t ∈ [a, b], y ∈ Rn} are

Hausdorff equi upper semi-continuous, there exists a subsequence {ik} such that

ẋik(t) ∈ F (t, vik , xik(t)) ⊂ F (t, v0, xik(t)) +B∥.∥a,b/k.
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The continuity of γ(v) in the linear growth condition of F (t, v, .) (see 2.5) and
Gronwall’s inequality (see Proposition 1.4 of Chapter 4 in [8]) guarantee the uniform
boundedness of {xik(t) : t ∈ [a, b], k = 1, ...}, therefore, a uniform bound of {xik}
with respect to the norm ∥.∥a,b. Further the proof is the same as the proof of
Theorem 1.11 in Chapter 4 of [8], proving in such a way existence of subsequence
of {xik} converging uniformly (therefore in the norm ∥.∥a,b as well) to a continuous
function x0, which is a trajectory of F (., v0, .) and satisfying x0(a) = c(v0) (here we
used the continuity of c). This means x0 ∈ G(v0), a contradiction. �

Lemma 3.2. Assume that V is a compact topological space. Then the function
φ(v) = infx∈G(v)+εB∥.∥a,b

f(v, x(b)) is lower semi-continuous on V .

Proof. SinceG is Hausdorff upper semi-continuous and V is compact, G(V ) + εB∥.∥a,b
is compact too. Take v0 ∈ V , ε > 0, an open set U ∋ v0 such that G(v) ⊂
G(v0)+ εB∥.∥a,b and f(v0, x(b))− f(v, x(b)) < ε, ∀x ∈ G(V )+ εB∥.∥a,b , v ∈ U (this is

possible by 1.2). For any v ∈ U , take xv ∈ G(v)+ εB∥.∥a,b and yv ∈ G(v0)+ εB∥.∥a,b
such that f(v, xv(b)) < φ(v) + ε and ∥xv − yv∥a,b < ε. Let K be the Lipschitz
constant of f(v0, .) on {x(b) : x ∈ G(V )+εB∥.∥a,b} (such a K exists by boundedness

of f(v0, .) on the bounded subsets and by a basic lemma of convex analysis, see for
instance [16], Lemma 5.23, page 742). Then

φ(v0)− φ(v) < f(v0, yv(b))− f(v, xv(b)) + ε

< f(v0, yv(b))− f(v0, xv(b)) + 2ε

< K∥yv(b)− xv(b)∥Rn + 2ε

< ε(K + 2),

which proves the lower semi-continuity of the function φ. �

Now we state the main result in this paper.

Theorem 3.3. Assume that V is a compact topological space (a parameter space).
Then

(i) for every ε > 0, q > 1 and v ∈ V there exists a solution xε(v)(.) of the
perturbed minimization problem Pε(v):

minimize fε(v, x(b) = f(v, x(b)) + ∆(v, x) for every v ∈ V
under constraints: x ∈ G(v), where

(3.1) ∆(v, x) =

∞∑
n=0

µn(v)
∥∥x− xn(v)

∥∥q
a,b

,

xn : V → L2
∥.∥a,b are continuous mappings converging uniformly for V to

the continuous mapping xε : V → L2
∥.∥a,b, µn : V → [0, 1] are continuous

functions,
∑∞

n=0 µn(v) < ε.
(ii) There exists a mapping pε : V → AC([a, b],Rn) (Hamilton multiplier map-

ping) such that the following necessary conditions for minimum are satisfied:

1) ṗε(v)(t) ∈ ∂
[
−Hx

(
t, xε(v)(t), pε(v)(t), v

)]
+ εB∥.∥a,b ,
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∀v ∈ V, a.e. in [a, b], where H is the Hamiltonian:

H(t, x, p, v) = max{⟨p, w⟩ : w ∈ F (t, x, v)}.
2) pε(v)(b) = −f ′

ε(v, xε(v)(b)) ∀v ∈ V.
(iii) If for every v ∈ V , ẋε(v)(t) ∈ bdF (t, xε(v)(t) a.e., then p is continuous, as

a mapping from V to L2([a, b],Rn).

Proof. We follow the proof of the nonparametric case (see [7], the proof of Theorem
3.2.6), with some modifications.

Put l = 3, α = ε and γ(v) = ε/K(v), where K(v) is given by Theorem 2.2.
Then γ satisfies (2.2) and (ε + K(v)γ(v) + α)/lq < ε. We apply Lemma 2.1 (its
conditions are satisfied due to Lemmas 2, 3) and obtain a continuous selection x̃ε
of the multimap v 7→ G(v) + γB such that

f(v, x̃ε(v)(b)) < inf
x∈G(v)+γ(v)B

f(v, x(b)) + γ(v), ∀v ∈ V.

Applying Theorem 2.2, we obtain a continuous selection xε of the mapping v 7→ G(v)
such that

f(v, xε(v)(b)) + ∆(v, xε) = min
y∈G(v)

(
f(v, y(b)) + ∆(v, y)

)
∀v ∈ V,

where ∆(v, x) is given by (3.1) and
∑∞

n=0 µn(v) < ε. This proves (i).
Further we follow the proof of Theorem 3.2.6 of [7]: the proof of Lemma 2 there

is the same in our parametric situation, but in our case the constants involved are
continuous functions of the parameter v. Define

(3.2) Kexp(v) = exp
(∫ b

a
k(t, v)dt

)
(3.3) K1(v) = K(v)

[
Kexp(v)ln(Kexp(v)) + 1

]
,

(3.4) K2(v) = (b− a+ 1)K1(v)/K(v),

(3.5) K3(v) = Kexp(v)K(v),

(3.6) K4(v) = (b− a+ 1)Kexp(v),

(3.7) f1(v, y) = f(v, y(b))− f(v, x(v)(b)) + γ(v),

(3.8) f2(v, y) = ∆(v, y),

∆(v, y) is given by (3.1),

(3.9) f3(v, y) = (K1(v) + γ(v)K2(v))
∥∥∥y(a)− c(v)

∥∥∥
Rn

,
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(3.10) f4(v, y) =
(
K3(v) + γ(v)K4(v)

)
ρF (v, y),

(3.11) ρF (v, x) =

∫ b

a
distF (t,v,x(t))(ẋ(t))dt,

which is a continuous function.
The functions fi(v, .), i = 1, ..., 4 are convex (the convexity of f4(v, .) is non-

trivial and follows from the concavity of F (t, v, .) (condition 2.3) and convexity of
the images of F ).

So, applying Lemma 2 in the proof or Theorem 3.2.6 of [7] we obtain that xε(v)(.)
is a global minimum of the function

f1(v, .) + f2(v, .) + f3(v, .) + f4(v, .).

Therefore

(3.12) 0 ∈ ∂
(
f1(v, xε(v)) + f2(v, xε(v)) + f3(v, xε(v)) + f4(v, xε(v))

)
.

The functions fi(v, .), i = 1, 2, 3 are Fréchet differentiable and we calculate (as in
the proof of Theorem 3.2.6 in [7]): for any y ∈ L2([a, b],Rn),

(3.13) f ′
3(v, xε(v))(y) =

(
K1(v) + γ(v)K2(v)

)⟨∥∥xε(a)− c(v)
∥∥′
Rn , y(a)

⟩
Rn

;

(3.14) f ′
1(v, xε(v))(y) =

⟨
f ′(v, xε(v)(b)), y(b)⟩Rn ,

this follows from Theorem 2.3.10 in [7];

(3.15) f ′
2(v, xε(v))(y) =

∞∑
n=1

µn(v)q
∥∥∥xn(v)− xε(v)

∥∥∥q−1

L2
a,b

⟨∥∥xn(v)− xε(v)
∥∥′
L2
a,b
, y
⟩
L2
a,b

We put r(v) = f ′
2(v, xε(v)) and note that ∥r(v)(t)∥ < ε for t ∈ [a, b].

In the calculation of the subdifferential of f4(v, .) we use Example 2.7.4 in [7]
and Proposition 2.5.3 in [7]. The distance function distF (t,v,x(t))(ẋ(t)) is Fréchet
differentiable at ẋ(t) and is convex separately with respect to x(t) and ẋ(t).

Let us denote the derivative of (K3(v) + γ(v)K4(v))distF (t,v,xε(t))(.) at ẋε(t) by
sv(t) and

ξv = −f ′
1(v, xε(v))− f ′

2(v, xε(v))− f ′
3(v, xε(v)).

From (3.12) we obtain ξv ∈ ∂f4(v, xε(v)), so by Example 2.7.4 in [7] there exist
measurable functions (q̃v, s̃v) such that

(q̃v(t), s̃v(t)) ∈ ∂
(
K3(v) + γ(v)K4(v)

)
distF (t,v,x(t))(ẋ(t)), a.e.,

where ∂ is the Clarke subdifferential with respect to (xε(t), ẋε(t)), and

(3.16) ξv(y) =

∫ b

a

[⟨
q̃v(t), y(t)

⟩
+

⟨
s̃v(t), ẏ(t)

⟩]
dt, ∀y ∈ C1([a, b],Rn).

By Proposition 2.5.3 of [7] it follows that s̃v(t) = sv(t) a.e. and

q̃v(t) ∈ ∂x

[(
K3(v) + γ(v)K4(v)

)
distF (t,v,x(t))(ẋ(t))

]
, a.e.,

Here ∂x is the subdifferential from convex analysis, with respect to x.
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Further the proof is the same as those of Theorem 3.2.6 in [7], as it follows that
pε(v) = sv - see Lemma 3, page 127 of [7] and the subsequent part of the proof. So
we prove (ii).

Note that pε(v) is zero, if pε(v)(t) is an interior point of F (t, v, x(t).
By (3.13), (3.14), (3.15), ξ is continuous as a mapping from V to L2([a, b],Rn),

and if ẋε(v)(t) ∈ bdF (t, xε(v)(t) a.e., then s is continuous too, as a mapping from
V to L2([a, b],Rn). Then by (3.16), q̃ is continuous too, which proves (iii), since
ṗε(v)(.) = q̃v(.) + r(v)(.). �

Remark 3.4. The condition for smooth boundaries of the images of F is satisfied
on the perturbed mapping Fε defined by Fε(t, v, x) = F (t, v, x) + εBRn .
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