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Despite a great progress in the theory of second-order subdifferentials, to the best
of our knowledge, several basic questions about the use of second-order subdifferen-
tials for optimality conditions have been open so far. For example, to which extent
the positive semi-definiteness of second-order subdifferentials is a necessary opti-
mality condition, or what about second-order subdifferential sufficient optimality
conditions for minimization problems without prox-regularity or prox-boundedness
assumptions.

Our aim in this paper is to investigate the aforementioned questions. More pre-
cisely, we examine the possibility of using the Fréchet and limiting second-order
subdifferentials to characterize local minimizers of C1 -smooth unconstrained min-
imization problems. We prove, for a C1-smooth function of one real variable or a
C1-smooth function on a Banach space with its derivative being calm at the refer-
ence point, the positive semi-definiteness of its Fréchet second-order subdifferential
at the reference point is a necessary optimality condition, while it is not true for the
limiting counterpart; however, the limiting second order subdifferential of a C1,1-
smooth function on Rn at a local minimizer is positively semi-definite along certain
selection. We also show that, for a C1-smooth function on an Asplund space, the
positive semi-definiteness of its Fréchet second-order subdifferential around a sta-
tionary point is sufficient for this point to be a local minimizer of the function.
Besides, a sufficient condition via the Fréchet second-order subdifferential for a
point to be a tilt stable minimizer is given.

The paper is organized as follows. After recalling some background material
from variational analysis in Section 2, we obtain necessary optimality conditions in
Section 3. Finally, Section 4 provides sufficient optimality conditions.

2. Preliminaries

This section recalls some background material from variational analysis, which are
needed in the sequel. For more details, we refer the reader to the monographs [15,24].

Let F : X ⇒ Y be a set-valued mapping between topological spaces X and Y .
As usual, the effective domain and the graph of F are given, respectively, by

domF :=
{
x ∈ X | F (x) ̸= ∅

}
and gphF :=

{
(x, y) ∈ X × Y | y ∈ F (x)

}
.

The sequential Painlevé-Kuratowski upper limit of F at a point x̄ in the topology
of Y is defined by

Lim sup
x→x̄

F (x) :=
{
y ∈ Y

∣∣∣ ∃ sequences xk → x̄ and yk → y

with yk ∈ F (xk) for all k = 1, 2, . . .
}
.

In the sequel, unless otherwise stated, X and Y are Banach spaces, and Ω is a
nonempty subset of X. Given a Banach space X, we denote by X∗ its topological
dual space and by X∗∗ its second topological dual space, that is, X∗∗ = (X∗)∗.

Given ε ≥ 0, define the collection of ε-normals to Ω at x̄ ∈ Ω by

(2.1) N̂ε(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣∣ lim sup

x
Ω−→x̄

⟨x∗, x− x̄⟩
∥x− x̄∥

≤ ε
}
,
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where x
Ω−→ x̄ means that x → x̄ with x ∈ Ω. If x̄ ̸∈ Ω, one puts N̂ε(x̄; Ω) := ∅ for

all ε ≥ 0.
When ε = 0, the set N̂(x̄; Ω) := N̂0(x̄; Ω) in (2.1) is a cone, which is called the

Fréchet normal cone to Ω at x̄.

The limiting normal cone N(x̄; Ω) is obtained from N̂ε(x; Ω) by taking the se-
quential Painlevé-Kuratowski upper limit in the weak∗ topology of X∗ as

N(x̄; Ω) := Lim sup

x
Ω−→x̄
ε↓0

N̂ε(x; Ω),

where one can put ε = 0 when Ω is closed around x̄ and X is an Asplund space,
i.e., a Banach space whose separable subspaces have separable duals. If x̄ ̸∈ Ω, one
puts N(x̄; Ω) := ∅.

The Fréchet coderivative of F at (x̄, ȳ) ∈ X × Y is defined by

D̂∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗ | (x∗,−y∗) ∈ N̂

(
(x̄, ȳ); gphF

)}
∀y∗ ∈ Y ∗.

The limiting normal coderivative of F at (x̄, ȳ) ∈ X × Y is defined by

D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N

(
(x̄, ȳ); gphF

)}
∀y∗ ∈ Y ∗.

If F (x̄) = {ȳ}, then we will omit ȳ in the corderivative notation.
A single-valued mapping φ : X → Y is said to be strictly differentiable at x̄ if

there is a linear continuous operator ∇φ(x̄) : X → Y such that

lim
x,u→x̄

φ(x)− φ(u)− ⟨∇φ(x̄), x− u⟩
∥x− u∥

= 0.

It is known that for such mappings one has

D∗φ(x̄)(y∗) = D̂∗φ(x̄)(y∗) =
{
(∇φ(x̄))∗y∗

}
∀y∗ ∈ Y ∗,

where the second equality is still valid if φ is merely Fréchet differentiable at x̄;
see [15, Theorem 1.38].

Let φ : X → R̄ := [−∞,∞] be an extended real-valued function. We define

domφ =
{
x ∈ X | |φ(x)| < ∞

}
, epiφ =

{
(x, µ) ∈ X × R | µ ≥ φ(x)

}
.

The Fréchet subdifferential ∂̂φ(x̄) of φ at x̄ ∈ domφ is defined by

∂̂φ(x̄) :=
{
x∗ ∈ X∗ | (x∗,−1) ∈ N̂

(
(x̄, φ(x̄)); epiφ

)}
.

The limiting subdifferential ∂φ(x̄) of φ at x̄ ∈ domφ is defined by

∂φ(x̄) :=
{
x∗ ∈ X∗ | (x∗,−1) ∈ N

(
(x̄, φ(x̄)); epiφ

)}
.

If x̄ /∈ domφ, then one puts ∂φ(x̄) = ∂̂φ(x̄) = ∅.
Obviously, ∂̂φ(x̄) ⊂ ∂φ(x̄) and ∂̂φ(x̄) is a closed convex set (may be empty).

Note that ∂φ(x̄) is nonconvex in general [15]. If φ : R → R is Lipschitz near x̄ and

∂̂φ(x̄) ̸= ∅, then ∂φ(x̄) is convex; see [1, Corollary 3.1].
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The function φ is said to be lower regular at x̄ if ∂̂φ(x̄) = ∂φ(x̄); see [15, Defini-
tion 1.91]. If φ is convex and φ(x̄) is finite, then

∂φ(x̄) = ∂̂φ(x̄) =
{
x∗ ∈ X∗ | ⟨x∗, x− x̄⟩ ≤ φ(x)− φ(x̄) ∀x ∈ X

}
;

see [15, Theorem 1.93]. If φ is strictly differentiable at x̄, then

∂φ(x̄) = ∂̂φ(x̄) =
{
∇φ(x̄)

}
,

where the second equality also holds if φ is merely Fréchet differentiable at x̄. Thus,
C1 functions (i.e., continuously differentiable functions) and convex functions are
lower regular at any point in their effective domains.

If φ is lower regular at x̄, then ∂φ(x̄) is convex. The converse is invalid even for
Fréchet differentiable, Lipschitz functions; see [1, Example 3.3].

Definition 2.1 ([15]). Let φ : X → R̄ be a function with a finite value at x̄.
(i) For any ȳ ∈ ∂φ(x̄), the map ∂2φ(x̄, ȳ) : X∗∗ ⇒ X∗ with the values

∂2φ(x̄, ȳ)(u) = (D∗∂φ)(x̄, ȳ)(u) (u ∈ X∗∗)

is said to be the limiting second-order subdifferential of φ at x̄ relative to ȳ.

(ii) For any ȳ ∈ ∂̂φ(x̄), the map ∂̂2φ(x̄, ȳ) : X∗∗ ⇒ X∗ with the values

∂̂2φ(x̄, ȳ)(u) = (D̂∗∂̂φ)(x̄, ȳ)(u) (u ∈ X∗∗)

is said to be the Fréchet second-order subdifferential of φ at x̄ relative to ȳ.

The symbol ȳ in the second-order subdifferential notation will be removed when
the corresponding subdifferential of φ at x̄ is {ȳ}. In general, the limiting second-
order subdifferential and the Fréchet second-order subdifferential are incomparable.

However, if φ is lower regular around x̄ ∈ X and ȳ ∈ ∂̂φ(x̄), then

∂̂2φ(x̄, ȳ)(u) ⊂ ∂2φ(x̄, ȳ)(u) ∀u ∈ X∗∗.

If φ is Fréchet differentiable around x̄ and ∇φ is strictly differentiable at x̄, then

∂2φ(x̄)(u) = ∂̂2φ(x̄)(u) =
{
(∇2φ(x̄))∗u

}
∀u ∈ X∗∗;

the second equality is still true if φ is twice Fréchet differentiable at x̄; see [15,
Proposition 1.119]. We refer the reader to [2, 3, 5, 6, 13, 15, 17–20, 23, 24] for more
information on the second-order subdifferentials and their applications.

Definition 2.2 (see [22] and [24, Chap. 12]). One says that a set-valued map
T : X ⇒ X∗ is a monotone operator if

⟨x∗ − y∗, x− y⟩ ≥ 0 for all x, y ∈ X, x∗ ∈ T (x), y∗ ∈ T (y).

We refer the reader to [22, 24] for detailed information on monotone operators
and their applications.

By analogy with positive semi-definiteness and positive definiteness of real ma-
trices, one can consider the following concepts.

Definition 2.3. A set-valued map T : X ⇒ X∗ is positive semi-definite if ⟨z, u⟩ ≥ 0
for any u ∈ X and z ∈ T (u). If ⟨z, u⟩ > 0 whenever u ∈ X \ {0} and z ∈ T (u), then
T is said to be positive definite.
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3. Necessary Optimality Conditions

In this section, we establish some new necessary optimality conditions by using
the second-order subdifferentials. We begin by considering the problem

(P) min{φ(x) | x ∈ R},
where φ : R → R is a C1 function.

Theorem 3.1. If x̄ is a local solution of (P), then ∇φ(x̄) = 0 and the Fréchet

second-order subdifferential ∂̂2φ(x̄) is positive semi-definite, i.e., for any u ∈ R and

z ∈ ∂̂2φ(x̄)(u), it holds that zu ≥ 0.

Proof. First, since x̄ is a local solution of (P), by the Fermat rule, ∇φ(x̄) = 0. To

obtain the second assertion of the theorem, suppose to the contrary that ∂̂2φ(x̄) is

not positive semi-definite. Then there exist u ∈ R and z ∈ ∂̂2φ(x̄)(u) with zu < 0.
By definition of the Fréchet second-order subdifferential,

z ∈ ∂̂2φ(x̄)(u) ⇔ z ∈ D̂∗∇φ(·)(x̄)(u)
⇔ (z,−u) ∈ N̂

(
(x̄, 0); gph∇φ(·)

)
⇔ lim sup

x→x̄

⟨
(z,−u), (x,∇φ(x))− (x̄, 0)

⟩
|x− x̄|+ |∇φ(x)−∇φ(x̄)|

≤ 0.

Reducing the latter, we obtain

(3.1) lim sup
x→x̄

z(x− x̄)− u∇φ(x)

|x− x̄|+ |∇φ(x)|
≤ 0.

Since zu < 0, it must happen one of the following cases.
Case 1: z > 0 and u < 0. Take a sequence xk ↓ x̄. Since x̄ is a local solution of
(P ), by invoking the classical mean value theorem, for each k large enough, we find
ξk ∈ (x̄, xk) such that

0 ≤ φ(xk)− φ(x̄) = ∇φ(ξk)(xk − x̄).

As xk − x̄ > 0, this forces

(3.2) ∇φ(ξk) ≥ 0.

Due to (3.1), we have

(3.3) lim sup
k→∞

z(ξk − x̄)− u∇φ(ξk)

|ξk − x̄|+ |∇φ(ξk)|
≤ 0.

Let r := min{z,−u}, r > 0. By (3.2), we have

∆k : =
z(ξk − x̄)− u∇φ(ξk)

|ξk − x̄|+ |∇φ(ξk)|
=

z(ξk − x̄)− u∇φ(ξk)

ξk − x̄+∇φ(ξk)

≥ r(ξk − x̄) + r∇φ(ξk)

ξk − x̄+∇φ(ξk)
= r > 0.

This contradicts (3.3), which says that lim sup
k→∞

∆k ≤ 0.
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Case 2: z < 0 and u > 0. Take a sequence xk ↑ x̄. For each k large enough, there
exists ξk ∈ (xk, x̄) such that

0 ≤ φ(xk)− φ(x̄) = ∇φ(ξk)(xk − x̄).

As xk − x̄ < 0, it holds that

(3.4) ∇φ(ξk) ≤ 0.

By virtue of (3.1), inequality (3.3) holds. Set r := max{z,−u}. Then we have
r < 0. Therefore, due to (3.4), we obtain

∆k : =
z(ξk − x̄)− u∇φ(ξk)

|ξk − x̄|+ |∇φ(ξk)|
= −z(ξk − x̄)− u∇φ(ξk)

ξk − x̄+∇φ(ξk)

≥ −r(ξk − x̄)− r∇φ(ξk)

ξk − x̄+∇φ(ξk)
= −r > 0,

which contradicts (3.3). The proof is complete. �

In Theorem 1, even for C1,1 functions, we cannot replace ∂̂2φ(x̄) by ∂2φ(x̄). This
can be seen from the next example.

Example 3.2. Let φ : R → R be the function defined by φ(x) :=
∫ x
0 g(t)dt. Here

g : R → R is the function given by the following rules:
(1) g(0) := 0;
(2) g(t) := 1

2 t for t >
1
2 ;

(3) if k ∈ {1, 2, ...} and 1
2k+1 < t ≤ 3

2k+2 , then g(t) := 2t− 3
2k+2 ;

(4) if k ∈ {1, 2, ...} and 3
2k+2 < t ≤ 1

2k
, then g(t) := −t+ 3

2k+1 ;
(5) g(t) := −g(−t) for each t < 0.

Since g is continuous on R\{0}, and |g(t)| ≤ 3|t| for all t ∈ R, g is continuous on
R. Thus φ is well-defined and ∇φ(x) = g(x) for all x ∈ R. Clearly, x̄ := 0 is a
global minimizer of φ. For each k = 1, 2, ..., take any xk ∈

(
3

2k+2 ,
1
2k

)
. By simple

computation, we have

N̂
(
(xk,∇φ(xk)

)
; gph∇φ

)
= R(1, 1) ∀k = 1, 2, ...

Since
(
xk,∇φ(xk)

) gph∇φ−→ (0, 0) as k → ∞, and gph∇φ is closed, it holds that

R(1, 1) ⊂ N
(
(0, 0); gph∇φ

)
.

Observe that for (z, u) := (1,−1), we have that z ∈ ∂2φ(0)(u) and zu < 0. Note
that g is Lipschitz on R. Therefore, the positive semi-definiteness of the limiting
second-order subdiffential is not a necessary optimality condition for C1,1 functions.

Let φ : X → R be a C1 function defined on a Banach space X. Consider the
following problem:

(P1) min{φ(x) | x ∈ X}.
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Theorem 3.3. Suppose that x̄ is a local solution of (P1) and there exists ℓ > 0 such
that

(3.5) ∥∇φ(x)−∇φ(x̄)∥ ≤ ℓ∥x− x̄∥
for every x in some neighborhood of x̄. Then ∇φ(x̄) = 0 and the Fréchet second-

order subdifferential ∂̂2φ(x̄) : X ⇒ X∗, where X is canonically embedded in X∗∗, is
positive semi-definite.

Proof. Let x̄ be a local solution of (P1). Then, by the Fermat rule, ∇φ(x̄) = 0.

In order to obtain the positive semi-definiteness of ∂̂2φ(x̄), suppose to the contrary

that there exist u ∈ X and z ∈ ∂̂2φ(x̄)(u) with

(3.6) ⟨z, u⟩ < 0.

Then, z ∈ D̂∗∇φ(·)(x̄)(u) or, equivalently, (z,−u) ∈ N̂
(
(x̄, 0); gph∇φ(·)

)
. Recall

that X is embedded in X∗∗ and ∇φ(·) : X → X∗. Hence

(3.7) lim sup
x→x̄

⟨(z,−u),
(
x,∇φ(x)

)
− (x̄, 0)⟩

∥x− x̄∥+ ∥∇φ(x)∥
≤ 0.

For xk := x̄− 1
ku, k = 1, 2, ...., one has xk → x̄ as k → ∞. Since x̄ is a local solution

of (P1), for large indexes k, by the classical mean value theorem, there exists ξk ∈
(x̄, xk) := {(1−t)x̄+txk | t ∈ (0, 1)} such that 0 ≤ φ(xk)−φ(x̄) = ⟨∇φ(ξk), xk− x̄⟩.
Noticing that xk − x̄ = − 1

ku, this forces

(3.8) ⟨∇φ(ξk), u⟩ ≤ 0.

By (3.7) and noting that ξk = x̄− tku for some tk ∈ (0, 1k ), we have

(3.9) lim sup
k→∞

⟨z,−tku⟩ − ⟨u,∇φ(ξk)⟩
∥tku∥+ ∥∇φ(ξk)∥

≤ 0.

By our assumption, for k large enough,

∥∇φ(ξk)∥ = ∥∇φ(ξk)−∇φ(x̄)∥
≤ ℓ∥ξk − x̄∥ = ℓtk∥u∥.

So, by (3.6) and (3.8) we obtain

∆k :=
⟨z,−tku⟩ − ⟨u,∇φ(ξk)⟩

∥tku∥+ ∥∇φ(ξk)∥
≥ ⟨z,−u⟩

∥u∥+ t−1
k ∥∇φ(ξk)∥

≥ ⟨z,−u⟩
∥u∥+ ℓ∥u∥

> 0,

which contradicts (3.9). The proof is complete. �
Remark 3.4. Theorem 3.1 does not need the assumption (3.5). It is still unclear
to us whether this condition can be dropped in the formulation of Theorem 3.3, or
not.

The following example shows that Theorem 3.3 does not cover the class of prob-
lems in Theorem 3.1.
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Example 3.5. Let us consider the function φ : R → R defined by

φ(x) =

{
1
2x

2 if x ≤ 0,

x
3
2 if x > 0,

and x̄ = 0. Since ∇φ(x) = 3
2

√
x for x > 0, condition (3.5) is invalid. Hence

Theorem 3.3 fails to apply to this situation. However, due to the continuous differ-
entiability of φ, Theorem 3.1 is applicable for this example.

Example 3.6. Consider the function φ : R → R defined by

φ(x) =

{
1
2x

2 if x ≤ 0,

3x2 if x > 0,

and let x̄ = 0. Both Theorems 3.1 and 3.3 are applicable to this example.

Observe that if dom∂̂2φ(x̄) = {0} (Example 3.2, for instance), the second-order
conditions given by Theorems 3.1 and 3.3 is trivial. However, by using the limiting
second-order subdiffential we can receive some meaningful second-order information.

Theorem 3.7. Let x̄ be a local solution of (P1), where X = Rn and φ is a C1,1

function on X. Then ∇φ(x̄) = 0 and the limiting second-order subdifferential
∂2φ(x̄) : Rn ⇒ Rn has a selection z(·) such that

(3.10) ⟨z(u), u⟩ ≥ 0 ∀u ∈ Rn.

Here a selection means a mapping z : Rn → Rn with z(u) ∈ ∂2φ(x̄)(u) for all
u ∈ Rn.

Proof. Suppose that x̄ is a local solution of (P1), where X = Rn and φ is a C1,1

function. The equality ∇φ(x̄) = 0 is due to the Fermat rule. To prove the second
assertion, let

JB∇φ(x̄) :=
{

lim
k→∞

∇2φ(xk)
∣∣ {xk} ⊂ Ω∇φ, xk → x̄

and lim
k→∞

∇2φ(xk) exists in Rn×n
}
.

Here Ω∇φ :=
{
x ∈ Rn | ∇2φ(x) exists

}
. It is well-known [12,21] that JB∇φ(x̄) is an

approximate Hessian of φ at x̄. Since x̄ is a local solution of (P1), by [12, Corollary
7.4], for each u ∈ Rn, there exists Mu ∈ JB∇φ(x̄) such that ⟨Muu, u⟩ ≥ 0. Define
z : Rn → Rn by z(u) := MT

u u for all u ∈ Rn. Then z is an operator with the
property that ⟨z(u), u⟩ ≥ 0 for all u ∈ Rn. We now take any u ∈ Rn. By definition
of JB∇φ(x̄), there exists {xk} ∈ Rn such that

(3.11) Mu = lim
k→∞

∇2φ(xk).

By [15, Theorem 1.38] or [16, Proposition 3.5],

D̂∗∇φ(xk)(u) = ∂̂⟨u,∇φ⟩(xk) =
{
(∇2φ(xk))

Tu
}
,

for all k large enough. Hence(
∇2φ(xk)

Tu,−u
)
∈ N̂

((
xk,∇φ(xk)

)
; gph∇φ

)
,
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for all k large enough. Taking the limits as k → ∞, by (3.11) we have(
MT

u u,−u
)
∈ N

((
x̄,∇φ(x̄)

)
; gph∇φ

)
.

Therefore, z(u) = MT
u u ∈ ∂2φ(x̄)(u) for all u ∈ Rn. �

We note that the second-order necessary optimality conditions provided by The-
orem 3.1 and Theorem 3.3 on one hand, and by Proposition 3.7 on the other hand,
are independent. For more details, let us consider the following example.

Example 3.8. Let φ : R → R be the function defined by φ(x) :=
∫ x
0 g(t)dt. Here

g : R → R is the function given by the following rules:
(1) g(0) := t for t ≤ 0;
(2) g(t) := 0 for t > 1;
(3) if k ∈ {0, 1, 2, ...} and 1

2k+1 < t ≤ 1
2k
, then

g(t) := −3

2

(∣∣t− 3

2k+2

∣∣− 1

2k+2

)
.

We have that g is a Lipschitz function on R. Hence φ is well-defined, ∇φ(x) = g(x)
for all x ∈ R, and moreover φ is C1,1. Let x̄ = 0. Note that φ is not a convex
function (the second-order information becomes more important). We have that

N̂
(
(x̄,∇φ(x̄)

)
; gph∇φ

)
=

{
(z, u) ∈ R2 | − z ≤ u ≤ −2z

}
.

Hence,

∂̂2φ(x̄)(u) =

{
[u, 12u] if u ≥ 0,

∅ if u < 0.

Observe that x̄ is a global minimizer of φ. Thus, according to Theorem 3.1 or

Theorem 3.3, if u ∈ R and z ∈ ∂̂2φ(x̄)(u), then zu ≥ 0; while Theorem 3.7 says
that the limiting second-order subdifferential ∂2φ(x̄) : Rn ⇒ Rn has a selection z(·)
(for instance, z(u) := u for all u ∈ R) such that ⟨z(u), u⟩ ≥ 0 ∀u ∈ Rn. Therefore,
in this situation, Theorem 3.7 provides more information than Theorem 3.1 and
Theorem 3.3 for u < 0, the same at u = 0, but less for u > 0.

4. Sufficient Optimality Conditions

This section is devoted to the study of sufficient optimality conditions. Our first
result in this direction reads as follows.

Theorem 4.1 (Optimality condition I). Let X be an Asplund space and x̄ ∈ X.
Suppose that φ : X → R is a C1 function, and ∇φ(x̄) = 0. If there exists δ > 0
such that, for all x ∈ Bδ(x̄),

(4.1) ⟨z, u⟩ ≥ 0 ∀u ∈ X, ∀z ∈ ∂̂2φ(x)(u),

that is, ∂̂2φ(x) is positive semi-definite for all x ∈ Bδ(x̄), then x̄ is a local solution
of (P1).
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Proof. If (4.1) is valid, then by [4, Corollary 3.5] (also, see [2, Theorem 3.1] or [3,
Corollary 3.8]) φ is convex on Bδ(x̄). Since ∇φ(x̄) = 0, by the convexity of φ, it
holds that

φ(x)− φ(x̄) ≥ ⟨∇φ(x̄), x− x̄⟩ = 0 ∀x ∈ Bδ(x̄).

Hence x̄ is a local solution of (P1). �

In Theorem 4.1, checking the positive definiteness around x̄ only to justify that
x̄ is a local solution is our unexpected thing. It would be more favorable if con-
dition (4.1) was replaced by the positive definiteness of the Fréchet second-order

subdifferential ∂̂2φ(x̄). Unfortunately, as shown by the following example, this is
impossible.

Example 4.2. Let φ : R → R be the function defined by φ(x) :=
∫ x
0 g(t)dt, where

g(t) :=

{
|t|α cos 1

t if t ̸= 0,

0 if t = 0,

with 0 < α ≤ 1. Let x̄ = 0. Since g is continuous, φ is C1 and ∇φ(x) = g(x)

for all x. We claim that N̂
(
(x̄,∇φ(x̄)); gph∇φ

)
= {(0, 0)}. Indeed, since {(0, 0)} ⊂

N̂
(
(x̄,∇φ(x̄)); gph∇φ

)
, it suffices to prove the reverse inclusion. Take any (z, u) ∈

N̂
(
(x̄,∇φ(x̄)); gph∇φ

)
. It holds that

(4.2)

0 ≥ lim sup
x→x̄

⟨(z, u), (x,∇φ(x))− (x̄,∇φ(x̄))⟩
|x− x̄|+ |∇φ(x)−∇φ(x̄)|

= lim sup
x→0

zx+ u∇φ(x)

|x|+ |∇φ(x)|
= lim sup

x→0

zx+ ug(x)

|x|+ |g(x)|
.

Choosing xk := 1
π
2
+2kπ , k ∈ N, we have that xk → 0 as k → ∞ and g(xk) = 0 for all

k ∈ N. By (4.2), 0 ≥ lim sup
k→∞

zxk
xk

= z. For xk := −1
π
2
+2kπ , k ∈ N, noting that xk → 0

as k → ∞ and g(xk) = 0 for all k ∈ N, by (4.2) one gets 0 ≥ lim sup
k→∞

−zxk
xk

= −z.

Hence z = 0. From (4.2), we have

(4.3)

0 ≥ lim sup
x→0

ug(x)

|x|+ |g(x)|

= lim sup
x→0

u cos 1
x

|x|1−α + | cos 1
x |
.

For xk = 1
2kπ , k ∈ N, by (4.3) we get u ≤ 0. For xk = 1

π+2kπ , k ∈ N, by (4.3) we
obtain u ≥ 0. This is to say that u = 0. Hence

N̂
(
(x̄,∇φ(x̄)); gph∇φ

)
= {(0, 0)}.

Therefore, if u ∈ R and z ∈ ∂̂2φ(x̄)), then z = 0 and u = 0. So, ∂̂2φ(x̄) is positively
definite. We claim that x̄ is not a local solution of (P1). Indeed, suppose on contrary
that x̄ is a local solution of (P1). Then there exists ε > 0 such that φ(x) ≥ φ(x̄) = 0
for all x ∈ Bε(x̄) = (−ε, ε). Observe that φ(x) = −φ(−x) for all x ∈ R. Hence
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φ(x) = 0 for all x ∈ (−ε, ε), and thus g(x) = 0 for all x ∈ (−ε, ε), which is a
contradiction. This proves that x̄ is not a local solution of (P1), while ∇φ(x̄) = 0

and ∂̂2φ(x̄) is positive definite.

Definition 4.3 ([8, Definition 4.2]). A function φ : X → R̄ is said to be prox-
regular at x̄ for x̄∗ ∈ ∂φ(x̄) if φ is finite at x̄ and there exist r > 0 and ε > 0 such
that for all x, u ∈ Bε(x̄) with |φ(u)− φ(x̄)| ≤ ε we have

φ(x) ≥ φ(u) + ⟨u∗, x− u⟩ − r

2
∥x− u∥2 ∀u∗ ∈ ∂φ(u) ∩ Bε(x̄

∗).

Let φ : X → R̄ and x̄ ∈ domφ. Recall [17] that x̄ is said to be a tilt-stable local
minimizer of φ if there is γ > 0 such that the mapping

Mγ : x∗ 7→ argmin{φ(x)− ⟨x∗, x⟩ | x ∈ Bγ(x̄)}

is single-valued and Lipschitz continuous on some neighborhood of 0 ∈ X∗ with
Mγ(0) = {x̄}.

Obviously, if x̄ is a tilt-stable local minimizer, then it is a local minimizer. The
inverse does not hold (e.g., x̄ = 0 is a local minimizer of φ := 0, but not a tilt-stable
local minimizer of φ).

The following theorem gives a sufficient condition for a point to be a tilt-stable
minimizer of a C1-function.

Theorem 4.4 (Optimality condition II). Let φ : X → R is a C1 function, where
X is a Hilbert space. If ∇φ(x̄) = 0, and there exist δ, r > 0 such that, for all
x ∈ Bδ(x̄),

(4.4) ⟨z, u⟩ ≥ r∥u∥2 ∀u ∈ X, ∀z ∈ ∂̂2φ(x)(u),

then x̄ is a tilt-stable local minimizer of (P1). The inverse is also valid if one
assumes further that φ is prox-regular at x̄ for x̄∗ = 0.

Proof. Suppose that ∇φ(x̄) = 0 and (4.4) holds. According to the proof of [2,
Theorem 5.1], there exists γ > 0 such that φ is strongly convex on Bγ(x̄). Since
∇φ(x̄) = 0 and φ is strongly convex on Bγ(x̄), we have Mγ(0) = {x̄} and Mγ(x

∗)
is a singleton set, say {ν(x∗)}, for all x∗ ∈ X∗. We claim that there exists a
neighborhood U∗ of 0 ∈ X∗ in the norm topology such that ν(x∗) ∈ intBγ(x̄) for
all x∗ ∈ U∗. Indeed, if this is false, then one can find x∗k → 0 and xk ∈ X with
∥xk − x̄∥ = γ such that xk = ν(x∗k) for all k. Thus, by the strong convexity of φ,

(4.5) φ(x̄) > φ(xk)− ⟨x∗k, xk − x̄⟩ ∀k.

Since X is a Hilbert space and ∥xk − x̄∥ = γ for all k, there exists a subsequence
{xkj} of {xk} tending weakly to some x̂ ∈ Bγ(x̄). Since φ is convex and continuous
on Bγ(x̄), it is weakly lower semicontinuous on Bγ(x̄). Taking the lim inf both sides
of (4.5) on the subsequence {xkj}, noting that lim

j→∞
⟨x∗kj , xkj − x̄⟩ = 0, we have

φ(x̄) > φ(x̂). This contradicts the fact that Mγ(0) = {x̄}. The claim has been
proved. For each x∗ ∈ U∗, since ν(x∗) ∈ intBγ(x̄), according to the Fermat rule,
∇φ

(
ν(x∗)

)
= x∗. So, by the strong convexity of φ on Bγ(x̄), there exists η > 0 such
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that

∥ν(x∗1)− ν(x∗2)∥.∥x∗1 − x∗2∥ = ∥ν(x∗1)− ν(x∗2)∥.∥∇φ
(
ν(x∗1)

)
−∇φ

(
ν(x∗2)

)
∥

≥ ⟨∇φ
(
ν(x∗1)

)
−∇φ

(
ν(x∗2)

)
, ν(x∗1)− ν(x∗2)⟩

≥ η∥ν(x∗1)− ν(x∗2)∥2 ∀x∗1, x∗2 ∈ U∗,

which implies ∥ν(x∗1) − ν(x∗2)∥ ≤ κ∥x∗1 − x∗2∥ for all x∗1, x
∗
2 ∈ U∗, where κ := η−1.

This shows that x̄ is a tilt-stable minimizer of φ. Conversely, suppose that x̄ is a
tilt-stable minimizer of φ and φ is prox-regular at x̄ for x̄∗ = 0. Then ∇φ(x̄) = 0
and, according to [8, Corollary 4.11], (4.4) is valid. This finishes the proof. �

Remark 4.5. If φ : Rn → R is a C1 function that is prox-regular at x̄ for v̄ := 0,
with ∇φ(x̄) = 0, (for example, φ is of C2-functions or even of C1,1-functions),
then it is well-known (see, e.g., [17]) that (4.4) is equivalent to the positiveness
of the limiting second-order subdifferential ∂2φ(x̄) in the sense that ⟨z, u⟩ > 0 for
all z ∈ ∂2φ(x̄)(u) with u ̸= 0. However, there exists C1 functions that are not
prox-regular, e.g., the function φ defined in Example 4.2.

To obtain a point-based second-order sufficient optimality condition, we have
to restrict our consideration to the class of C1,1 functions on Rn, and invoke the
limiting second-order subdifferential instead of the Fréchet counterpart.

Next result will be used in our subsequent analysis.

Proposition 4.6. Let φ : Rn → R be C1,1 near x̄ ∈ Rn. Then the following
assertions are equivalent:

(i) ∂2φ
(
x̄
)
is positive definite, i.e.,[

u ̸= 0, z ∈ ∂2φ
(
x̄
)
(u) ⇒ ⟨z, u⟩ > 0

]
;

(ii) there exist r > 0 and δ > 0 such that

(4.6)
[
x ∈ Bδ(x̄), u ∈ Rn, z ∈ ∂̂2φ

(
x
)
(u) ⇒ ⟨z, u⟩ ≥ r∥u∥2

]
;

(iii) there exist r > 0 and δ > 0 such that[
x ∈ Bδ(x̄), u ∈ Rn, z ∈ ∂2φ

(
x
)
(u) ⇒ ⟨z, u⟩ ≥ r∥u∥2

]
;

(iv) there exists r > 0 with the property that

⟨z, u⟩ ≥ r∥u∥2 ∀u ∈ Rn, ∀z ∈ ∂2φ
(
x̄
)
(u).

(v) there exists r > 0 such that φ is strongly convex on Bδ(x̄).

Proof. (i) ⇒ (ii): Suppose that φ is C1,1 near x̄, ∂2φ
(
x̄
)
is positive definite, but

(4.6) is invalid. Then, for any sequences rj ↓ 0 and δj ↓ 0, there exist xj ∈ Bδj (x̄),

uj ∈ Rn, and zj ∈ ∂̂2φ(xj) with

(4.7) ⟨zj , uj⟩ < rj∥uj∥2 ∀j ∈ N.

Since zj ∈ ∂̂2φ(xj), it holds that

(4.8) (zj ,−uj) ∈ N̂
(
(xj ,∇φ(xj)

)
; gph∇φ

)
.
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Note that, by (4.7), uj ̸= 0. Denote z̃j = 1
∥uj∥zj and ũj = 1

∥uj∥uj . Since ∥ũj∥ = 1

and {ũj} ⊂ Rn, we may assume that ũj → ũ as j → ∞, with ∥ũ∥ = 1. By (4.8),

(4.9) (z̃j ,−ũj) ∈ N̂
(
(xj ,∇φ(xj)

)
; gph∇φ

)
∀j ∈ N.

Let us now consider the following cases.
Case 1: {z̃j} is bounded. Using a subsequence if necessary, we may assume that
z̃j → z̃ ∈ Rn. Thus, by (4.9), (z̃,−ũ) ∈ N

(
(x̄,∇φ(x̄)

)
; gph∇φ

)
. Hence z̃ ∈

∂2φ
(
x̄
)
(ũ). So, by our assumptions, ⟨z̃, ũ⟩ > 0. Meanwhile, (4.7) implies that

⟨z̃j , ũj⟩ < rj for all j. Passing this to the limits as j → ∞ yields ⟨z̃, ũ⟩ ≤ 0, which
contradicts the fact that ⟨z̃, ũ⟩ > 0.
Case 2: {z̃j} is unbounded. Then we may assume that ∥z̃j∥ → ∞ as j → ∞ and
moreover, 1

∥z̃j∥ z̃j → z̃ ̸= 0 as j → ∞. According to (4.9),( 1

∥z̃j∥
z̃j ,−

1

∥z̃j∥
ũj

)
∈ N̂

(
(xj ,∇φ(xj)

)
; gph∇φ

)
,

which implies that (z̃, 0) ∈ N
(
(x̄,∇φ(x̄)); gph∇φ

)
. In other words,

(4.10) 0 ̸= z̃ ∈ ∂2φ
(
x̄)
)
(0).

As ∇φ(·) is locally Lipschitz at x̄, it is Lipschitz-like around (x̄,∇φ(x̄)
)
. By the

Mordukhovich criterion, D∗∇φ(x̄,∇φ(x̄))(0) = {0}; hence

∂2φ
(
x̄
)
(0) = {0},

which contradicts (4.10). Therefore, we get (4.6).
(ii) ⇒ (iii): Suppose that (ii) holds. Take any r > 0 and δ > 0 such that (4.6)

is valid. Let x ∈ Bδ/2(x̄), u ∈ Rn and z ∈ ∂2φ
(
x
)
(u). Choose xj → x, uj → u, and

zj → z such that zj ∈ ∂̂2φ(xj)(uj) for all j. By (4.6), ⟨zj , uj⟩ ≥ r∥uj∥2 for all j
large enough. Taking limits as j → ∞, we obtain ⟨z, u⟩ ≥ r∥u∥2, as required.

Finally, we observe that the implications (iii) ⇒ (iv) and (iv) ⇒ (i) are obvious,
while (ii) ⇔ (v) is due to Theorems 5.1 and 5.2 in [6]. The proof is complete. �

Theorem 4.7. Suppose φ : Rn → R is C1,1 near x̄ ∈ Rn and ∇φ(x̄) = 0. Then,
the following assertions are equivalent:

(i) x̄ is a tilt-stable local minimizer of (P1);
(ii) ∂2φ(x̄) is positive definite;
(iii) there exists r > 0 such that φ is strongly convex on Bδ(x̄).
(iv) there exist r > 0 and δ > 0 such that[

x ∈ Bδ(x̄), u ∈ Rn, z ∈ ∂̂2φ
(
x
)
(u) ⇒ ⟨z, u⟩ ≥ r∥u∥2

]
;

(v) there exist r > 0 and δ > 0 such that[
x ∈ Bδ(x̄), u ∈ Rn, z ∈ ∂2φ

(
x
)
(u) ⇒ ⟨z, u⟩ ≥ r∥u∥2

]
;

(vi) there exists r > 0 with the property that

⟨z, u⟩ ≥ r∥u∥2 ∀u ∈ Rn, ∀z ∈ ∂2φ
(
x̄
)
(u).
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Proof. Since φ is C1,1 near x̄, by [24, Proposition 13.34], φ is prox-regular and
subdifferentially continuous around x̄. Thus, by [23, Theorem 1.3], we have (i) ⇔
(ii). Furthermore, it follows from Proposition 4.6 that (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) ⇔
(vi). The proof is complete. �

Note that if x̄ is a tilt-stable local minimizer, then it is a locally unique minimizer.
Hence the following result is a direct corollary of Theorem 4.7.

Corollary 4.8. Suppose φ : Rn → R is C1,1 near x̄ ∈ Rn and ∇φ(x̄) = 0. If
∂2φ(x̄) is positive definite, then x̄ is a locally unique optimal solution of (P1).

Example 4.9. Let φ : R → R be the function defined by

φ(x) =

{
1
2x

2 if x ≤ 0,

3x2 if x > 0.

Then

∇φ(x) =

{
x if x ≤ 0,

6x if x > 0

and φ is C1,1 on R. Let x̄ = 0. By simple computation,

N
(
(x̄,∇φ(x̄)); gph∇φ

)
=

{
(z, u) ∈ R2| − 6u ≥ z ≥ −u

}
∪
{
(z, u) ∈ R2| z = −u

}
∪
{
(z, u) ∈ R2| z = −6u

}
.

Hence, for all z ∈ ∂2φ(x̄)(u), ⟨z, u⟩ ≥ r∥u∥2, with r = 1. By Theorem 4.8, x̄ is a
locally unique solution of (P1).

Note that since φ is C1,1 near x̄, ∂̂2φ(x̄) ⊂ ∂2φ(x̄). Obviously, the computation

of ∂̂2φ(x̄) is much simpler than the computation of ∂2φ(x̄). So, it is natural to

hope that, in the above corollary, we can replace ∂2φ(x̄) by ∂̂2φ(x̄). The following
example shows that this is impossible.

Example 4.10. Let φ : R → R be the function defined by φ(x) :=
∫ x
0 g(t)dt. Here

g : R → R is the function given by the following rules:
(1) g(0) := t for t ≤ 0;
(2) g(t) := 0 for t > 1;
(3) if k ∈ {0, 1, 2, ...} and 1

22k+1 < t ≤ 1
22k

, then

g(t) := 3
(∣∣t− 3

22k+2

∣∣− 1

22k+2

)
;

(4) if k ∈ {0, 1, 2, ...} and 1
22k+2 < t ≤ 1

22k+1 , then

g(t) := −3
(∣∣t− 3

22k+3

∣∣− 1

22k+3

)
.

Observe that g is a Lipschitz function on R. Hence φ is well-defined, ∇φ(x) = g(x)
for all x ∈ R, and moreover φ is C1,1. Let x̄ = 0. We have that

N̂
(
(x̄,∇φ(x̄)

)
; gph∇φ

)
=

{
(z, u) ∈ R2 | z + u = 0, u ≥ 0

}
.

Hence, if u ∈ R and z ∈ ∂̂2φ(x̄)(u), then zu = |u|2, which shows that ∂̂2φ(x̄) is
positive definite. For each k = 1, 2, ..., let xk := 1

22k
. It is not difficult to see that
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φ(xk) < 0 = φ(x̄) for all k, and xk → x̄ as k → ∞. Hence x̄ is not a local minimizer

of φ, while φ is a C1,1 function with property that ∇φ(x̄) = 0 and ∂̂2φ(x̄) is positive
definite.

Remark 4.11. In Example 4.10, φ is of C1,1,∇φ(x̄) = 0 and the function z : R → R
defined by z(u) := u is a selection of the second-order subdifferential ∂2φ(x̄) : R ⇒ R
satisfying ⟨z(u), u⟩ = |u|2 for all u ∈ R, but x̄ is not a local minimizer of φ. This
shows that ∇φ(x̄) = 0 together (3.10) in Theorem 3.7 is not a sufficient optimality
condition.
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