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(3) The symmetry:

d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x)

for all x, y, z ∈ X;
(4) The rectangle inequality: d(x, y, z) ≤ d(x, y, t) + d(y, z, t) + d(z, x, t) for all

x, y, z, t ∈ X.

Then d is called a 2-metric on X and (X, d) is called a 2-metric space which will be
sometimes denoted by X if there is no confusion. Every member x ∈ X is called a
point in X.

Definition 2.2 ([20]). Let (X, d) be a 2-metric space and a, b ∈ X, r ≥ 0. The set

B(a, b, r) = {x ∈ X : d(a, b, x) < r}
is called a 2-ball centered at a and b with radius r. The topology generated by the
collection of all a 2-balls as a subbase is called a 2-metric topology on X.

Definition 2.3 ([25]). Let {xn} be a sequence in a 2-metric space (X, d).

(1) {xn} is said to be convergent to x in (X, d), written limn→∞ xn = x , if for
all a ∈ X , limn→∞ d(xn, x, a) = 0;

(2) {xn} is said to be Cauchy in X if for all a ∈ X, limn,m→∞ d(xn, xm, a)
= 0, that is, for each ϵ > 0, there exists n0 such that d(xn, xm, a) < ϵ for all
n,m ≥ n0 and a ∈ X;

(3) (X, d) is said to be complete if every Cauchy sequence is a convergent se-
quence.

Definition 2.4 ([25]). A 2-metric space (X, d) is said to be compact if every se-
quence in X has a convergent subsequence.

Lemma 2.5 ([25]). Every a 2-metric space is a T1-space.

Lemma 2.6 ( [25]). limn→∞ xn = x in a 2-metric space (X, d) if and only if
limn→∞ xn = x in the 2-metric topological space X.

Lemma 2.7 ([25]). If T : X → Y is a continuous map from a 2-metric space X to
a 2-metric space Y, then limn→∞ xn = x in X implies limn→∞ Txn = Tx in Y.

It is straight forward from above definitions, that every 2-metric is non-negative
and every 2-metric space contains at least three distinct points. A 2-metric d(x, y, z)
is sequentially continuous in one argument. Moreover, if a 2-metric d(x, y, z) is
sequentially continuous in two arguments, then it is sequentially continuous in all
three arguments (see [32]). A convergent sequence in a 2-metric space need not be a
Cauchy sequence (see [32]). In a 2-metric space (X, d), every convergent sequence is
a Cauchy sequence if d is continuous (see [32]). There exists a 2-metric space (X, d)
such that every convergent sequence is a Cauchy sequence but d is not continuous
(see [32]).

Chatterjea in [12] introduced the notion of a C-contraction as follows.

Definition 2.8. Let (X, d) be a metric space and T : X → X be a mapping. Then
T is called a C-contraction if there exists a ∈ [0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ≤ a

2
[d(x, Ty) + d(y, Tx)].
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This notion was generalized to a weak C-contraction by Choudhury in [13].

Definition 2.9. Let (X, d) be a metric space and T : X → X be a mapping.
Then T is called a weak C-contraction if there exists ψ : [0,∞)2 → [0,∞) which is
continuous and ψ(s, t) = 0 if and only if s = t = 0 such that

d(Tx, Ty) ≤ 1

2
[d(x, Ty) + d(y, Tx)]− ψ(d(x, Ty), d(y, Tx))

for all x, y ∈ X.

Samet et al. [38] defined the notion of an α-admissible mapping as follows.

Definition 2.10. Let T be a self-mapping on a non-empty set X and α : X×X →
[0,+∞) be a function. We say that T is an α-admissible mapping if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

In [38] the authors consider the family Ψ of non-decreasing functions ψ : [0,+∞) →
[0,+∞) such that

∑+∞
n=1 ψ

n(t) < +∞ for each t > 0, where ψn is the n-th iterate
of ψ and give the following theorem.

Theorem 2.11. Let (X, d) be a complete metric space and T be an α-admissible
mapping such that

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y))(2.1)

for all x, y ∈ X, where ψ ∈ Ψ. Suppose that the following assertions hold:

(i) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,
(ii) either T is continuous or for any sequence {xn} in X with α(xn, xn+1)

≥ 1 for all n ∈ N ∪ {0} and xn → x as n → +∞, we have α(xn, x) ≥ 1 for
all n ∈ N ∪ {0}.

Then T has a fixed point.

Salimi et al. [39] modified and generalized the notions of α-ψ-contractive and
α-admissible mappings as follows.

Definition 2.12 ([39]). Let T be a self-mapping on a non-empty set X and α, η :
X × X → [0,+∞) be two functions. We say that T is an α-admissible mapping
with respect to η if

x, y ∈ X, α(x, y) ≥ η(x, y) =⇒ α(Tx, Ty) ≥ η(Tx, Ty).

Note that if we take η(x, y) = 1 then this definition reduces to Definition 2.10. Also,
if we take α(x, y) = 1 then we say that T is an η-subadmissible mapping.

Recently Karapinar et al. [27] introduced the notion of triangular α-admissible
mapping as follows.

Definition 2.13 ( [27]). Let X be a non-empty set and T : X → X and α :
X × X → (−∞,+∞) be two given mappings. We say that T is a triangular α-
admissible mapping if

(1) x, y ∈ X, α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1, x, y ∈ X,
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(2) x, y ∈ X,

{
α(x, z) ≥ 1
α(z, y) ≥ 1

implies α(x, y) ≥ 1.

Motivated by Karapinar et al. [27] and Salimi et al. [39], Fathollahi et al. [19]
introduced the following notion.

Definition 2.14. Let (X, d) be a 2-metric space and T : X → X and α, η :
X×X×X → [0,+∞) be mappings. We say that T is a triangular 2-α-η-admissible
mapping if for all a ∈ X,

(1) x, y ∈ X, α(x, y, a) ≥ η(x, y, a) implies α(Tx, Ty, a) ≥ η(Tx, Ty, a),

(2) x, y ∈ X,

{
α(x, z, a) ≥ η(x, z, a)
α(z, y, a) ≥ η(z, y, a)

implies α(x, y, a) ≥ η(x, y, a).

If we take η(x, y, a) = 1, then we say that T is a triangular 2-α-admissible mapping.
Also, if we take α(x, y, a) = 1, then we say T is a triangular 2-η- subadmissible
mapping.

Example 2.15. Let X = [0,∞). Define T : X → X and α, η : X × X × X →
[0,+∞) by Tx = 1

4x,

α(x, y, a) =

{
a2 + 2, if x, y ∈ [0, 1]
0, otherwise

and η(x, y, a) = a2 + 1. Then T is a triangular 2-α-η-admissible mapping.

Lemma 2.16. Let (X, d) be a 2-metric space and T : X → X be a triangular 2-α-
η-admissible mapping. Assume that there exists x0 ∈ X such that α(x0, Tx0, a) ≥
η(x0, Tx0, a) for all a ∈ X. Define sequence {xn} by xn = Tnx0. Then

α(xm, xn, a) ≥ η(xm, xn, a) for all m,n ∈ N with m < n and for all a ∈ X

Definition 2.17. Let (X, d) be a 2-metric space. Let α, η : X ×X ×X → [0,∞)
and T : X → X. We say T is a 2-α-η-continuous on (X, d), if

xn → x as n→ ∞, α(xn, xn+1, a) ≥ η(xn, xn+1, a) for alln ∈ N and

a ∈ X =⇒ Txn → Tx. If we take η(x, y, a) = 1, then we say that T is a 2-
α-continuous mapping. Also, if we take α(x, y, a) = 1, then we say T is a 2-η-
continuous mapping.

Example 2.18. Let X = [0,∞) and d(x, y, a) = min{|x − y|, |y − a|, |x − a|}.
Assume that the mapping T : X → X and α, η : X3 → [0,+∞) are defined by

Tx =

 x2, if x ∈ [0, 1]

lnx+ 2, if x ∈ (1,∞),

α(x, y, a) =

 1, if x, y ∈ [0, 1]

0, otherwise
and η(x, y, a) = 1.

Clearly T is not continuous, but T is a 2-α-η-continuous on (X, d). Indeed, if
xn → x as n → ∞ and α(xn, xn+1, a) ≥ η(xn, xn+1, a) = 1, then xn ∈ [0, 1] and
limn→∞ Txn = limn→∞ x2n = x2 = Tx.
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Motivated by the above mentioned developments, we first generalize the concepts
of a 2-α-η-admissible mapping with weak and rational α-η-ψ-
contractions using some auxiliary functions and establish the existence and unique-
ness of fixed points for such mappings in complete 2-metric spaces. As an application
of obtained results, we prove some fixed point theorems in partially ordered 2-metric
spaces. The presented theorems generalize and improve many existing results in the
literature. Moreover, some examples and an application to integral equations are
provided to illustrate the usability of the proved results.

3. Fixed point results for weak α-η-C-contraction mappings

Definition 3.1. We say that f : [0,∞)2 −→ R is a C-class function if it is continuous
and satisfies

(1) f(s, t) ≤ s;
(2) f(s, t) = s =⇒ s = 0 or t = 0.

Example 3.2. The following functions f : [0,∞)2 → R are elements of C. For all
s, t ∈ [0,∞), we have

(1) f(s, t) = s− t, f(s, t) = s =⇒ t = 0;

(2) f(s, t) = (s−t)
(1+t) , f(s, t) = s =⇒ t = 0;

(3)f(s, t) = s
(1+t) , f(s, t) = s =⇒ s = 0 or t = 0;

(4) f(s, t) = log (t+as)
(1+t) , a > 1, f(s, t) = s =⇒ s = 0 or t = 0;

(5) f(s, 1) = ln (1+as)
2 , a > e, f(s, 1) = s =⇒ s = 0;

(6) f(s, t) = (s+ l)(1/(1+t)) − l, l > 1, f(s, t) = s =⇒ t = 0.

Denote with Ψ the family of continuous functions ψ : [0,∞)2 → [0,∞) such that
ψ(s, t) > 0 if s ̸= 0 or t ̸= 0 and ψ(0, 0) ≥ 0.

Definition 3.3. Let (X, d) be a 2-metric space and T : X → X, α, η : X×X×X →
[0,+∞) and f ∈ C. Then

• T is a weak α− η − f − C-contraction mapping if

x, y ∈ X, α(x, y, a) ≥ η(x, y, a) =⇒ d(Tx, Ty, a)

≤ f
(1
2
[d(x, Ty, a) + d(y, Tx, a)], ψ(d(x, Ty, a), d(y, Tx, a))

)
for all a ∈ X where ψ ∈ Ψ.

• T is a modified weak α− f − C-contraction mapping if

x, y ∈ X, α(x, y, a) ≥ 1 =⇒ d(Tx, Ty, a)

≤ f
(1
2
[d(x, Ty, a) + d(y, Tx, a)], ψ(d(x, Ty, a), d(y, Tx, a))

)
for all a ∈ X where ψ ∈ Ψ.

• T is a modified weak η − f − C-contraction mapping if

x, y ∈ X, η(x, y, a) ≤ 1 =⇒ d(Tx, Ty, a)

≤ f
(1
2
[d(x, Ty, a) + d(y, Tx, a)], ψ(d(x, Ty, a), d(y, Tx, a))

)
for all a ∈ X where ψ ∈ Ψ.
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• T is a weak α− f − C-contraction mapping of type (I) if

α(x, y, a)d(Tx, Ty, a)

≤ f
(1
2
[d(x, Ty, a) + d(y, Tx, a)], ψ(d(x, Ty, a), d(y, Tx, a))

)
for all x, y, a ∈ X where ψ ∈ Ψ.

• T is a weak η− f −C-contraction mapping of type (I) iff is increasing with
respect to first variable and

d(Tx, Ty, a)

≤ f
(η(x, y, a)

2
[d(x, Ty, a) + d(y, Tx, a)], ψ(d(x, Ty, a), d(y, Tx, a))

)
for all x, y, a ∈ X where ψ ∈ Ψ.

• T is a weak α− f − C-contraction mapping of type (II) if

(α(x, y, a) + ℓ)d(Tx, Ty, a)

≤ (1 + ℓ)
f
(1
2
[d(x, Ty, a) + d(y, Tx, a)], ψ(d(x, Ty, a), d(y, Tx, a))

)
for all x, y, a ∈ X where ψ ∈ Ψ and ℓ > 0,

• T is a weak η − f − C-contraction mapping of type (II) if

(1 + ℓ)d(Tx, Ty, a)

≤ (η(x, y, a) + ℓ)
f
(1
2
[d(x, Ty, a) + d(y, Tx, a)], ψ(d(x, Ty, a), d(y, Tx, a))

)
for all x, y, a ∈ X, ℓ > 0 and ψ ∈ Ψ.

Now we are ready to state and prove our first main result of this section.

Theorem 3.4. Let (X, d) be a complete 2-metric space. Assume, T : X → X is a
weak α-η-f − C-contraction mapping satisfying the following assertions:

(i) T is a triangular 2-α-η-admissible mapping;
(ii) there exists x0 in X such that, α(x0, Tx0, a) ≥ η(x0, Tx0, a) for all a ∈ X;
(iii) T is continuous or 2-α-η-continuous or,
(iv) if {xn} is a sequence in X such that α(xn, xn+1, a) ≥ η(xn, xn+1, a) for all

a ∈ X and xn → x as n → ∞, then α(xn, x, a) ≥ η(xn, x, a) for all n ∈ N
and all a ∈ X.

Then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0, Tx0, a) ≥ η(x0, Tx0, a) for all a ∈ X. Define a
sequence {xn} by xn = Tnx0 for all n ∈ N. Now, since T is a triangular 2-α-η-
admissible mapping, so by Lemma 2.16, we have

(3.1) α(xm, xn, a) ≥ η(xm, xn, a) for all m,n ∈ N with m < n and for all a ∈ X.



SOME FIXED POINT RESULTS FOR WEAK CONTRACTION MAPPINGS 483

From (3.1), we deduce
(3.2)
d(xn+1, xn, a)

= d(Txn, Txn−1, a)

≤ f
(1
2
[d(xn, Txn−1, a) + d(xn−1, Txn, a)], ψ(d(xn, Txn−1, a), d(xn−1, Txn, a))

)
= f

(1
2
[d(xn, xn, a) + d(xn−1, xn+1, a)], ψ(d(xn, xn, a), d(xn−1, xn+1, a))

)
= f

(1
2
d(xn−1, xn+1, a), ψ(0, d(xn−1, xn+1, a))

)
≤ 1

2
d(xn−1, xn+1, a),

for all a ∈ X. By taking a = xn−1 in (3.2), we get d(xn+1, xn, xn−1) ≤ 0. i.e.,

(3.3) d(xn+1, xn, xn−1) = 0

and so by (3.2) and (3.3), we have

(3.4)

d(xn+1, xn, a) ≤
1

2
d(xn−1, xn+1, a)

≤ 1

2
[d(xn−1, xn, a) + d(xn, xn+1, a) + d(xn−1, xn, xn+1)]

≤ 1

2
[d(xn−1, xn, a) + d(xn, xn+1, a)],

which implies

(3.5) d(xn+1, xn, a) ≤ d(xn−1, xn, a).

Hence, the sequence {d(xn+1, xn, a)} is decreasing in R+ and so it is convergent to
r ∈ R+. i.e., limn→∞ d(xn+1, xn, a) = r. Taking limit in (3.4), we get

r ≤ 1

2
lim
n→∞

d(xn−1, xn+1, a) ≤
1

2
(r + r) = r

and then

(3.6) lim
n→∞

d(xn−1, xn+1, a) = 2r.

By taking limit as n→ ∞ in (3.2) and applying (3.6), we get

r ≤ f(
1

2
(2r), ψ(0, 2r)) ≤ r

this implies r = 0 or ψ(0, 2r) = 0. i.e., r = 0. Hence

(3.7) lim
n→∞

d(xn+1, xn, a) = 0.

If d(xn−1, xn, a) = 0, then by (3.5), we have d(xn+1, xn, a) = 0. Since, d(x0, x1, x0) =
0, we have d(xn, xn+1, x0) = 0 for all n ∈ N.
Since d(xm−1, xm, xm) = 0, we have

(3.8) d(xn, xn+1, xm) = 0
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for all n ≥ m − 1. For 0 ≤ n < m − 1, noting that m − 1 ≥ n + 1, from (3.8), we
have

d(xm−1, xm, xn+1) = d(xm−1, xm, xn) = 0

which implies

d(xn, xn+1, xm) ≤ d(xn, xn+1, xm−1) + d(xn+1, xm, xm−1) + d(xm, xn, xm−1)

= d(xn, xn+1, xm−1).(3.9)

Now, since, d(xn, xn+1, xn+1) = 0, from (3.9), we get

(3.10) d(xn, xn+1, xm) = 0

for all 0 ≤ n < m − 1. Hence, from (3.8) and (3.10), we have d(xn, xn+1, xm) = 0
for all m,n ∈ N. Now for all i, j, k ∈ N with i < j,, we have d(xj−1, xj , xi) =
d(xj−1, xj , xk) = 0. Hence, we obtain

d(xi, xj , xk) ≤ d(xi, xj , xj−1) + d(xj , xk, xj−1) + d(xk, xi, xj−1)

= d(xi, xj−1, xk) ≤ . . . ≤ d(xi, xi, xk) = 0.

That is, for all i, j, k ∈ N, we have

(3.11) d(xi, xj , xk) = 0.

We now show that {xn} is a Cauchy sequence. Suppose to the contrary that {xn}
is not a Cauchy sequence. Then there is ε > 0 and sequences {m(k)} and {n(k)}
such that for all positive integers k,

(3.12) n(k) > m(k) > k, d(xn(k), xm(k), a) ≥ ε and d(xn(k)−1, xm(k), a) < ε.

From (3.11) and (3.12), we deduce

(3.13)

ϵ ≤ d(xn(k), xm(k), a)

≤ d(xn(k), xn(k)−1, a) + d(xn(k)−1, xm(k), a)

+ d(xn(k), xm(k), xn(k)−1)

= d(xn(k), xn(k)−1, a) + d(xn(k)−1, xm(k), a)

< d(xn(k), xn(k)−1, a) + ϵ.

Taking limit as k → ∞ in the above inequality and applying (3.7), we get

(3.14) lim
k→∞

d(xn(k), xm(k), a) = lim
k→∞

d(xn(k)−1, xm(k), a) = ϵ.

Also by (3.11), we get

(3.15)

d(xm(k), xn(k)−1, a)

≤ d(xm(k), xm(k)−1, a) + d(xm(k)−1, xn(k)−1, a) + d(xm(k), xn(k)−1, xm(k)−1)

= d(xm(k), xm(k)−1, a) + d(xm(k)−1, xn(k)−1, a)

≤ d(xm(k), xm(k)−1, a) + d(xm(k)−1, xn(k), a) + d(xn(k)−1, xn(k), a)

+ d(xm(k)−1, xn(k)−1, xn(k))

= d(xm(k), xm(k)−1, a) + d(xm(k)−1, xn(k), a) + d(xn(k)−1, xn(k), a),
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and

(3.16)

d(xm(k)−1, xn(k), a)

≤ d(xm(k)−1, xm(k), a) + d(xn(k), xm(k), a) + d(xm(k)−1, xn(k), xm(k))

= d(xm(k)−1, xm(k), a) + d(xn(k), xm(k), a).

By taking limit as k → ∞ in (3.15) and (3.16) and applying (3.7) and (3.14), we
have

(3.17) lim
k→∞

d(xm(k)−1, xn(k), a) = ϵ.

Now since, n(k) > m(k) then by (3.1), we have

α(xm(k)−1, xn(k)−1, a) ≥ η(xm(k)−1, xn(k)−1, a)

for all a ∈ X. So by (3.1), we get

ϵ ≤ d(xm(k), xn(k), a)

= d(Txm(k)−1, Txn(k)−1, a)

≤ f
(1
2
[d(xm(k)−1, Txn(k)−1, a) + d(xn(k)−1, Txm(k)−1, a)],

ψ(d(xm(k)−1, Txn(k)−1, a), d(xn(k)−1, Txm(k)−1, a))
)

= f
(1
2
[d(xm(k)−1, xn(k), a) + d(xn(k)−1, xm(k), a)],

ψ(d(xm(k)−1, xn(k), a), d(xn(k)−1, xm(k), a))
)
.

Taking limit as k → ∞ in above inequality and applying (3.14), (3.17) and
continuity of ψ, we deduce

ϵ ≤ f
(1
2
[ϵ+ ϵ], ψ(ϵ, ϵ)

)
≤ ϵ

and so ϵ = 0, or ψ(ϵ, ϵ) = 0. That is ϵ = 0 which is a contradiction. Hence {xn}
is a Cauchy sequence. Now, since (X, d) is a complete 2-metric space, then there
exists x∗ ∈ X such that limn→∞ xn = x∗. At first we assume (iii) holds. That is, T
is continuous. Then

x∗ = lim
n→∞

xn+1 = lim
n→∞

Txn = Tx∗.

That is, x∗ is a fixed point of T . If T is 2-α-η-continuous on X, xn → x∗ as n→ ∞
and α(xn, xn+1, a) ≥ η(xn, xn+1, a), then we have

Tx∗ = lim
n→∞

Txn = lim
n→∞

xn+1 = x∗.
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So x∗ is a fixed point of T . Next we assume (iv) holds. That is, α(xn, x
∗, a) ≥

η(xn, x
∗, a) for all n ∈ N and all a ∈ X. Then by (3.1), we get

d(xn+1, Tx
∗, a)

= d(Txn, Tx
∗, a)

≤ f
(1
2
[d(xn, Tx

∗, a) + d(x∗, Txn, a)], ψ(d(xn, Tx
∗, a), d(x∗, Txn, a))

)
= f

(1
2
[d(xn, Tx

∗, a) + d(x∗, xn+1, a)], ψ(d(xn, Tx
∗, a), d(x∗, xn+1, a))

)
.

Taking limit as n→ ∞ in the above inequality we get

d(x∗, Tx∗, a)

≤ f
(1
2
[d(x∗, Tx∗, a) + d(x∗, x∗, a)], ψ(d(x∗, Tx∗, a), d(x∗, x∗, a))

)
≤ f

(1
2
d(x∗, Tx∗, a), ψ(d(x∗, Tx∗, a), 0)

)
≤ 1

2
d(x∗, Tx∗, a)

which implies, d(x∗, Tx∗, a) = 0. i.e., x∗ = Tx∗. �

If we take f(s, t) = s− t in Theorem 3.4, we obtain following main result in [19]
as corollary.

Corollary 3.5 (Theorem 2.1 [19]). Let (X, d) be a complete 2-metric space. Assume
that T : X → X is a weak α-η-C-contraction mapping satisfying the following
assertions:

(i) T is a triangular 2-α-η-admissible mapping;
(ii) there exists x0 in X such that, α(x0, Tx0, a) ≥ η(x0, Tx0, a) for all a ∈ X;
(iii) T is continuous or 2-α-η-continuous or,
(iv) if {xn} is a sequence in X such that α(xn, xn+1, a) ≥ η(xn, xn+1, a) for all

a ∈ X and xn → x as n → ∞, then α(xn, x, a) ≥ η(xn, x, a) for all n ∈ N
and all a ∈ X.

Then T has a fixed point.

By taking η(x, y, a) = 1 in Theorem 3.4, we obtain following results.

Corollary 3.6. Let (X, d) be a complete 2-metric space. Assume that T : X → X
is a modified weak α-f −C-contraction mapping satisfying the following assertions:

(i) T is a triangular 2-α-admissible mapping;
(ii) there exists x0 in X such that, α(x0, Tx0, a) ≥ 1 for all a ∈ X;
(iii) T is continuous or 2-α-continuous or,
(iv) if {xn} is a sequence in X such that α(xn, xn+1, a) ≥ 1 for all a ∈ X and

xn → x as n→ ∞, then α(xn, x, a) ≥ 1 for all n ∈ N and all a ∈ X.

Then T has a fixed point.

Example 3.7. Let X = [0,∞). We define a 2-metric d on X by

d(x, y, a) = min{|x− y|, |y − a|, |x− a|}.
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Clearly (X, d) is a complete 2-metric space. Define, T : X → X, ψ : [0,∞)2 →
[0,∞), α : X ×X ×X → [0,∞), and f : [0,∞)2 → R as follows:

Tx =



e
5 if x ∈ [0, 2]

x7 + x5 + 1, if x ∈ (2, 8]

log3 x+ cosx+ 2, if x ∈ (8, 14]

|x2 + x− 225|, if x ∈ (14,∞)

and α(x, y, a) =


1, if x, y ∈ [0, 2]

1
2 , otherwise,

f(s, t) =
s

1 + t
, ψ(s, t) = 1.

Now, we prove that all the hypotheses of Corollary 3.6 (Theorem 3.4) are satisfied
and hence T has a fixed point.

Proof. Let x, y, a ∈ X, if α(x, y, a) ≥ 1 then x, y ∈ [0, 2]. On the other hand for all
w ∈ [0, 2], we have Tw ≤ 2. Hence α(Tx, Ty, a) ≥ 1 for all a ∈ X. This implies
that T is a 2-α-admissible mapping. Clearly, α(0, T0, a) ≥ 1 for all a ∈ X. Now, if
{xn} is a sequence in X such that α(xn, xn+1, a) ≥ 1 for all n ∈ N∪ {0} and a ∈ X
and xn → x as n→ +∞. Then {xn} ⊆ [0, 2] and hence x ∈ [0, 2]. This implies that
α(xn, x, a) ≥ 1 for all n ∈ N ∪ {0} and all a ∈ X.

Let α(x, y, a) ≥ 1. Then x, y ∈ [0, 2] and hence

d(Tx, Ty, a) = 0 ≤ 1

4
[d(x, Ty, a) + d(y, Tx, a)]

=
1
2 [d(x, Ty, a) + d(y, Tx, a)]

1 + 1

=
1
2 [d(x, Ty, a) + d(y, Tx, a)]

1 + ψ(d(x, Ty, a), d(y, Tx, a))
.

That is,

α(x, y, a) ≥ 1 =⇒ d(Tx, Ty, a) ≤
1
2 [d(x, Ty, a) + d(y, Tx, a)]

1 + ψ(d(x, Ty, a), d(y, Tx, a))

for all a ∈ X. Hence, T is a modified weak α-f −C-contraction mapping. Then, all
the hypotheses of the Corollary 3.6 (Theorem 3.4) are satisfied and hence T has a
fixed point. �

By taking α(x, y, a) = 1 in Theorem 3.4 we have the following Corollary.

Corollary 3.8. Let (X, d) be a complete 2-metric space. Assume that T : X → X
is a modified weak η-f − C-contraction mapping such that satisfying the following
assertions:

(i) T is a triangular 2-η-subadmissible mapping;
(ii) there exists x0 in X such that, η(x0, Tx0, a) ≤ 1 for all a ∈ X;
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(iii) T is continuous or 2-η-continuous or,
(iv) if {xn} is a sequence in X such that η(xn, xn+1, a) ≤ 1 for all a ∈ X and

xn → x as n→ ∞, then η(xn, x, a) ≤ 1 for all n ∈ N and all a ∈ X.

Then T has a fixed point.

Corollary 3.9. Let (X, d) be a complete 2-metric space. Assume that T : X → X
is a weak α-f − C-contraction mapping of type (I) or weak α-f − C-contraction
mapping of type (II) satisfying the following assertions:

(i) T is a triangular 2-α-admissible mapping;
(ii) there exists x0 in X such that, α(x0, Tx0, a) ≥ 1 for all a ∈ X;
(iii) T is continuous or 2-α-continuous or,
(iv) if {xn} is a sequence in X such that α(xn, xn+1, a) ≥ 1 for all a ∈ X and

xn → x as n→ ∞, then α(xn, x, a) ≥ 1 for all n ∈ N and all a ∈ X.

Then T has a fixed point.

Corollary 3.10. Let (X, d) be a complete 2-metric space. Assume that T : X → X
is a weak η-f − C-contraction mapping of type (I) or weak α-f − C-contraction
mapping of type (II) satisfying the following assertions:

(i) T is a triangular 2-η-admissible mapping;
(ii) there exists x0 in X such that, η(x0, Tx0, a) ≤ 1 for all a ∈ X;
(iii) T is continuous or 2-η-continuous or,
(iv) if {xn} is a sequence in X such that η(xn, xn+1, a) ≤ 1 for all a ∈ X and

xn → x as n→ ∞, then η(xn, x, a) ≤ 1 for all n ∈ N and all a ∈ X.

Then T has a fixed point.

(A) for all x, y ∈ X where α(x, y, a) < η(x, y, a) and α(y, x, a) < η(y, x, a) for
all a ∈ X, there exists z ∈ X such that α(x, z, a) ≥ η(x, z, a) or α(z, x, a) ≥
η(z, x, a) and α(y, z, a) ≥ η(y, z, a) or α(z, y, a) ≥ η(z, y, a) for all a ∈ X.

Theorem 3.11. Adding condition (A) to the hypotheses of Theorem 3.4 (resp.
Corollary 3.6, 3.8, 3.9 and 3.10) we obtain uniqueness of the fixed point of T.

Proof. Assume that x∗ and y∗ are two fixed points of T. We consider to following
cases:
Case 1: Let, α(x∗, y∗, a) ≥ η(x∗, y∗, a) or α(y∗, x∗, a) ≥ η(y∗, x∗, a) for all a ∈ X.
Then from (3.1), we have

d(Tx∗, T y∗, a)

≤ f(
1

2
[d(x∗, T y∗, a) + d(y∗, Tx∗, a)], ψ(d(x∗, T y∗, a), d(y∗, Tx∗, a)))

for all a ∈ X. This implies that

d(x∗, y∗, a) ≤ f(d(x∗, y∗, a), ψ(d(x∗, y∗, a), d(x∗, y∗, a))) ≤ d(x∗, y∗, a).

That is, ψ(d(x∗, y∗, a), d(x∗, y∗, a)) = 0 for all a ∈ X. So, d(x∗, y∗, a) = 0 for all
a ∈ X. Hence x∗ = y∗.
Case 2: Let α(x∗, y∗, a) < η(x∗, y∗, a) and α(y∗, x∗, a) < η(y∗, x∗, a) for all a ∈ X.
From (A) there exists z ∈ X such that

α(x∗, z, a) ≥ η(x∗, z, a) or α(z, x∗, a) ≥ η(z, x∗, a)
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and

α(y∗, z, a) ≥ η(y∗, z, a) or α(z, y∗, a) ≥ η(z, y∗, a)

Without loss of generality, we can assume

α(x∗, z, a) ≥ η(x∗, z, a) and α(y∗, z, a) ≥ η(y∗, z, a)

Now, since T is a triangular 2− α− η-admissible mapping, then

α(Tx∗, T (Tn−1z), a) ≥ η(Tx∗, T (Tn−1z), a), α(Ty∗, T (Tn−1z), a)

≥ η(Ty∗, T (Tn−1z), a)

for all n ∈ N ∪ 0 and all a ∈ X. Then from (3.1), we get

d(Tx∗, T (Tn−1z), a) ≤ f(
1

2
[d(x∗, T (Tn−1z), a) + d(Tn−1z, Tx∗, a)],

ψ(d(x∗, T (Tn−1z), a), d(Tn−1z, Tx∗, a)))

which implies that

(3.18)

d(x∗, Tnz, a)

≤ f
(1
2
[d(x∗, Tnz, a) + d(x∗, Tn−1z, a)], ψ(d(x∗, Tnz, a), d(x∗, Tn−1z, a))

)
≤ 1

2
[d(x∗, Tnz, a) + d(x∗, Tn−1z, a)]

which also implies that d(x∗, Tnz, a) ≤ d(x∗, Tn−1z, a). Then there exists ℓ ∈ R
such that limn→∞ d(x∗, Tnz, a) = ℓ. By taking limit as n→ ∞ in (3.18), we get

ℓ ≤ f
(1
2
(ℓ+ ℓ), ψ(ℓ, ℓ)

)
≤ ℓ

and so ℓ = 0 or ψ(ℓ, ℓ) = 0. Therefore ℓ = 0. That is, limn→∞ Tnz = x∗. Similarly,
we can deduce that limn→∞ Tnz = y∗. Then by Lemma 2.5, we get x∗ = y∗. �

Remark 3.12. Several more consequences can be obtained using the other func-
tions f ∈ C given in Example 3.12, and/or some other concrete choices of control
functions involved here.

4. Fixed point results for rational contraction in 2-metric spaces

In this section, we prove certain fixed point theorems for rational contraction
mapping via a triangular 2-α-η-admissible mapping.
Denote with Ψφ the family of continuous functions φ : [0,∞) → [0,∞) such that
φ(t) > 0 if t ̸= 0 and φ(0) ≥ 0.

Definition 4.1. Let (X, d) be a 2-metric space and α, η : X ×X ×X → [0,+∞)
be three mappings and f ∈ C. A mapping T : X → X is called

• T is a modified rational α-η-φ-f -contraction mapping if

x, y ∈ X, α(x, y, a) ≥ η(x, y, a) =⇒ d(Tx, Ty, a) ≤ f(M(x, y, a), φ(M(x, y, a)))(4.1)
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for all a ∈ X where φ ∈ Ψφ and

M(x, y, a) = max

{
d(x, y, a), d(x, Tx, a), d(y, Ty, a),

d(x, Ty, a) + d(y, Tx, a)

2
,

d(x, Tx, a)d(y, Ty, a)

1 + d(Tx, Ty, a)

}
• T is a modified rational α-φ-f -contraction mapping if

x, y ∈ X, α(x, y, a) ≥ 1 =⇒ d(Tx, Ty, a) ≤ f(M(x, y, a), φ(M(x, y, a)))

for all a ∈ X where φ ∈ Ψφ.
• T is a modified rational η-φ-f -contraction mapping if

x, y ∈ X, η(x, y, a) ≤ 1 =⇒ d(Tx, Ty, a) ≤ f(M(x, y, a), φ(M(x, y, a)))

for all a ∈ X where φ ∈ Ψφ.
• T is a rational α-φ-f -contraction mapping if

α(x, y, a)d(Tx, Ty, a) ≤ f(M(x, y, a), φ(M(x, y, a)))

for all x, y, a ∈ X where φ ∈ Ψφ.
• We say that T is a rational η-φ-f -contraction mapping if f is increasing
with respect to first variable and

d(Tx, Ty, a) ≤ f(η(x, y, a)M(x, y, a), φ(M(x, y, a)))

for all x, y, a ∈ X where φ ∈ Ψφ.

Theorem 4.2. Let (X, d) be a complete 2-metric space. Assume that T : X → X is
a modified rational α-η-φ-f-contraction mapping satisfying the following assertions:

(i) T is a triangular 2-α-η-admissible mapping;
(ii) there exists x0 in X such that, α(x0, Tx0, a) ≥ η(x0, Tx0, a) for all a ∈ X;
(iii) T is continuous or 2-α-η-continuous or,
(iv) if {xn} is a sequence in X such that α(xn, xn+1, a) ≥ η(xn, xn+1, a) for all

a ∈ X and xn → x as n → ∞, then α(xn, x, a) ≥ η(xn, x, a) for all n ∈ N
and all a ∈ X.

Then T has a fixed point.

Proof. Let x0 ∈ X such that α(x0, Tx0, a) ≥ η(x0, Tx0, a) for all a ∈ X. Define a
sequence {xn} by xn = Tnx0 for all n ∈ N. Now, since T is a triangular 2-α-η-
admissible mapping, so by Lemma 2.16, we have

(4.2) α(xm, xn, a) ≥ η(xm, xn, a) for all m,n ∈ N with m < n and for all a ∈ X.

From (4.1), we deduce
(4.3)

d(xn+1, xn, a) = d(Txn, Txn−1, a) ≤ f(M(xn, xn−1, a), φ(M(xn, xn−1, a)))
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where,

M(xn, xn−1, a)

= max

{
d(xn, xn−1, a), d(xn, Txn, a), d(xn−1, Txn−1, a),

d(xn, Txn−1, a), d(xn−1, Txn, a)

2
,
d(xn, Txn, a)d(xn−1, Txn−1, a)

1 + d(Txn, Txn−1, a)

}
= max

{
d(xn, xn−1, a), d(xn, xn+1, a), d(xn−1, xn, a),

d(xn, xn, a) + d(xn−1, xn+1, a)

2
,
d(xn, xn+1, a)d(xn−1, xn, a)

1 + d(xn+1, xn, a)

}
= max

{
d(xn, xn−1, a), d(xn, xn+1, a),

d(xn−1, xn+1, a)

2
,

d(xn, xn+1, a)d(xn−1, xn, a)

1 + d(xn+1, xn, a)

}
≤ max

{
d(xn, xn−1, a), d(xn, xn+1, a),

d(xn−1, xn+1, a)

2
,

(1 + d(xn, xn+1, a))d(xn−1, xn, a)

1 + d(xn+1, xn, a)

}
= max

{
d(xn, xn−1, a), d(xn, xn+1, a),

d(xn−1, xn+1, a)

2

}
and so

M(xn, xn−1, a) = max
{
d(xn, xn−1, a), d(xn, xn+1, a),

d(xn−1, xn+1, a)

2

}
.

By taking a = xn−1 in (4.3), we have

d(xn+1, xn, xn−1) ≤ f(d(xn, xn+1, xn−1), φ(d(xn, xn+1, xn−1)))

and then φ(d(xn, xn+1, xn−1)) = 0. i.e., d(xn, xn+1, xn−1) = 0. Hence

max{d(xn, xn−1, a), d(xn, xn+1, a)} ≤M(xn, xn−1, a)

= max{d(xn, xn−1, a), d(xn, xn+1, a),
d(xn−1, xn+1, a)

2
}

≤ max{d(xn, xn−1, a), d(xn, xn+1, a),

1

2
[d(xn−1, xn, a) + d(xn, xn+1, a) + d(xn−1, xn, xn+1)]}

= max
{
d(xn, xn−1, a), d(xn, xn+1, a),

1

2
[d(xn−1, xn, a) + d(xn, xn+1, a)]

}
= max{d(xn, xn−1, a), d(xn, xn+1, a)}.

Therefore, M(xn, xn−1, a) = max{d(xn, xn−1, a), d(xn, xn+1, a)}.
If M(xn, xn−1, a) = d(xn, xn+1, a), then from (4.3), we get

d(xn+1, xn, a) ≤ f(d(xn, xn+1, a), φ(d(xn, xn+1, a))).
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Thus, d(xn, xn+1, a) = 0,or φ(d(xn, xn+1, a)) = 0. i.e., d(xn, xn+1, a) = 0 for all
a ∈ X. Hence by Definition 2.1 (d1), xn = xn+1 = Txn for all n ∈ N. Then x = xn
is a fixed point of T . Now, if M(xn, xn−1, a) = d(xn, xn−1, a), then from (4.3), we
get

(4.4) d(xn+1, xn, a) ≤ f(d(xn, xn−1, a), φ(d(xn, xn−1, a))) ≤ d(xn, xn−1, a).

So, the sequence {d(xn+1, xn, a)} is decreasing in R+ and so it is convergent to
r ∈ R+. i.e., limn→∞ d(xn+1, xn, a) = r. Taking limit in (4.4), we get

r ≤ f(r, φ(r))

which implies that r = 0. Hence

(4.5) lim
n→∞

d(xn+1, xn, a) = 0.

From (3.11) in Theorem 3.4, we have d(xi, xj , xk) = 0 for all i, j, k ∈ N. We now
show that {xn} is a Cauchy sequence. Suppose to the contrary that {xn} is not a
Cauchy sequence. Then there is ε > 0 and sequences {m(k)} and {n(k)} such that
for all positive integers k,

n(k) > m(k) > k, d(xn(k), xm(k), a) ≥ ε and d(xn(k)−1, xm(k), a) < ε.

As in the proof of Theorem 3.4, we get

(4.6) lim
k→∞

d(xn(k), xm(k), a) = lim
k→∞

d(xn(k)−1, xm(k), a) = ϵ;

(4.7) lim
k→∞

d(xm(k)−1, xn(k), a) = ϵ.

Now since, n(k) > m(k) so by (4.2), we have

α(xm(k)−1, xn(k)−1, a) ≥ η(xm(k)−1, xn(k)−1, a)

for all a ∈ X. So by (4.1), we get

(4.8)

d(xm(k), xn(k), a) = d(Txm(k)−1, Txn(k)−1, a)

≤ f(M(xm(k)−1, xn(k)−1, a), φ(M(xm(k)−1, xn(k)−1, a)))
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where

M(xm(k)−1, xn(k)−1, a) = max

{
d(xm(k)−1, xn(k)−1, a), d(xm(k)−1, Txm(k)−1, a),

d(xn(k)−1, Txn(k)−1, a),

d(xm(k)−1, Txn(k)−1, a) + d(xn(k)−1, Txm(k)−1, a)

2
,

d(xm(k)−1, Txm(k)−1, a)d(xn(k)−1, Txn(k)−1, a)

1 + d(Txm(k)−1, Txn(k)−1, a)

}
= max

{
d(xm(k)−1, xn(k)−1, a), d(xm(k)−1, xm(k), a),

d(xn(k)−1, xn(k), a),

d(xm(k)−1, xn(k), a) + d(xn(k)−1, xm(k), a)

2
,

d(xm(k)−1, xm(k), a)d(xn(k)−1, xn(k), a)

1 + d(xm(k), xn(k), a)

}
.

Taking limit as k → ∞ in (4.8) and applying (4.6) and (4.7), we deduce

ϵ ≤ f( lim
k→∞

M(xm(k)−1, xn(k)−1, a), lim
k→∞

φ(M(xm(k)−1, xn(k)−1, a)))

where limk→∞M(xm(k)−1, xn(k)−1, a) = ϵ. Then ϵ = 0 or φ(ϵ) = 0. i.e., ϵ = 0
which is a contradiction. Hence, {xn} is a Cauchy sequence. Now, since (X, d) is a
complete 2-metric space, then there exists x∗ ∈ X such that limn→∞ xn = x∗. At
first we assume (iii) holds. That is, T is continuous or 2-α-η-continuous. Then, we
have

x∗ = lim
n→∞

xn+1 = lim
n→∞

Txn = Tx∗.

That is, x∗ is a fixed point of T . Next we assume (iv) holds. That is, α(xn, x
∗, a) ≥

η(xn, x
∗, a) for all n ∈ N and all a ∈ X. Then by (4.1), we get

d(xn+1, Tx
∗, a) = d(Txn, Tx

∗, a) ≤ f(M(xn, x
∗, a), φ(M(xn, x

∗, a)))

for all a ∈ X where φ ∈ Ψφ and

M(xn, x
∗, a) = max

{
d(xn, x

∗, a), d(xn, Txn, a), d(x
∗, Tx∗, a),

d(xn, Tx
∗, a) + d(x∗, Txn, a)

2
,
d(xn, Txn, a)d(x

∗, Tx∗, a)

1 + d(Txn, Tx∗, a)

}
= max

{
d(xn, x

∗, a), d(xn, xn+1, a), d(x
∗, Tx∗, a),

d(xn, Tx
∗, a) + d(x∗, xn+1, a)

2
,
d(xn, xn+1, a)d(x

∗, Tx∗, a)

1 + d(xn+1, Tx∗, a)

}
.

Taking limit as n→ ∞ in the above inequality we deduce that

d(x∗, Tx∗, a) ≤ f( lim
n→∞

M(xn, x
∗, a), lim

n→∞
φ(M(xn, x

∗, a))).
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Since limn→∞M(xn, x
∗, a) = d(x∗, Tx∗, a).

Thend(x∗, Tx∗, a) = 0 or, φ(d(x∗, Tx∗, a)) = 0. i.e., d(x∗, Tx∗, a) = 0 for all a ∈ X.
Thus, x∗ = Tx∗. �

If we take f(s, t) = s− t in Theorem 4.2, we obtain Theorem 3.1 [19] as corollary.

Corollary 4.3. Let (X, d) be a complete 2-metric space. Assume T : X → X is a
modified rational α-φ-f -contraction mapping satisfying the following assertions:

(i) T is a triangular 2-α-admissible mapping;
(ii) there exists x0 in X such that, α(x0, Tx0, a) ≥ 1 for all a ∈ X;
(iii) T is continuous or 2-α-continuous or,
(iv) if {xn} is a sequence in X such that α(xn, xn+1, a) ≥ 1 for all a ∈ X and

xn → x as n→ ∞, then α(xn, x, a) ≥ 1 for all n ∈ N and all a ∈ X.

Then T has a fixed point.

Example 4.4. Let X = [0,∞). We define a 2-metric d on X by

d(x, y, a) = min{σ(x, y), σ(y, a), σ(x, a)},

where

σ(u, v) =

{
max{u, v} if u ̸= v
0, if u = v.

Clearly (X, d) is a complete 2-metric space. Define T : X → X, φ : [0,∞) → [0,∞),

α : X ×X ×X → [0,∞), and f : [0,∞)2 → [0,∞) by f = log t+as

1+t , ψ(t) = a
t
2 for

all s, t ∈ [0,∞)

Tx =


1
4 if x ∈ [0, 1]

cosx+ 2, if x ∈ (1, 300]

x3 + x+ 1, if x ∈ [300,∞),

and

α(x, y, a) =


1, if x, y ∈ [0, 1] and a = 0

1
2 , otherwise.

Now, we prove that all the hypotheses of the Corollary 4.3 (Theorem 4.2) are sat-
isfied and hence T has a fixed point.

Proof. As in the proof of Example 3.12 we can show that T is a 2-α-admissible
mapping α(0, T0, a) ≥ 1 for all a ∈ X and if {xn} is a sequence in X such that
α(xn, xn+1, a) ≥ 1 for all n ∈ N ∪ {0} and a ∈ X and xn → x as n → +∞, then
α(xn, x, a) ≥ 1 for all n ∈ N ∪ {0} and all a ∈ X.

Let α(x, y, a) ≥ 1. Then x, y ∈ [0, 1] and hence

d(Tx, Ty, a) = 0 ≤ log
(φ(M(x, y, a)) + aM(x,y,a)

1 + φ(M(x, y, a))

)
.

That is,

α(x, y, a) ≥ 1 =⇒ d(Tx, Ty, a) ≤ log
(
φ(M(x,y,a))+aM(x,y,a)

1+φ(M(x,y,a))

)
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for all a ∈ X. Hence, T is a modified rational α-φ-contraction mapping. Then, all
the conditions of the Corollary 4.3 (Theorem 4.2) are satisfied and hence T has a
fixed point. �

By taking α(x, y, a) = 1 in Theorem 4.2 we have the following Corollary.

Corollary 4.5. Let (X, d) be a complete 2-metric space. Assume that T : X → X
is a modified rational η-φ-f -contraction mapping satisfying the following assertions:

(i) T is a triangular 2-η-admissible mapping;
(ii) there exists x0 in X such that, η(x0, Tx0, a) ≤ 1 for all a ∈ X;
(iii) T is continuous or 2-η-continuous or,
(iv) if {xn} is a sequence in X such that η(xn, xn+1, a) ≤ 1 for all a ∈ X and

xn → x as n→ ∞, then η(xn, x, a) ≤ 1 for all n ∈ N and all a ∈ X.

Then T has a fixed point.

Corollary 4.6. Let (X, d) be a complete 2-metric space. Assume that T : X → X
is a rational α-φ-f -contraction mapping satisfying the following assertions:

(i) T is a triangular 2-α-admissible mapping;
(ii) there exists x0 in X such that, α(x0, Tx0, a) ≥ 1 for all a ∈ X;
(iii) T is continuous or 2-α-continuous or,
(iv) if {xn} is a sequence in X such that α(xn, xn+1, a) ≥ 1 for all a ∈ X and

xn → x as n→ ∞, then α(xn, x, a) ≥ 1 for all n ∈ N and all a ∈ X.

Then T has a fixed point.

Corollary 4.7. Let (X, d) be a complete 2-metric space. Assume that T : X → X
is a rational η-φ-f -contraction mapping satisfying the following assertions:

(i) T is a triangular 2-η-admissible mapping;
(ii) there exists x0 in X such that, η(x0, Tx0, a) ≤ 1 for all a ∈ X;
(iii) T is continuous or 2-η-continuous or,
(iv) if {xn} is a sequence in X such that η(xn, xn+1, a) ≤ 1 for all a ∈ X and

xn → x as n→ ∞, then η(xn, x, a) ≤ 1 for all n ∈ N and all a ∈ X.

Then T has a fixed point.

5. Fixed point results in partially ordered 2-metric spaces

Recently, there have been so many exciting developments in the field of existence
of fixed points in partially ordered sets. This approach has been initiated by Ran and
Reurings [35] and they also provided some applications to matrix equations. Their
results are a hybrid of the two classical theorems; Banach’s fixed point theorem and
Tarski’s fixed point theorem. Agarwal, et al. [1], Bhaskar and Lakshmikantham [6],
Ciric et al. [14] and Hussain et al. [24] presented some new results for nonlinear
contractions in partially ordered metric spaces and noted that their theorems can
be used to investigate a large class of problems. In this section, as an application
of obtained results we prove some fixed point results in partially ordered 2-metric
spaces. We also note that the recent fixed point results in [18] can be deduced as
simple corollaries.



496 P. SUKPRASERT, P. KUMAM, A.H. ANSARI, S. CHANDOK, AND N. HUSSAIN

Recall that if (X,≼) is a partially ordered set and T : X → X is such that for
x, y ∈ X, x ≼ y implies Tx ≼ Ty, then mapping T is said to be non-decreasing.

Theorem 5.1. Let (X, d,≼) be a complete partially ordered 2-metric space. Assume
that T : X → X is a mapping satisfying the following assertions:

(i) T is non-decreasing;
(ii) there exists x0 in X such that, x0 ≼ Tx0;
(iii) T is continuous or,
(iv) if {xn} is a non-decreasing sequence in X such that xn → x as n → ∞,

then xn ≼ x for all n ∈ N;
(v)

d(Tx, Ty, a) ≤ f(12 [d(x, Ty, a) + d(y, Tx, a)], ψ(d(x, Ty, a), d(y, Tx, a)))(5.1)

holds for all x, y, a ∈ X with x ≼ y or y ≼ x where ψ ∈ Ψ and f ∈ C.
Then T has a fixed point.

Proof. Define the mapping α : X ×X ×X → R+ by

α(x, y, a) =

{
1 if x ≼ y
0 otherwise.

Let α(x, y, a) ≥ 1, then x ≼ y. From (5.2), we get

d(Tx, Ty, a) ≤ f(12 [d(x, Ty, a) + d(y, Tx, a)], ψ(d(x, Ty, a), d(y, Tx, a))).

Again let x, y, a ∈ X such that α(x, y, a) ≥ 1. This implies that x ≼ y. As the
mapping T is non-decreasing, we deduce that Tx ≼ Ty and hence α(Tx, Ty, a) ≥ 1
for all a ∈ X. Also, let α(x, z, a) ≥ 1 and α(z, y, a) ≥ 1, then x ≼ z and z ≼ y. So
from transitivity we have x ≼ y. That is, α(x, y, a) ≥ 1 for all a ∈ X. Thus T is
a triangular 2-α-admissible mapping. The condition (ii) ensures that there exists
x0 ∈ X such that x0 ≼ Tx0. This implies that α(x0, Tx0, a) ≥ 1 for all a ∈ X. Let
{xn} be a sequence in X such that α(xn, xn+1, a) ≥ 1 for all a ∈ X and all n ∈ N
and xn → x as n→ ∞. So, xn ≼ xn+1 for all n ∈ N. Then from (iv) we have xn ≼ x
for all n ∈ N. That is, α(xn, x, a) ≥ 1 for all n ∈ N and all a ∈ X. Therefore, all the
conditions of the Corollary 3.6 are satisfied, so T has a fixed point in X. �

If we take f(s, t) = s− t in Theorem 5.1, we obtain following main results in [18]
as corollary.

Corollary 5.2 (Theorem 2.3 and 2.4 of [18]). Let (X, d,≼) be a complete partially
ordered 2-metric space. Assume T : X → X is a mapping satisfying the following
assertions:

(i) T is non-decreasing;
(ii) there exists x0 in X such that, x0 ≼ Tx0;
(iii) T is continuous or,
(iv) if {xn} is a non-decreasing sequence in X such that xn → x as n → ∞,

then xn ≼ x for all n ∈ N;
(v)

(5.2) d(Tx, Ty, a) ≤ 1

2
[d(x, Ty, a) + d(y, Tx, a)]− ψ(d(x, Ty, a), d(y, Tx, a)))
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holds for all x, y, a ∈ X with x ≼ y or y ≼ x where ψ ∈ Ψ.

Then T has a fixed point.

Next, we assume the condition (B) as follow:

(B) for all x, y ∈ X which are not comparable, there exists z ∈ X such that
comparable to x and y.

Theorem 5.3 (Theorem 2.5 of [18]). Adding condition (B) to the hypotheses of
Theorem 5.1 we obtain uniqueness of the fixed point of T.

Proof. Define the mapping α : X×X×X → R+ as in the proof of Theorem 5.1. Let
x, y ∈ X where α(x, y, a) < 1 and α(y, x, a) < 1 for all a ∈ X. That is, x and y are
not comparable. Hence, by condition (B) there exists z ∈ X such that comparable
to x and y. i.e., z ≼ x or x ≼ z and z ≼ y or y ≼ x. That is, α(z, x, a) ≥ 1 or
α(x, z, a) ≥ 1 and α(z, y, a) ≥ 1 or α(y, z, a) ≥ 1 for all a ∈ X. Then conditions of
Theorem 3.11 hold and fixed point of T is unique. �
Theorem 5.4. Let (X, d,≼) be a complete partially ordered 2-metric space. Assume
that T : X → X is a mapping satisfying the following assertions:

(i) T is non-decreasing;
(ii) there exists x0 in X such that, x0 ≼ Tx0;
(iii) T is continuous or,
(iv) if {xn} is a non-decreasing sequence in X such that xn → x as n → ∞,

then xn ≼ x for all n ∈ N;
(v) T is an ordered modified rational φ-contraction mapping, that is,

d(Tx, Ty, a) ≤ f(M(x, y, a), φ(M(x, y, a)))

holds for all x, y, a ∈ X with x ≼ y or y ≼ x where φ ∈ Ψφ, f ∈ C and

M(x, y, a) = max

{
d(x, y, a), d(x, Tx, a), d(y, Ty, a),

d(x, Ty, a) + d(y, Tx, a)

2
,

d(x, Tx, a)d(y, Ty, a)

1 + d(Tx, Ty, a)

}
.

Then T has a fixed point.

Proof. Define the mapping α : X ×X ×X → R+ by

α(x, y, a) =

{
1 if x ≼ y
0 otherwise.

Let α(x, y, a) ≥ 1, then x ≼ y. From (5.3), we get

d(Tx, Ty, a) ≤ f(M(x, y, a), φ(M(x, y, a))).

Again let x, y, a ∈ X such that α(x, y, a) ≥ 1. This implies that x ≼ y. As the
mapping T is non-decreasing, we deduce that Tx ≼ Ty and hence α(Tx, Ty, a) ≥ 1
for all a ∈ X. Also, let α(x, z, a) ≥ 1 and α(z, y, a) ≥ 1, then, x ≼ z and z ≼ y.
So from transitivity we have, x ≼ y. That is, α(x, y, a) ≥ 1 for all a ∈ X. Thus T
is a triangular 2-α-admissible mapping. The condition (ii) ensures that there exists
x0 ∈ X such that x0 ≼ Tx0. This implies that α(x0, Tx0, a) ≥ 1 for all a ∈ X. Let
{xn} be a sequence in X such that α(xn, xn+1, a) ≥ 1 for all a ∈ X and all n ∈ N



498 P. SUKPRASERT, P. KUMAM, A.H. ANSARI, S. CHANDOK, AND N. HUSSAIN

and xn → x as n → ∞. So, xn ≼ xn+1 for all n ∈ N. Then from (iv) we have
xn ≼ x for all n ∈ N. That is, α(xn, x, a) ≥ 1 for all n ∈ N and all a ∈ X. Therefore,
all the conditions of the Corollary 4.3 are satisfied so T has a fixed point in X. �
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